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ABSTRACT

Recently, the growing integration of wind energy into power networks has had a significant impact on power system
stability. Amongst types of large capacity wind turbines (WTs), doubly-fed induction generator (DFIG) wind turbines
represent an important percentage. This paper attemps to study the impact of DFIG wind turbines on the power
system stability and dynamics by modeling all components of a case study system (CSS). Modal analysis is used
for the study of the dynamic stability of the CSS. The system dynamics are studied by examining the eigenvalues
of the matrix system of the case study and the impact of all parameters of the CSS are studied in normal,
subsynchronous and super-synchronous modes. The results of the eigenvalue analysis are verified by using
dynamic simulation software. The results show that each of the electrical and mechanical parameters of the CSS

affect specific eigenvalues.

Keywords: wind turbine, doubly-fed induction generator (DFIG), dynamic modeling, eigenvalue analysis.

1. Introduction

In the last few years, the increasing wind power
penetration in electric power systems and its effect
on the dynamic stability of the power system,
specifically on weak networks, have become
important issues of concern. Among the various
types of wind turbines, variable-speed DFIG-based
wind turbines have attracted particular attention
because of their many advantages over those
based on fixed-speed generators; some of the
advantages are increased efficiency, reduced cost
of power electronic components, reduced
mechanical stress and independent control
capabilities for active and reactive powers [1, 2, 3].

The simulation of the dynamic behavior of DFIG
wind turbines has been intensely investigated
using dynamic simulations software [4,5]. The
significance of these investigations is that they are
based on time-domain simulations by power
system analysis tools to show the impact of wind
turbines on power system dynamics [6, 7].

The accurate modeling of all components of these
WTs and the study of their effects on the power

system are important. The dynamic modeling of
DFIG wind turbines has been studied in several
papers [8, 9, 10]. In these documents, dynamic
models of DFIG systems are presented in different
order. In some articles the use of dynamic models,
eigenvalue analysis, and artificial intelligence
techniques such as PSO has set the control
system parameters of power electronic converters
[11,12.13].

In previous studies, the impact of DFIG systems on
power system dynamic stability has analytically
been investigated. These studies have been
conducted mainly on variations of wind speed at
subsynchronous and super-synchronous modes.
In these studies, the influence of the transmission
line parameters, load system, and dynamics of
controllers have not been investigated; in addition,
the strength of networks connected to WTs [14,15]
has not been mentioned in related papers.
Thereby, in this paper, by accurately modeling all
components of a variable-speed DFIG wind turbine
in a CSS connected to a network, the impact of
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Figure 1. Case study system.

different parameters of network and WT on the
dynamic stability of the CSS has been studied.

In the modeling of the CSS, a seventh-order DFIG
wind turbine, the dynamics of the pitch controller
system and the rotor and stator converters are
considered for a precise study, a short line model is
used and the branch shunt is neglected. Constant
impedance is used for the load model. The network
is modeled with a power supply and equivalent
impedance that represents the strength of network.

For the dynamic stability analysis, the deferential-
algebraic equations (DAE) of the CSS are
linearized around an operating point. The
operating point is obtained by a simultaneous
solution of DAE for a steady state condition. The
eigenvalues of the CSS resulted from a system
matrix. The trajectory behavior and the sensitivity
of eigenvalues are investigated for various
parameters of network and WT in normal,
subsynchronous and super-synchronous modes.
The results of the eigenvalue analysis are verified
by dynamic simulation of the CSS in Matlab
simulation tools.

2. Case study system (CSS)

The CSS illustrated in Figure 1 comprises a
variable-speed DFIG wind turbine connected to
the network by a transmission line. The load bus
is located between the bus and the wind turbine;
hence, the complete model of the CSS includes
the following components: DFIG model, power
electronic  converter model, transformer,
transmission line, load, drive train and pitch
controller model.

JX s+ Ry
idqs =ig+ jiqs
| | o >
Edq =ey + ]eq

qus: VastJ I{]s

Figure 2. Dynamic model of DFIG.
2.1 DFIG model

In dynamic stability studies, the model of machines
is usually represented as a voltage source behind
transient impedance [16, 17]; therefore equivalent
circuit of the DFIG is shown in Figure 2. This
equivalent circuit is the result of a written voltage
and the current equations of the rotor and the
stator of the DFIG in dq frame to another form;
hence, the DFIG model can be written by the
following equations:
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s s\ =ssr

T =wl, /R (12)

where y is the flux , L is the inductance, R is the
resistance, X is the transient reactance, X is the

reactance, T, is the transient time constant, e is

the voltage behind the transient impedance, the
subscripts of ‘r,’s’ are related to the rotor and the
stator, respectively, and the subscripts of ‘d’,’q" are
related to the quarter and the orthogonal of the

coordinate axes, respectively.

2.2 Power electronic converter model

In a DFIG wind turbine, the power electronic
converter (PEC) is located between the rotor
winding of the DFIG and the network; PECs are
usually PWM voltage source converters separated
by a DC-link as shown in Figure 3.

v- Ky (13)
1+Ts

) Ve (14)
V4

In dynamic studies, PECs, which are usually
modeled as simple gains or else as first-order
systems, are presented. In Equation 13, K; is the
gain of the converter, expressed as the ratio of
output voltage magnitude V, to input voltage V,
and T, is the time constant of the converter, which
is usually very small and can be neglected [16].
In Figure 3, Z; is the impedance of the filter
between the converter and the network. The
effect of the filter on system performance is
expressed in Equation 14. The current of filter I;
and the impact of its parameters are applied in
equations related to the dynamics of the network-
side converter controller.

RSC Gsc
V., v e Vil % V.
. d
— 11 1 —>—| |—
+
v, K v,
1+Ts

Figure 3. Power electronic converter
and dynamic model.
2.2.1 Dynamics of the rotor-side converter
controller

Through the vector control method, the active and
reactive power are controlled independently via
quarter and orthogonal of coordinate axes [18]. The
control block diagrams of the rotor-side converter
are illustrated in Figure 4. By introducing
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intermediate variables xy, Xx,, x3 and x4, the i =K, (Qu - Q) +K, X, (22)
following equations can be expressed [16]:
ax, . .
X _p _p (15) el (23)
dt ref s
in, = K(Py —=P)+K,X, (16) Vo = Kool =i )+ K X, (24)
dX2 . . Vdr = vz;r - (a)s - a)r ){(er Iqr + Lmlqs )}_ erdr
—=2=j - 17)
a v 7
(25)
V;r = Kp2(it;r _iqr)+Ki2X2 (18)

Where P is the active power, Q is the reactive
. power, and K, and K; are the Pl controller
V,=v, (o, -o ){( L1, +Lmlds)}_Rr L coefficients. Other parameters were introduced
in the previous section.
(19)
2.2.2 Dynamics of the grid-side converter

Q, =Vl =Vl (20) controller

qs gs

The grid-side converter operates to maintain the

dx
d; =Q,-Q, (21) DC-link voltage in constant value and to control the
grid-side reactive power [18]. The block diagrams
of this controller model are shown in Figure 5. By
qu—ref LfW
lywg —¥ R
ax, | ax ,
Vdc,, T dt o K d’—'ef=m dt_ K
PS5 T pé
T -l
-Vdc o

Figure 5. Control block diagrams of the
grid-side converter.
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introducing intermediate variables xs, xg and x7, the
following equations can be obtained [16]:

dX,

- Vc _Vc
dt ©o (26)
it;f = KpS(Vt;c _vdc)+K[5X5 (27)
ax, .. .
dte =g~y (28)
iy, = My Ve (29)
JR? + X}
V:If :er(i;f _idf)+Ki6X6 (30)
Vdf = (( Vds)_Rfl;f + a)st ;f)_vt;f (31)
Q, = Vd,iq, —ngidg (32)
ax, . .
dt7 =iy —i, (33)
V.-V
iy =—F——1 (34)
JRZ+ X}
qf = Kp7(i;f _iqf)+Ki7X7 (35)

Vy = (( Vis )_ R I ;f —oL1 df )_ qu‘
(36)

Where V. is the DC-link voltage and “*” is used as
reference value.Subscript “f” is related to the filter
elements.

2.2.3 Dynamics of the DC-link capacitor

The active power flow is balanced through the
converters. Hence, the power balance equation for
defining the dynamics of DC-link capacitor is the
following [16]:

av, 1
dt ¢V,

{(Vdridr + Vqr .qr ) - (Vdfidf + quiqf )}

(37)

If the dynamics of the DC-link capacitor is
neglected and V. is constant then dV4/dt=0. i; is
filter current achieved by Equation 14.

2.3 Transformer model

Using ™ model of transformer is common in
networks. Besides, in dynamic stability studies, the
shunt branch is neglected and transformer model
is usually presented by series impedance [19]. A
simplified model of transformer is shown in Figure
6. In this figure Z is total impedance of HV and LV
sides of transformer in per unit.

+ Z=Z+Z5+Zs
Vo
+
+
Vs
Vs
Figure 6. Model of transformer.
Z,=2Z,+2Z, (38)

2.4 Drive train model

Figure 7 shows the drive train model of the wind
turbine. The drive train includes a turbine, gearbox,
shafts and other mechanical components of the
WT. The generator rotor shaft is connected to the
turbine shaft flexibly via gearbox and coupling [15].

H

Gearbox

D

Damping

Generator

Stiffness

Turbine K
H

Figure 7. Drive train model of the wind turbine.
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The two-mass model is given by the following
equations:

do, 1 K D D
= T, - 6., — o, + @,
dt  2H, 2H, 2H, 2H,
(39)
do, K D D T,
= 0, + 0, — 0, -
dt  2H 2H, 2H 2H
(40)
dae,,
d—; =0, -0, 41)

Where H, and H, are the turbine and generator

inertia, w; and w, are the turbine and DFIG rotor
speed, and 6y, is the shaft torsion angle, K the
shaft stiffness, and D the damping coefficient, T, is

the electromagnetic torque and T, is mechanical
torque produced by wind turbine. T and T, can be
determined by:

e' '
Te = Ps = (_quqs + [e_djlds (42)
ws a)s ws

T, =0.5pR?c,V} o, (43)
o.R

-0 44

v (44)

w

C, =
c,(4.p)=c, —r-cf-c,je” +c,

i

(45)

1 1 0.035

2 A+0088 f°+1

i

(46)

Where V, is wind speed, C, is the power
coefficient, B is the pitch angle, R is the rotor-
blade radius, p is the air density and, A is the tip
speed ratio.

2.4.1 Pitch controller model

Pitch control is one of the controlling methods for
power and speed control of turbine rotor. Aimost all
variable-speed wind turbines use pitch control
(Figure 8). The dynamics of the pitch controller is
given by [14]

a1 — o)
dt - T (Kpitch ((0, wr ) ﬂ)

pitch

(47)

Where Kiicn is the gain of the WT pitch controller,
Toitcn is time constant of WT pitch controller.

—

a)r " : ' Kpitch
1+T,.,S

- pitch
4 U

B
—

Figure 8. Pitch controller model.

2.5 Load model

In power system stability study, a common practice
is to represent the composite load characteristics.
The response of most composite loads to voltage
and frequency changes is fast and the steady state
of the response is reached very quickly. This is
true at least for modest amplitude of
voltage/frequency change [17]. Here load model is
considered as constant impedance. In the load
modeling by constant impedance, load power
changes are proportional to the voltage squared.
The equations related to the constant impedance
load can be written as: [17]

V2 V2
Z S N A R—
ST P - Q, (48)

PI = ZLoad *COS ¢!Ql = ZLoad *Sin ¢

Where Z,_, is impedance of load and ¢ is the
angle between voltage and current.

2.6 Line model
The fastest dynamics are those associated with

the very fast wave phenomena that occur in
transmission lines [20]. Therefore, in this study,
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steady-state model of line is considered. For
steady-state model the interest variables are the
voltages and currents at the line terminals, these
parameters can be determined by [17]:

Vi| | coshy  Z sinhy |V,
I.| |[1/Z sinhyd  coshy | I,

s

L=J§7=J§7

(49)

Where /I are currents and V_,V are voltages of

line terminal, while Subscripts ‘s’ indicate the
sending end of the line, ‘r’ stands for the receiving
end. Z and Y are impedance and admittance of
line.

2.7 Network model

In dynamic stability studies, network is usually
represented as a source voltage behind network
equivalent impedance for simplicity [18]. Network
equivalent circuit is shown in Figure 9.

ZGnd

Figure 9. Network model
3. Differential-algebraic model of the CSS

To develop a power system dynamic simulation
the equations used to model the different elements
are collected together to form a set of differential
equations that describes the system dynamics. A
set of algebraic equations includes the algebraic
equations of network and equations of the stator of
the DFIG, as follows:

x =f(x,y,u)
0=9(xy)

(50)

P4
Q 7 q
P
-
-
P
-
-
e
-
X
- /i 5 » D
\
\
\
\
\
\
\d

Figure 10. Reference frame conversion.

Each system model is expressed in its own d-q
reference frame which rotates with its rotor. For the
solution of interconnecting network equations, all
voltages and currents must be expressed in a
common reference. Usually a reference frame
rotating at synchronous speed is used [17] (Figure
10). Thus, when writing the power equations of the
grid connected DFIG, transformation from one
frame to another should be applied appropriately
[17, 16]. The dq and DQ variables are related by:

F, _| sind -cosé F,
F,| |coss sins |F,|

q
F, _| siné  cosé F,
F,| |-cosé sins |F, |
=, — o,

at
(61)

3.1 Algebraic equations of the stator of the DFIG

Algebraic equations of the stator of the DFIG
obtained directly from dynamic circuit equivalent of
DFIG. By applying KVL law in Figure 2. The
following equations can be written:

e(:, -V, —Rsiijs + Xls. /q =0 (52)
e,~V,.-R.i,—Xi,=0

3.2 Algebraic equations of the network

Power flow equations on the load bus and the wind
turbine bus organize the algebraic equations of the
network. In Figure 1, the CSS is considered as 3
bus systems. The magnitude and angle of each
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bus is attributed to a parameter. Therefore, power
flow equations on the buses are as follows: [16]

Bus 1:
9. (X,y) = |V1|21/|Z12|COS(C(12)— (53)
Vi|V.[1/|Z,,|cos(6, - 6, + a,,) - P, =0
|V1|21/|Z12|sin(a12)— (54)

V|V.[11Z,,|sin(6, - 6, + a,,) - Q, =0
Bus 2:

9,(Xy)= |\/2|21/]Z12|COS@12)_
VoIV, [11Z.|cos, 6, +a,) +V,[ 12, cosee,)
V|12, |cos@, -6, +a,)+ V| 1]Z,|cos, ) =0

(59)

gzs(xsy) = |V2|21/|Z12|sin(a12 )-
VA Va2, |sin(8, - 6, + a,) + |V, [ 112, | sin(er,, )
~|V,|Vo[1/|Z,.|sin(8, - 6, + &) + |V, | 1/]Z,|sin(e, ) = 0

(56)

Bus 3:

9 (x.y) = Vo] 1/]Z,,|cos(a,,) -
VA|E [1|Z e | cos(6, -5, + a,ppys)
+ Vo[ 112 e cos(@t, p s ) -
ViV, [1/|Z,|cos(6, - 6, + a,,) =0,
Zore = R, + X,
(57)

gn(xy) = Vs 1/]Z,|sin(a,) -
|V3||E'|1/|ZDF,G|sin(6’3 — 5, + )
+ Vo[ 12 | sin(et, g ) -

VoV [t11Zo[sin(0, — 6, + a,) = O

(58)

Hence, the complete DAE model of the CSS is as
follows:

1- Deferential equations of the DFIG,((1) -
4))

2- Deferential equations of the PEC controller
and dynamics of the DC-link (15), (17),
(21), (23), (24), (28), (33), and (32).

3- Deferential equations of the drive ftrain
system of the wind turbine (39), (40), and
(41).

4- Deferential equation of the pitch controller
system (47).

5- Algebraic equations of the DFIG (5), (6),
and (52).

6- Algebraic equations of the PEC controller
(16), (18), (19), (22), (24), (25), (27), (30),
(31) ,(35), and (36).

7- Algebraic equations of the drive train
system of the wind turbine ((42)-(46)).

8- Algebraic equations of the load flow ((53)-

(58)).
X = [XDFIG ! Xcontrol ’ XDrive—trane ’ Xp/'tch ]1x16
XDFIG = [IDs'IQs'e'D'e;)]
Xcontm/ = [X1!X21X3‘X41Vuc’X51X61X7]
XDrive—trine = [wt H M glw ]
Xp/'tch = [ﬂ]
(59)
y = [YDFIG 'ycomrcl ’ YDm/e ~trane ybus ]1><24
YDF!G = [VDr ‘VQI ’Te]
chntrol = [VDI' ‘VQF ’IDI' ‘IQf 'IDI'
’IQr ’VDf ’VQf ’IDf ’IQf ’IDf ]
YDrive —trine = [/1! C p’ Tm ]
ybus = [|V3 |’ 03 ’ |V2 |r 0,, |V1 |]
(60)

Where, x is vector of state parameters, y is vector
of algebraic parameters, X is state parameters and
Y is algebraic parameters.

4. Dynamic simulation of the CSS

The block diagram of the CSS is shown in Figure
11. This model includes grid, wind turbine and load
bus. The load bus is located between the grid and
the wind turbine bus. Obtained results by
eigenvalue analysis of CSS dynamic model are
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Figure 11. Block diagram of the CSS in Matlab Simulink.
" of of, - of of,
verified by Matlab simulation. As stability factor, — ... — — ... 1
these results have been investigated for 2 X1 oy, Y 24
demonstrating the impact of different parameters A| o o B—| " ot
variations on power and voltage of wind turbine — ° | . . I
and load bus. afi ..... of, % ..... of
5. CSS stability based on eigenvalue analysis | OX, X5 | y, 2 |
Eigenvalue analysis is used to analyze the % ..... % % ..... %
dynamic stability of the CSS, hence, the X, X, oy, OY 2
description equations of the CSS are linearized C=| " o D=| " o
around an operating point (xo, yo)[17]. I I
. ag 24 ag 24 6g 24 ag 24
AXx =AAX+BAy (61) | ox, oX,, oy, .,
0 =CAx+ DAy (62)

A,B,C and D are Jacobian matrices. All elements
of the Jacobian matrices are presented in

Appendix. By inserting Ay = -D"CAx in Equation

61, the system matrix of the CSS can be
determined:

Ax=(A-BD'C)Ax
_—
Asys
A,.=A-BD'C

(63)

Ay is system matrix of CSS. The system
stability is studied by examining the
eigenvalues of A, around an operating point.
Eigenvalue of CSS is presented in Table1 for
an operating point. In this table, oscillation
frequency and damping ratio is calculated too.
Table1 shows that CSS is stable for initial
values of reference table.
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Eigenvalue ot jo f &
A2 -8.9671 £22.9589i  +3.6540 0.3638
N34 -8.1211 + 8.3643i +1.3312 0.6966
As6 -1.1630 + 4.1452i +0.6597 0.2701
A -6.7268 0 1.0000
As9 -4.1987 + 2.9759i +0.4736 0.8159

Ao,11 -1.4409 + 2.4845i +0.3954 0.5017
M2 -0.7669 0 1.0000
M3 -1.5307 0 1.0000
Mg -2.2416 0 1.0000
Ais -3.0844 0 1.0000
Me -4.0128 0 1.0000
Table 1. Eigenvalues of the CSS.
6. Impact of network parameters
In this subsection, impact of network

parameters such as load power, power factor
of load, the inductance and resistance of line
transmission, has been investigated on CSS
eigenvalues displacement. Obtained results
from eigenvalues analyzing have been
compared to simulation results.

6.1 Influence of the load

Figure12 shows the influence of the load power on
the displacement of eigenvalues of the CSS. Load
variations are considered in sub-synchronous,
normal and sup-synchronous speed modes as
ascending and its limitation is 2p.u<P.y<5p.u,
while keeping all other parameters at their initial
values. In low levels of load power, eigenvalues of
CSS are located in left half-plane and CSS is

stable, gradually by increasing in load power, 4
eigenvalues displace toward right half-plane. For
load changes in the sup-synchronous mode, the
initial values A5 are closer to the imaginary axis
and by increasing load, instability happens faster in
CSS than in the other two modes.

Eigenvalues in Figure 12 are A5, As and A;, ,cause
the system to be instable. A; and As have constant
imaginary values in left half-plane. By passing from
left the half-plane to the right half-plane, the
imaginary part of two values and the real part have
been changed. A5, As are complex quantities. Thus,
the system will be in oscillatory instability status. In
reality, it can be said, that these eigenvalues are
able to cause voltage collapse phenomena.

Eigenvalues with positive real part cause
instability with no oscillation and analytic
eigenvalues with positive real part cause

oscillatory instability in the CSS.

Oscillations frequency and damping factor of
eigenvalues, As;, Ag and A, for different loads 2p.u,
3.5p.u and 4p.u are characterized in Tables 2 and
3. For load values over than 3.5p.u, additionally
As, eigenvalue A;,, causes instability. In Table3
that comprises oscillations frequency and damping
factor, it is expected for eigenvalues A5 and A;;
that, oscillatory instability and instability with no
oscillation accrue. By increasing real power in load
bus, mechanical input power of turbine needs to be
changed. Therefore, it can be said, that real power
increasing is effective on power transmission
system mechanical modes.

Eigenvalue P=2p.u P=3.5p.u P=4 p.u
As -1.1630 + 4.1452j  2.4678 + 3.2352/  0.6581 + 0.8425/
As -1.1630 - 4.1452i  2.4678 - 3.2352] 0.6581 - 0.8425i
A2 -0.7669 -0.2832 8.9119

Table 2. Effective eigenvalues on instability with load changing in normal mode.

Eigenvalue P=2p.u P=3.5p.u P=4 p.u
f ¢ f ¢ f ¢
Asg 0.6597 0.2701 | 0.5149 -0.6065 | 0.1341 -0.6156
A2 0 1 0 1 0 1

Table 3. Oscillations frequency and damping factor of effective eigenvalues on instability in normal mode.
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Figure 12. Influence of the load power on the stability of CSS in three modes operation:
a) subsynchronous, b) normal, c) super-synchronous.
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6.2 Influence of the load power factor

Figure 13 shows the influence of the load power
factor or consuming reactive power of load in load
bus. Power factor variations for passive load have

been done for 0.2<pf<0.9 in three operation
modes: a-sub-synchronous, b-normal, c-sup-
synchronous. During the power factor variations,
other parameters assume in initial values. By
decreasing power factor or more consuming
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Figure 13. Influence of the load power factor on stability in three operation modes:
a) subsynchronous, b) normal, c) super-synchronous.
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Eigenvalue pf=0.9 p.u pf=0.5 p.u pf=0.2 p.u
A -8.9671 +22.9589/ -41.4156 -60.5309
A2 -8.9671 -22.9589i -17.1520 -14.3990
Aa3 -8.1211 £ 8.3643/ -2.6555 +10.7277/ -1.4921 + 9.8937/

Table 4. Effective eigenvalues on instability with power factor changing.

reactive power, sensitive eigenvalues A;,; and Az 4
move  toward instability  border. Four
eigenvalues of CSS that are more sensitive to
power factor variations are illustrated in Figure
13. The most effect of power factor variations
are on the 2 eigenvalues, A3,. Gradually by
power factor decreasing, negative damping
factor move to stability border.Table4 shows
eigenvalues that are affected from power factor
variation for three states, 0.9, 0.5 and 0.2 in
normal mode. For values 0.5 and 0.2, A; and A,
just have negative real value.

Influence of load power and power factor on bus
voltage validated through a dynamic simulation in
Matlab Simulink. Simulation model is similarly to
CSS and comprises 3 buses: grid, load and DFIG
wind turbine. Figure 14 shows the impact of active
power and power factor variations of load on the
voltages of the grid, load and DFIG buses.

Figure 14 demonstrates, by increasing the active
and reactive power consumption of load, voltage
level of 3 buses decrease intensely. Thus voltage

factor with these variations can be considered
as stability criterion of simulated system.
Considering results obtained in eigenvalue
analysis, it can be said, that the eigenvalues
which cause instability in system, has became
apparent voltage instability in simulated system.

6.3 Influence of line inductance

Figure 15 shows the influence of the line
inductance on the eigenvalues of CSS. Line
inductance variations are considered in sub-
synchronous, normal, sup-synchronous
operation modes as ascending, and its
limitation is (0.0088<X};,,<0.012). All other
parameters have kept at their initial values.
With increasing line inductance, A, displace to
unstable area and makes the system unstable.
By considering [17], about maximum power
transmitting, it can be said, that line inductance
increasing leads to decreases of maximum
transmitted power from the DFIG to the network
so it matches the obtained results from the
eigenvalues analysis.
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o ° o o
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& I d o & o &
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Bus Voltage(p.u)-b

—<— Load bus
=--EF- DFIG bus
-+<~+- Grid bus

35 4 45 5
Power(p.u)

Figure 14. a) The impact of power factor variations on the voltages of buses, b) The impact
of power variations on the voltages of buses.
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Figure 15. Influence of line inductance on system stability in three operation modes:
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Figure 16. Impact of line inductance changes on a) voltage and b) active power of load.

concluded about line inductance changing that

As culminated this instability.

impact of line

the

inductance changes on stability by dynamic

16 presents

Figure

simulation in Matlab Simulink. The impact of
line parameter changes in network side and

6.4 Influence of the line resistance

WT on stability is equal. Thereby, in presented

line

influence of the
resistance on the system stability. Resistance

variations are considered as ascending, and its

Figure 17 shows the

results, just the impact of line parameters in

DFIG side has been investigated. The impact
of the line inductance changes on active power

and voltage of load has been

limitation is 0.001p.u<R);,¢<0.0065p.u. Here the
variations are considered for three modes too,

exposed and

considered as criterion of systems stability.

while keeping all other parameters at their initial

resistance

Considering the way line
increases, lead to displacement A; to unstable

area and causes system instability. The important
point in this state is eigenvalue variation process
which is similar to influence of X, variations. In

values.

Line inductance variations have been considered for
2*Ljine and 5L, . for 2*L;,e, active power and voltage

of load bus become stable after oscillation cycles, in

the next stage, increasing line inductance to 5Ly,

that causes to oscillate the active power and voltage
of load. Consequently, it results in system instability.

lead to system

instability. Figure 18 shows the impact of the line

both states eigenvalue A

resistant on system stability in Matlab Simulink.
The influence of the line resistance variations on

Line inductance increasing, changes the power
transmission from the DFIG to the network,
and cause excitation system to oscillation

modes.

power of load bus has been demonstrated and

considered as criterion of systems stability.

By analyzing eigenvalue, it can be

805
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Figure 17. Influence of line resistance on stability in three operation modes:

a) subsynchronous, b) normal, c) super-synchronous.
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Appendix

A- Data of CSS

Wind turbine
Damping factor axis(D)=1.5 Turbine inertia
constant(H;=3s
Generator inertia
constant(H,)=0.5s
DFIG
Rotor Rotor resistance(R;)=0.005p.u
inductance(L,)=0.156p.u
Inductance(Lm)=2.9p.u Stator
resistance(Rs)=0.0076p.u
Stator
inductance(Ls)=0.171p.u
Converter
Filter Dc link capacitor(c)=0.001p.u

resistance(R¢)=0.015p.u

Filter inductance(Ls)=0.1p.u

Controller parameters

Kp1=1,Ki1=100, Kp2=0.3,Ki2=8,
Kp4=0.3,Ki4=8,Kp5=0.002,Ki5=0.05, KL6=1 ,Ki5=1 00, Kp7=1 ,Ki7=100,

Kps=1.25,K3=300,

Load

Power factor(pf)=0.8 Real power=2MW

. Elements of Jacobian matrices

Matrix A
S LR X | 220, - 0),
X, | X ol |2,

o o | off | 1
X, |X. [ex, |XT [
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oX, X, o,T,

of, | 1 o, | | o . i
X, | XT. [ax, |X. [ax, = |X

o, _(xs—x;) o, _(_i)
X, - T. Tox, ' T.”
% = _z(ws — a)r )7i = 26;3
oX oX
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