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ABSTRACT 
Motivated by a problem faced by road construction companies, we develop a new model to obtain an optimal 
transportation schedule of mobile machines which have to travel to execute tasks. In this problem, each task is 
characterized by the location where it is to be executed, a work-content in terms of machine-time units, and one or 
more time intervals within which it can be performed. The machines can be transported from one location to another  
at any time, thus the problem has an indefinite number of variables. However, this indefinite number of variables can 
be reduced to a definite one because, as we prove, the problem has an optimal solution in which the arrivals of 
machines occur only at certain time instants. The objective is to minimize the total transportation cost such that all the 
tasks are executed within their time intervals. The constraints ensuring that the tasks are processed within their 
prescribed time intervals are nonlinear; nevertheless, due to the sets of the possible arrival times of the machines 
forming bounded convex polyhedra, our problem can be transformed into a mixed integer linear program by the same 
device used in the decomposition principle of Dantzig-Wolfe. 
 
Keywords: transportation schedule, generalized linear programming, bounded convex polyhedron, work-content. 
 
RESUMEN 
Motivados por un problema que enfrentan las compañías de la construcción, desarrollamos un modelo nuevo para 
obtener un calendario óptimo del transporte de máquinas móviles que tienen que viajar para realizar tareas. En este 
problema, cada tarea está caracterizada por el lugar donde ésta tiene que ser realizada, una carga de trabajo en 
términos de tiempo-máquina, y uno o más intervalos de tiempo dentro de los cuales la tarea puede ser procesada. 
Las máquinas se pueden transportar desde un lugar hasta otro en cualquier momento, por lo tanto el problema tiene 
un número indefinido de variables. Sin embargo, este número indefinido de variables se puede reducir a uno definido 
porque, como se demuestra, el problema tiene una solución óptima en la que las llegadas de las máquinas ocurren 
solamente en ciertos momentos. El objetivo es minimizar el costo total de transporte tal que todas las tareas sean 
ejecutadas dentro de sus intervalos de tiempo. Las restricciones que aseguran que cada tarea sea procesada dentro 
de sus intervalos de tiempo prescritos son no lineales; sin embargo, debido a que los conjuntos de los posibles 
tiempos de llegada de las máquinas forman poliedros convexos acotados, nuestro problema puede transformarse en 
un programa lineal entero mixto por el mismo artificio usado en el principio de descomposición de Dantzig-Wolfe. 
 
 
1. Introduction 
 
In this paper, we develop a new model to obtain an 
optimal transportation schedule of identical mobile 
machines which have to execute tasks located at 
several places. Our work is motivated by a 
transportation scheduling problem faced by road 
construction and maintenance companies. In this 
problem, each task is characterized by the location  
where it is to be executed, a work-content in terms  
 
 

 
 
of machine-time units (e.g., machine-hours), and 
one or more work intervals (time intervals within 
which it is possible to process the work-content of 
a task). In practice, these work intervals are 
determined according to external factors such as 
the weather, or constructions contracts. We 
consider the following assumptions. At each 
location, there may be more than one task and the  
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work intervals associated with those tasks do not 
overlap. The tasks can be started at any time 
within their respective work intervals and executed 
with interruptions. Moreover, it is considered that 
the machines can be transported from one location 
to another location at any time and that they are 
busy at all work-instant (a time instant within a 
work interval) unless the corresponding task has 
been completed. Finally, we consider that the 
work-content of a task may be processed by 
several machines simultaneously without altering the 
processing speed of each machine. The 
transportation times and the transportation costs are 
given. Also given is the number of machines 
available at each location at the beginning of the 
planning period. The objective is to minimize the total 
transportation cost in such a way that all the tasks are 
accomplished within their respective prescribed work 
intervals. This problem is NP-hard as it is a 
generalization of the traveling salesman problem.  
 
The proposed model can be applied, for instance, 
when machines performing large tasks in different 
places have to travel between tasks. In this case, 
“machines” may represent harvesters, dirt movers, 
excavators, land levelers, or asphalt mixers, and 
“tasks” may be activities in agriculture, forestry, 
construction and maintenance projects. Also, our 
model can be applied in manufacturing systems 
where machines travel instead of tasks. This 
occurs, for example, when the products to be 
manufactured are too big or heavy (e.g., ships) to 
be moved between machines.  
 
Achieving high equipment utilization is an 
important concern among industries due to the 
large capital investments on machines and 
equipment. In this sense, our model can be applied 
in situations where economic resources are so 
limited that the optimal use of expensive machines 
implies that the machines must be shared among 
the locations where the tasks are to be performed; 
under these conditions, the purchase of machines 
is convenient only if the number of available 
machines is insufficient for performing the tasks. 
 
As far as we know, the problem that we formulate 
in this paper has not been addressed in the 
literature. Because the machines travel between 
the tasks, one could think that the proposed 
problem is of the type of routing flow shop (see, 
e.g., Averbakh and Berman, 1999), routing open 

shop (see, e.g., Averbakh et al., 2006) or routing-
scheduling problems (see e.g., Bredström and 
Rönnqvist, 2008; Kek et al., 2008; Kim et al., 2006; 
Desaulniers et al., 1998; Desrosiers et al., 1995). 
However, our problem cannot be obtained from these 
models because of some of its mentioned 
characteristics: the tasks can be executed with 
interruptions and are specified by a work-content in 
terms of machine-time units instead of a fixed duration 
and fixed machine requirements, and each machine 
may revisit any location any number of times. 
 
We develop the formulation of the problem in three 
stages. Each stage consists of a problem simpler 
than the previous one with an optimal solution 
which is also an optimal solution of the previous 
problem. Each of the three problems has two sets 
of constraints. The constraints of the first set are 
restrictions on the availability of machines at each 
location. The constraints of the second set ensure 
that each task is accomplished within its 
prescribed work intervals; each of these 
constraints has products of two quantities: the 
number of machines arriving at a location during a 
work interval and the amount of time that these 
machines work during that work interval. In the first 
two stages of the formulation, these two quantities 
are decision variables, and hence the first two 
problems are nonlinear. 
 
The paper is organized as follows: In Section 2, we 
develop the preliminary stage (Problem 1) in which 
it is considered that the machines can be 
transported from one location to another location at 
any time. Thus, Problem 1 has an indefinite 
number of variables. In Section 3, we formulate 
Problem 2 (second stage of the formulation of our 
model) which is obtained from Problem 1 by 
reducing the set of time instants at which it is 
permissible to transport machines. This reduction 
is based on the fact (that we prove in Theorem 1) 
that Problem 1 has an optimal solution in which the 
arrival time of any shipment of machines (one or 
more machines are transported together at the 
same time) is a work-instant. In this optimal 
solution, each shipment of machines belongs to 
one of the following two classes of shipments. A 
class A shipment: one or more machines depart 
together from a location L at some idle-instant (a 
time instant outside of a work interval) and arrive 
together at another location M just at the beginning 
of a work interval. A class B shipment: one or more 
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machines depart together from a location L at a 
work-instant within a work interval i and arrive 
together at another location M at a work-instant 
within a work interval j. We prove (Theorem 2) that 
an arbitrary number of class B shipments , each of 
them departing from location L at an instant within 
work interval i and arriving at location M at an 
instant within work interval j, is equivalent, in the 
sense of the portions of work-content processed by 
the machines transported in these shipments, to a 
single consolidated shipment (several shipments 
departing and arriving together) departing from L at 
certain work-instant within i and arriving at M at a 
work-instant within j. Theorem 2 allow us to 
formulate Problem 2 with a definite number of 
variables. However, this problem is still nonlinear 
and cannot be solved directly because its 
constraints on the machines availability at each 
location in the interior of the work intervals cannot 
be expressed in terms of the decision variables. 
We prove that it is possible to find an optimal 
solution of Problem 2 through an iterative 
procedure in which the relaxed Problem 2 
(Problem 2’), obtained by dropping the constraints 
on the machines availability, is solved iteratively by 
dividing, according to certain strategy, the work 
intervals into adjacent subintervals until the 
solution satisfies such constraints. In Section 4, we 
develop the third stage of the formulation of our 
model. In this section, we will see that Problem 2’ 
can be considered as a generalized linear program 
and that it can be transformed into a mixed integer 
linear program (Problem 3) by the same device 
used in the decomposition principle of Dantzig-
Wolfe. More precisely, we show (Theorem 3) that 
any single consolidated class B shipment is 
equivalent (in the above-mentioned sense) to a 
pair of “extreme” shipments. This equivalence is 
because the set of all the possible arrival times of 
each class B shipment is a bounded convex 
polyhedron. Finally, in Section 5, some 
conclusions are given. 
 
2. Problem 1: A nonlinear program with an 
indefinite number of variables 
 
Let K  1,…,k,…,q denote the set of tasks to be 
executed, and let   1,…,l,…,m denote the set 
of locations where either the tasks are to be  
 
 
 

executed or there are machines. The location  
where the task kK is to be performed is given by 
a function ’ K. Let I  1,…,i,…,n denote the 
set of all the work intervals, and let Ik denote the 
set of the work intervals associated with the task 
kK; obviously, I  kK Ik, and Ik  Ih   for all k, 
hK with k  h. We define the function   I   as 
(i)  p if, and only if, iIk and ’(k)  p. That is to 
say, (i) is the location corresponding to the work 
interval iI. Thus, if iIk then (i)  ’(k). For 
simplicity reasons, it is assumed that at each 
location the work intervals do not overlap. Each 
task kK has associated with it, in addition to a set 
of work intervals Ik and a location ’(k), a work-
content wk which must be processed within Ik. The 
beginning Ei and the end Li (Ei  Li) of each work 
interval iI are known. We denote by (i) each 
work interval [Ei, Li), iI, and by T the planning 
period given by T  [infEi  supT ( p, (i))  p 
iI, supLi  iI]. The number of machines Qp 
available at p at the beginning of the planning 
period is given. Also given are the cost of 
transporting a machine from one location p to 
another location s, C (p, s), and the corresponding 
transportation time, T (p, s). 
 
In order to guarantee the existence of a feasible 
solution, we assume that there are one or more 
dummy locations in  with an unlimited number of 
machines. These locations can be thought of as 
“stores of machines”. If p is a dummy location, then 
the transportation cost C(p, s) includes the cost of 
acquiring a machine at the location p. The problem 
consists of finding a transportation schedule of 
machines in such a way that all the tasks are 
accomplished within their respective work intervals 
at minimum total transportation cost. 
 
2.1 Formulation of Problem 1 
 
In Problem 1, we consider that the machines can be 
transported from one location to another location at 
any time tT. The decision variables are the 
number of machines u(p, s, t) transported from 
location p to location s with a departure time 
tT. If u(p, s, t)  1; then these u machines are 
transported together in one shipment departing from 
p at time tT and arriving at s at time t + T (p, s). 
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The work-content processed during a work interval 
[Ei, Li), iI, per machine that arrives at location (i) 
at time tT is denoted by G(i, t) and is given by 
 

  if  
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Equivalently, G(i, t) is the work-content without 
processing during work interval iI per machine 
that leaves location (i) at time tT. 
 
Problem 1 is formulated as follows, where the set 
of times tT such that u(p, s, t) 0 is denoted by ( 

p, s): 
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( , , ) 0,   , ,  for all ;u p s t p s t T         (5) 

 
 

( , , ) integer,   , ,  for all .u p s t p s t T    (6) 

 
The objective function (2) minimizes the total 
transportation cost. Constraints (3) represent the 

restrictions on the machines availability at each 
location at all instant tT. Constraints (4) state that 
each task kK must be accomplished within its 
work intervals iIk. Finally, constraints (5) and (6) 
impose, respectively, nonnegativity and integrality 
conditions on the variables u(p, s, t). 
 
As one can see, constraints (4) are nonlinear. 
Each term of the first triple sum of the left-hand 
side of Equation 4 is the portion of work-content 
G(i, t’)u((i), s, t’) of the task k that u((i), s, t’) 
machines, for departing from location (i) at time t’ 
 Li, stop processing at (i) during the lapse of time 
[max(t’, Ei), Li)  [Ei, Li), iIk; each term of the 
second triple sum of the left-hand side of Equation 
4 is the portion of work-content G(i, t’)u(s, (i), 
t’T(s, (i))) of the task k that u(s, (i), t’ T(s, (i))) 
machines, after arriving at location (i) at time t’  
Li, process during the lapse of time [max(t’, Ei), Li) 
 [Ei, Li), iIk; the right-hand side of Equation 4 is 
the portion of work-content of the task k that is not 
processed by the Q’(k) machines initially located at 
location ’(k). Problem 1 is a nonlinear program 
with an indefinite number of variables. 
 
3. Problem 2: A nonlinear program with a 
definite number of variables 
 
In this section, we prove the following statements 
which allow us to transform Problem 1 into a 
problem with a definite number of variables: 
 
(1). Problem 1 has an optimal solution in which the 
arrival time of each shipment is a work-instant; 
 
(2). Several class B shipments, each of them 
departing from location (i) at a work-instant within 
work interval i and arriving at location (j) at a 
work-instant within work interval j, can be replaced 
by a single consolidated shipment. 
 
With regard to statement (1), the following theorem 
establishes that there is an optimal solution of 
Problem 1, u*(, , ), such that each shipment of 
u*(p, s, t)  0 machines is either: (a) a class A 
shipment, i.e., the departure time t of the shipment 
u*(p, s, t) is an idle-instant and the arrival time t  
T(p, s) of u*(p, s, t) is the beginning of a work 
interval at the arrival location s; or (b) a class B 
shipment, i.e., the departure time t of the shipment 
u*(p, s, t) is a work-instant and the arrival time t  

(4) 
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T(p, s) of u*(p, s, t) is a work-instant at the arrival 
location s. 
 
Theorem 1. There is an optimal solution of 
Problem 1, u*(, , ), such that if u*( p, s, t)  0, p 
≠ s, then the following two conditions are satisfied: 
 
(a) if t(i), iI with (i)  p, then t  T(p, s)  Ej for 
some jI with (j)  s; 
 
(b) if t(i) iI with (i)  p, then t  T(p, s)(j) for 
some jI with (j)  s. 
 
Proof 
Due to the existence of at least one “store of 
machines”, Problem 1 has an optimal solution S. 
Suppose that u is a shipment belonging to S, then 
it is sufficient to prove that conditions (a) and (b) 
guarantee a local optimum: 
 
Suppose that the shipment u departs from location 
p at some idle-instant. Then its arrival time at 
location s at the beginning of a work interval is a 
local optimum because if the shipment arrived one 
delta of time earlier than the beginning of a work 
interval, then the sent machines would be idle that 
delta of time at the arrival location, and if this 
shipment arrived one delta of time later than the 
beginning of that work interval, then the sent 
machines would be idle for that delta of time at the 
departure location instead of working that delta of 
time at the arrival location. 
 
Now suppose that the shipment u departs from 
location p at a work-instant t within (i). If the arrival 
time of the shipment is an idle-instant, then the 
portion of work-content processed by the machines 
transported in this shipment could increase if the 
departure time of the shipment is delayed one 
delta of time; this possible increment is because 
the machines could be working that delta of time at 
the departure location instead of being idle at the 
arrival location. Therefore, the shipment u can be 
replaced by another shipment u* departing from p 
and that arrives at s at the beginning Ej of the work 
interval that is immediately after t  T(p, s). If such 
Ej does not exist, the shipment u can be eliminated 
and in this case, the value of the objective function 
in S does not increase. If Ej exists, the departure 
time of u* is either a work-instant, in whose case u* 

satisfies condition (b), or an idle-instant, in whose 
case u* satisfies condition (a).    
 
The set of all the possible departure times of the 
class B shipments departing from location (i) at a 
work-instant within the work interval i and arriving 
at location (j) at a work-instant within the work 
interval j is the time interval ’(i, j)  Ei, Li)  Ej  
T ((i), (j)), Lj  T ((i), (j))); the corresponding 
set of all the possible arrival times is the time 
interval (i, j) : [Ei  T ((i), (j)), Li  T((i), (j)))  
[Ej, Lj). We call (i, j) the projection of the work 
interval (i) onto the work interval (j). 
 
In relation to statement (2), the following theorem 
establishes that if the projection of (i) onto (j), (i, 
j) is a non-empty set, then both the portion of work-
content processed by Q machines at location (i) 
during work interval i and the portion of work-
content processed by these Q machines at 
location (j) during work interval j remain 
unchanged if: a) the Q machines are sent in 
several shipments from (i) to (j), where each 
shipment arrives at (j) at an instant within the 
projection (i, j); or b), the Q machines are sent 
together in a single consolidated shipment from (i) 
to (j), where the consolidated shipment of Q 
machines departs from (i) at a certain work-
instant t’’(i, j) and arrives at (j) at an instant 
within (i, j). The time t’ is obtained in the same 
way as the application point of the resultant force 
of a system of parallel forces. Formally, we have 
the following theorem. 
 

Theorem 2. Let i, jI be two work intervals with (i) 
≠ (j) and (i, j) ≠ , and let U : u((i), (j), th)  
u((i), (j), th)  0, th  T ((i), (j))(i, j), i, jI, and 
h  1,,N be a set of N shipments, each of them 
departing from (i) and arriving at (j) at an instant 
within the projection (i, j). Then, both the portion of 
work-content processed by the h u((i), (j), th) 
machines during work interval i and the portion of 
work-content processed by the same machines 
during work interval j remain unchanged if the N 
shipments are replaced by a single consolidated 
shipment of 

1

(λ( ),λ( ), ') ( λ( ),λ( ), )
N

h
h

u i j t u i j t


    (7) 

machines, where the departure time t’ is given by 
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Proof 
Using Equations 1, 7 and 8, we can directly prove 
that the portion of work-content processed during 
work interval j by the machines transported in the 
N shipments, u((i), (j), th) where h  1,,N, is 
equal to the work-content processed during work 
interval j by the machines u((i), (j), t’) transported 
in the consolidated shipment: 
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The proof is similar for the work interval i.        
 
Notice that t’ is a convex combination of t1,,tN, 
and then t’ T ((i), (j))(i, j). In the context of 
Theorem 2, the consolidated shipment of u((i), 
(j), t’) machines is called the composition of the 
set U of N shipments, and the set U of N 
shipments is called a decomposition of u((i), (j), 
t’) machines. Figure 1 depicts the projection (i, j) 
of a work interval i onto a work interval j, the set U 
of N shipments, each of them departing from 
location (i)  p at a time th’(i, j) and arriving at 
location (j)  s at a time th + T (p, s)(i, j), and 
the corresponding consolidated shipment which 
departs from location (i) at t’(i). 
 

 
 

Figure 1. Composition and decomposition of shipments. 

By Theorem 2, for each projection of a work 
interval onto another work interval, the indefinite 
number of class B shipments can be replaced by a 
single consolidated shipment. Then by Theorem 1 
and 2, we can formulate a new problem equivalent 
to Problem 1, which has a definite number of 
variables. 
 
3.1 Formulation of Problem 2 
 
In order to reformulate Problem 1 in terms of a 
definite number of variables (Problem 2), we use 
the fact that there exists an optimal solution of 
Problem 1 in which only class A and B shipments 
are involved in the transportation of machines and 
that there is only one class B shipment for each 
projection (i, j). For this reformulation, we extend 
the notation used in Problem 1, as explained in (i) 
and (ii), and modify the formulation of constraints 
(3) according to the new decision variables, as 
pointed out in conditions (iii) and (iv): 
 
(i) Class A shipments: Zpj  u(p, s, Ej T (p, s)) for 
each jI and p, s, such that (j)  s ≠ p, and Ej  
T (p, s)(i) for all iI such that (i)  p. 
 
(ii) Class B shipments: Yij  u(p, s, tij) for each i, 
jI and p, s, such that tij  T (p, s)(i, j)  , 
and (i)  p ≠ s  (j). 
 
(iii) Machine availability condition at the extremes 
of the work intervals: for each iI constraint (3) is 
satisfied for the time instants t  Ei and t  Li. 
 
(iv) Machine availability condition in the interior of 
the work intervals: for each iI constraint (3) is 
satisfied for all instant t  tij’(i, j)  , jI. 

 
 

Figure 2. Class A and B shipments. 
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Figure 2 illustrates a class A (Zpj) shipment and a 
class B (Yij) shipment. In order to formalize 
Problem 2, we define the following sets: For each 
iI, a shipment Z(i) j that departs from (i) at some 
idle-instant before Ei arrives at (j) at the beginning 
Ej of a work interval j i

 : jI  Ej  T ((i), (j)) 
 Ei with (j)  (i), and Ej  T ((i), (j))(h) for all 
hI such that (h)  (i). For each iI, a shipment 
Zpi that arrives at location (i) at the beginning Ei of 
a work interval i comes from a location p i

+ : 
p p  (i) and Ei  T (p, (i))(h) for all hI 
such that (h)  p. For each s, a shipment Zsj 
that departs from location s after the final work 
interval associated with location s arrives at 
location (j) at the beginning Ej of a work interval 
js : jI  (j)  s, Ej  T (s, (j))  maxLi  (i)  
s. If there are no work intervals associated with s 
(s is, e.g., a store of machines), then s  I. For 
each iI, a shipment Yij that departs from (i) at a 
time instant within a work interval i arrives at 
location (j) at a time instant within a work interval 
ji

+ : jI  (i, j)  . For each iI, a shipment 
Yji that arrives at (i) at a time instant within a work 
interval i comes from location (j) with a departure 
time within a work interval ji

  : jI  (j, i)  . 
 
In order to reformulate constraints (3) on the 
availability of machines at the beginning of each 
work interval iI, we denote by Ji the set of work 
intervals j preceding the work interval i at the same 
location (i), i.e., Ji : jI  (j)  (i), Ej  Ei. With 
the foregoing notation, we formulate Problem 2 as 
follows: 
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tij  T ((i), (j))(i, j)  for all i, jI such that (i, j)   
 

;                                 (13) 
 

Zpj  0,  p,  jI;   (14) 
 

Yij  0,  i, jI,  (i, j)  ;   (15) 
 

Zpj integer,  p,  jI;   (16) 
 

Yij integer,  i, jI,  (i, j)  ;   (17) 
 
In addition, condition (iv) must be satisfied for all iI. 
 
In this problem, we have to find Zpj, Yíj and tíj to 
minimize the total transportation cost such that 
constraints (10)-(17) and condition (iv) are 
satisfied. Unlike constraints (3) of Problem 1, 
constraints (10) and (11) of Problem 2 represent 
the restrictions on the machines availability at each 
location only at the beginning and at the end of 
each work interval, respectively. Constraints (12) 
establish that each task kK must be 
accomplished within its work intervals iIk. 
Constraints (13) stipulate that each shipment Yij 
must arrive at (j) at time tij  T ((i), (j)) within the 
corresponding projection (i, j). Constraints (14) 
and (15) impose nonnegativity conditions on the 
number of machines Zpj transported in class A 
shipments and on the number of machines Yij 
transported in class B shipments, respectively. 
Finally, constraints (16) and (17) impose integrality 
conditions on the variables Zpj and Yij, respectively, 
while condition (iv) ensures that the availability of 

 
(10) 

 (12) 
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machines is not violated at any time in the interior 
of each work interval. 
 
Contrary to Problem 1, Problem 2 has a definite 
number of decision variables. However, this 
problem is still nonlinear due to the nonlinear terms 
(Li – tij)Yij and [Li – tji  T ((j), (i))]Yji in Equation 
12, and it cannot be solved directly because its 
constraints on the machines availability in the 
interior of the work intervals (condition (iv)) cannot 
be expressed in terms of the decision variables Zpj, 
Yij and tij. In order to solve Problem 2, we will apply 
an iterative procedure in which the relaxed 
Problem 2 (called Problem 2’), obtained by 
dropping condition (iv) from the set of constraints, 
is solved iteratively by dividing the work intervals 
into adjacent subintervals until the solution 
satisfies such condition. 
 
4. Problem 3: A mixed-integer linear program 
equivalent to Problem 2 
 
In this section, we develop the last stage of the 
formulation of our model (Problem 3). Since each 
(i, j) in Equation 13 (and therefore each ’(i, j)) is a 
bounded convex polyhedron, Problem 2’ can be 
seen as a generalized linear program (see e.g., 
Dantzig, 1963, and Lasdon, 2002) which may be 
transformed into a linear program by the same 
device used in the well-known Dantzig-Wolfe 
decomposition principle. From this, we can 
formulate a mixed-integer linear program 
equivalent to Problem 2’. We call this new program 
Problem 3. 
 
In the following theorem, we prove that each single 
class B shipment, which departs from a location 
(i) at an instant tij in the interior of ’(i, j), is 
equivalent (in the sense of the portions of work-
content processed by the machines transported in 
the shipment) to a pair of “extreme shipments”, 
each of them with a departure time equals to an 
extreme of the time interval ’(i, j). By the convexity 
of ’(i, j), any time instant tij’(i, j) can be written 
as tij  ij (1  ) + ij , with 0    1, where ij is 
the left-hand extreme of the time interval ’(i, j) and 
ij is the right-hand extreme of this time interval. 
Figure 3 illustrates the extreme shipments Yij  xij 
and xij and the corresponding consolidated 
shipment Yij. 

 
 

Figure 3. Extreme shipments Yij  xij and xij. 
 
Theorem 3. Let i, jI be two work intervals such 
that (i) ≠ (j) and ’(i, j) ≠ . Suppose that a single 
shipment of Yij machines departs from location (i) 
at time tij’(i, j) and arrives at location (j) at time 
tij  T ((i), (j))(i, j). Then, both the work-content 
processed by the Yij machines at location (i) 
during work interval i and the work-content 
processed by the same Yij machines at location 
(j) during work interval j remain unchanged if the 
single shipment of Yij machines is replaced by the 
following two extreme shipments of xij and Yij  xij 
(not necessarily integers) machines, respectively: 
 
(a) Right-extreme shipment: a shipment of xij : Yij 
(tij  ij)/(ij  ij) machines departs from location 
(i) at the end of the time interval ’(i, j), ij, and 
arrives at location (j) at the end of the time 
interval (i, j); 
 
(b) Left-extreme shipment: a shipment of Yij  xij 
machines departs from location (i) at the beginning 
of the time interval ’(i, j), ij, and arrives at location 
(j) at the beginning of the time interval (i, j). 
 
Proof 
By using Equation 1, the sum of the work-content 
processed by the xij machines at location (j) 
during work interval j and the work-content 
processed by the Yij  xij machines at location (j) 
during work interval j is given by 
 
xij G( j, ij  T ((i), (j)))  (Yij  xij)G( j, ij  T ((i), 
(j)))  
 xij (Lj  ij  T ((i), (j)))  (Yij  xij)(Lj  ij  T 
((i), (j)) 
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 xij ((Lj  ij  T ((i), (j))  (Lj  ij  T ((i), (j)))  
 Yij(Lj  ij T ((i), (j))  xij (ij  i)  Yij(Lj  ij  
T ((i), (j)). 
 

Replacing xij by Yij (tij  ij)/(ij  ij) in the last 
equality, we obtain 
 

(ij  i) Yij (tij  ij)/(ij  ij)  Yij (Lj  ij T ((i), 
(j))  
 Yij (Lj  ij T ((i), (j))  Yij (tij  ij) 
 Yij (Lj   T ((i), (j))  Yij (tij) 
 Yij (Lj  tij  T ((i), (j)))  Yij G( j, tij  T ((i), (j))), 
 

where Yij G( j, tij  T ((i), (j))) is the work-content 
that Yij machines, after arriving at location (j) at 
time tij  T ((i), (j)), process during work interval j. 
 
The proof is similar for work interval i.  
 
Notice that from the definition of xij, we have 
 

tij  ij + (ij  ij) xij / Yij,    Yij  0, (18) 
 
and hence the parameter  in tij  ij (1  ) + ij 
is equal to xij / Yij. 
 
Theorem 3 expresses that each consolidated 
shipment of Yij machines departing from (i) at a 
time instant tij’(i, j) is equivalent to two extreme 
shipments of xij and Yij  xij machines, respectively. 
This equivalence allows us to transform Problem 2’ 
into a linear problem, as shown in the following 
corollary. 
 
Corollary of Theorem 3 
 
(a) Both the pair of variables (Yij, tij) describing a 
single consolidated shipment and the pair of 
variables (Yij, xij) describing the corresponding pair 
of extreme shipments are related by xij  (tij  ij)Yij 

/ (ij  ij) or, equivalently, by Equation 18; 
 
(b) 0  xij  Yij; 
 
(c) Problem 2’, which is formulated in terms of 
variables (Zpj, Yij, tij), can be transformed by using 
Equation 18 in a linear program in terms of 
variables (Zpj, Yij, xij). Specifically, the set of 
constraints (12), which contains all the 
nonlinearities of Problem 2’, can be transformed 
into the following set of linear constraints: 

    - -  

  

λ( )

λ '( )

( )

( α ) (β α ) ( α (λ( ),λ( )) (β α )

i h h h i

i i

k

i i i j ph hj jh pi
i I h Jj p j j pi

i ij ij ij ij ij i ji ji ji ji ji
j j

k k i

L E Z Z Y Y Z

L Y x L T j i Y x

w LQ

    

 

     

 

                  
               


 

      

 

 ,      .
k

i
i I

E k K


  

         (19) 
 
Proof 
(a) Immediate from Theorem 3. 
(b) This part is immediate from that Yij  0. 
(c) Substituting Equation 18 in the nonlinear terms 
of Equation 12, given by (Li – tij)Yij and [Li – tji  
T((j), (i))]Yji, and making simplifications, we have 
 
(Li – tij)Yij  (Li – (ij + (ij  ij) xij / Yij))Yij 

 (Li Yij – (ij Yij + (ij  ij) xij)) 
 (Li – ij)Yij – (ij  ij) xij; 
[Li – tji  T ((j), (i))]Yji  [Li – (ji + (ji  ji) xji / Yji) 
 T ((j), (i))]Yji 

 Li Yji – ji Yji – (ji  ji) xji  T ((j), (i)) Yji 

 Li Yji – ji Yji  T ((j), (i)) Yji – (ji  ji) xji 

 (Li – ji  T ((j), (i))) Yji – (ji  ji) xji.   
 
We formulate Problem 3 as the program that 
consists of finding Zpj, Yíj and xíj to minimize the 
total transportation cost (9) such that constraints 
(10), (11), (14), (16), (17), (19), Yij  xij, and xij  0 
are satisfied. As one can see, Problem 3 is a 
mixed-integer linear program. 
 
It is worth notice that an optimal solution {Zpj, Yij, 
xij} of Problem 3 in which the shipments xij and Yij  
xij depart respectively from an extreme of the time 
interval ’(i, j) determines, through Equation 18, a 
unique optimal solution {Zpj, Yij, tij} of Problem 2’ in 
which the departure time tij of the consolidated 
shipment Yij (integer) is a time instant in the interior 
of ’(i, j). Reciprocally, an optimal solution {Zpj, Yij, 
tij} of Problem 2’ determines, through (a) and (b) of 
Theorem 3, a unique optimal solution {Zpj, Yij, xij} of 
Problem 3. 
 
A solution {Zpj, Yij, tij} of Problem 2’ solves Problem 
2 (and then Problem 1) only if such solution 
satisfies condition (iv) for all iI. If an optimal 
solution {Zpj, Yij, tij} does not satisfy condition (iv), 
then the following relaxation procedure can be 
used to solve Problem 2. 
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4.1 A relaxation procedure to solve Problem 2 
 
We propose a relaxation procedure to solve 
Problem 2. This procedure consists of iteratively 
solving the linearized Problem 2’ (Problem 3) and 
takes advantage of the fact that constraints (10) 
and (11) respectively ensure that the machines 
availability at the beginning and at the end of each 
work interval is not violated. Our procedure is 
based on the following two observations: (a) If the 
work intervals are arbitrarily divided into adjacent 
subintervals, then any optimal solution of Problem 
2 with the divided work intervals is also an optimal 
solution of the original Problem 2; (b) If, in 
particular, each work interval is divided such that 
there is at most one class B shipment in the 
interior of each subinterval, then constraints (10) 
and (11) ensure also that condition (iv) is satisfied 
for every subinterval. Next we propose a strategy 
of dividing the work intervals that is 
computationally more efficient than the one just 
described in (b). 
 
If a solution {Zpj, Yij, xij} of Problem 3 does not 
satisfy condition (iv), i.e., the corresponding 
solution {Zpj, Yij, tij} does not solve Problem 2, then 
at each location, the work interval whose interior 
contains the earliest time at which condition (iv) 
was violated is divided into two adjacent work 
intervals separated by that earliest time. Then 
Problem 3 with the divided work intervals is solved, 
and so on until this condition on the availability of 
machines is not violated for all the work intervals. 
This procedure converges because the number of 
shipments of machines and the number of work 
intervals are finite. Formally, this procedure is as 
follows: 
 
Step 1. Solve Problem 3 and denote by {Zpj, Yij, xij} 
the corresponding optimal solution. Use Equation 
18 to find the corresponding solution {Zpj, Yij, tij}. 
 
Step 2. For each p, let p be the set of all 
instants tij within the work intervals associated with 
location p  (i) such that condition (iv) is violated, 
i.e., p : {tij | (i)  p, tij’(i, j)  , and condition 
(iv) is violated for location p at time tij}. For each 
p, let vp : min p if p   and let vp :  if p  
. If vp   for all p then {Zpj, Yij, tij} is a solution 
of Problem 2, and therefore of Problem 1; in this 

case, the procedure finishes. If vp   for some 
p, then go to Step 3. 
 

Step 3. For each p such that vp  , divide the 
work interval containing the instant vp into two 
adjacent work intervals separated by the time vp; 
reformulate Problem 3 considering the divided 
work intervals. Return to Step 1. 
 
4.2 Problem 3 in terms of matrices 
 
Problem 3 can be written in matrix form. Let y be 
the vector whose components are Zij and Yij, and 
let x be the vector whose components are xij. 
Then, Problem 3 can be expressed as follows: 
 
Mininimize  Cy     (20) 
 
Subject to 
 

1 2 1A A x y b     (21) 

3 2A y b     (22) 

, x y 0     (23) 

integer.y     (24) 
 
The objective function (20) minimizes the total 
transportation cost. Constraints (21) correspond to 
constraints (19) and guarantee that each task kK 
is accomplished within its prescribed work 
intervals. Each element of A1 is either a term of the 
form  (ij  ij) or a term of the form (ji  ji); 
these terms correspond to the coefficients of the 
shipments xij and xji, respectively. Similarly, each 
element of A2 is either a term of the form Li  ij or 
a term of the form  (Li  ji  T ((j), (i))); these 
terms correspond to the coefficients of the 
shipments Yij and Yji, respectively. Each element of 
b1 is of the form wk  Q’(k)  i (Li Ei). Constraints 
(22) contain constraints (10) and (11), and they 
represent the availability condition of machines at 
each location at the extremes of each work 
interval. Each element of A3 is 1, 0, or  1. Each 
element of b2 is a term of the form  Q(i). 
Constraints (23) impose nonnegativity conditions 
on the variables Zij, Yij and xij. Constraints (24) 
impose integrality conditions on the variables Zij 
and Yij. Due to the structure of Problem 3, it can be 
solved by the method of Benders decomposition. 
Finally, we want to remark that Problem 3 is  
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equivalent to Problem 2’, and that any optimal 
solution of Problem 2’ that satisfies condition (iv) is 
also an optimal solution of Problem 2 and therefore 
of Problem 1. 
 
5. Conclusions 
 
In this paper, we have developed a new model to 
obtain an optimal transportation schedule of 
identical mobile machines which have to execute 
tasks located at several locations. Our work, 
motivated by a transportation scheduling problem 
faced by road construction companies, may be 
applied in a wide variety of situations. In this 
problem, the machines can be transported from 
one location to another location at any time; thus 
the problem has an indefinite number of variables. 
However, this indefinite number of variables can 
be reduced to a definite one because the problem 
has an optimal solution in which the arrival times of 
the machines occur only at certain time instants. 
The constraints ensuring that each task is 
accomplished within its prescribed time intervals 
have products of two quantities: the number of 
machines arriving at a location during a time 
interval and the amount of time that these 
machines work during that time interval. These two 
quantities are decision variables, and hence the 
problem is nonlinear. Such nonlinearities are 
avoided by taking advantage of the fact that, at 
each location, the arrival times of the machines 
form intervals which are bounded convex 
polyhedra. Then, we conclude that our problem is 
indeed a generalized linear program which can be 
transformed into a mixed-integer linear program by 
the same device used in the decomposition 
principle of Dantzig-Wolfe. 
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