

Journal of Applied Research and Technology 673

Alternative Diffuse Lighting and Specular Reflection Approach Using
YIQ Color Space for 3D Scene Visualization Using Programmable
HLSL Shaders

Y. Kotsarenko*, F. Ramos

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Cuernavaca
Xochitepec, Morelos, México

ABSTRACT
In this work an alternative approach for diffuse lighting and specular reflections is presented that uses YIQ color space
instead of traditional RGB color space. The classical illumination algorithms that rely on RGB color space may lead to
unrealistic results either due to the fact that they cannot make the original color brighter (inherent limitation imposed
by using the RGB color space) or produce incorrect shades when viewed from certain angles because in the
calculation of the specular reflection the original texture color is not taken into account.

The approach proposed in this work gets around the problem by applying illumination in YIQ color space using its
“luma” component (Y). In this novel approach the diffuse lighting is capable of increasing the perceived brightness of
the source texture and the resulting color is always dependant on the surface’s texture and produces reasonably
realistic results when viewed from any possible angle. The algorithm and its HLSL shader code are described in this
work along with the experiments that illustrate the problem and the solution. The performance benchmarks are also
provided, showing that the proposed approach is a viable and realistic solution for applications running in real-time.

Keywords: visualization, illumination, shaders, lighting, reflection.

RESUMEN
En este trabajo se presenta un nuevo enfoque para iluminación difusa y reflexiones especulares que utiliza el espacio
de color YIQ en vez del tradicional RGB. Los algoritmos clásicos de iluminación que utilizan el espacio de colores
RGB pueden generar resultados no realísticos ya sea porque no pueden hacer el color de la textura original más
brilloso (limitante que se origina por utilizar el espacio de color RGB) o pueden producir un tinte incorrecto en ciertos
ángulos porque el cálculo de la reflexión especular no toma en cuenta el color de la textura original.

El enfoque propuesto evita los problemas anteriormente mencionados aplicando la iluminación en el espacio de
colores YIQ utilizando el componente de “luma” (Y). Con este enfoque novedoso en la iluminación difusa se puede
incrementar el brillo perceptual de un color, el cual siempre depende de la textura original. Por lo tanto, el resultado
se ve razonablemente realístico desde cualquier ángulo. El algoritmo y su código fuente HLSL están descritos junto
con los experimentos que muestran el problema y el resultado. Además, las pruebas de desempeño también están
adjuntas mostrando que el enfoque propuesto es una solución viable y realística para aplicaciones corriendo en
tiempo real.

1. Introduction

In many modern applications such as video
games, movies and simulations where an artificial
3D scene is displayed, every attempt is made to
make this scene look realistic and closer to the
reality. In the movie industry, typically a large set of
powerful computers is used to create computer
generated video frames, a process which can take
from few seconds to several days. In the video
game industry, an application is commonly run on

a personal computer or dedicated hardware (such
as gaming console) that has limited computational
capabilities. During the last few years the computer
industry evolved to assist these applications with
powerful video cards having a graphics processing
unit (GPU) capable of doing vast amounts of
calculations per second – all with an effort of
displaying more complex 3D scenes as closer to
the reality as possible.

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene Visualization Using Programmable HLSL Shaders, Y. Kotsarenko / 673‐679

Vol. 10, October 2012 674

The rendering of 3D scenes on the computer
display is typically implemented using one of the
two technologies, or APIs – Direct3D developed by
Microsoft and/or OpenGL managed by the
Khronos Group. In the earlier years the entire
rendering process was implemented by each of the
APIs and the underlying hardware, but now it is
possible to customize the rendering by writing
programs that run on the GPU, or in other words –
by using shaders. In the context of this work, the
concept of shaders refers to high-level shader
language (HLSL), a proprietary shader language
developed by Microsoft for use with Direct3D API.
OpenGL has analogous technology called GLSL.
Although shaders written in HLSL for Direct3D can
be ported to GLSL vice versa, the process is now
covered here.

In a typical 3D application the objects are
illuminated by one or more lights to generate
shades that give the illusion of depth. When the
lighting is implemented in shaders, it is generally
separated into two steps – applying diffuse lighting
and specular reflection. The diffuse lighting takes
the fact that surfaces such as matte paint appear
equally bright when viewed from any angle
because of the rough surface, hence its brightness
is only dependant on the angle between the actual
light and the surface’s normal [1]. On the other
hand, the specular reflection works in a similar
fashion to a mirror and is dependent on the eye (or
camera) position [2]. In addition, a so-called
ambient lighting is usually applied, which is simply
a constant added to diffuse illumination
component.

Considering that a 3D model is represented by a
series of triangles consisting of vertices and vertex
normals, the diffuse lighting component can be
calculated using Lambert’s Cosine Law:

 0 ,max nLLD


 (1)

where L


 is the vector pointing from the light
source to the surface and n


 is the surface’s

normal. The above equation can be applied either
to each vertex and/or pixel, depending on the
implementation. It is common to add the value of
ambient lighting to the diffuse lighting component
to make the object appear brighter when it is
partially lit. The value LD is usually delimited within

[0, 1] range. The specular reflection component
according to Phong illumination model [3] can be
calculated as:

   0 ,2max nLLvLS


 (2)

where v


 is the view vector pointing from the

surface to the eye position, L


 is the vector
pointing from the light source to the surface and n



is the surface’s normal.

The typical calculation of the final color (for each
vertex or pixel depending on the implementation)
can be generalized (according to [1], [2], and [4]) as:

  bg,r, ,S  iLLLCF DAii
 (3)

where Fi is the resulting color (for each red, green
and blue components), Ci is the color value from
the original texture, LA is the ambient light value, LD
is the calculated diffuse lighting component and LS
is the specular reflection component. The evident
limitations of Equation (3) are that the original
texture color cannot get brighter because RGB
values are limited to [0, 1] range and that the
specular reflection is added independently from the
original texture’s color.

The limitations described earlier are caused mainly
by the usage of RGB color space. The authors of
this work have previously proposed alternatives to
use RGB color space for measuring color
differences (or “similarities”) [5], [6], which can be
applied to illumination as well. This is done by
using another color space that has different
properties and does not manifest the limitations of
the RGB color space.

2. Illumination approach using YIQ color space

In order to overcome the limitations of using RGB
color space as was described earlier, a different
color space can be used instead. In this work, YIQ
color space was used to assist the illumination
approach. This color space was introduced by the
National Television System Committee (NTSC) [7],
[8]. The color space is composed of the
component Y called luma [8], [9], [10], which is
proportional to the gamma-corrected luminance of

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene Visualization Using Programmable HLSL Shaders, Y. Kotsarenko / 673‐679

Journal of Applied Research and Technology 675

a color and two other components I and Q, the
combination of which describes both the hue and
saturation of color. This particular color space was
chosen because of the simple and fast conversion
between RGB and YIQ color spaces.

The values of Y, I and Q can be directly calculated
from the non-linear r’, g’ and b’ components in the
following way [8]:

























































b

g

r

Q

I

Y

31114694.052261711.021147017.0

32180189.027417610.059597799.0

11448223.058662247.029889531.0

 (4)

























































Q

I

Y

1.702501261.105617241.00000000

0.648605900.271376641.00000000

0.620888500.956084451.00000000

b

g

r

 (5)

The value of luma Y is defined in range of [0, 1], I
is defined in range of [-0.5957, 0.5957] and Q is
defined in range of [-0.5226, 0.5226].

According to W. K. Pratt [8], the reasons for
transmitting the YIQ components in television were
that the Y signal alone could be used with existing
monochrome receivers to display black and white
video and that I and Q signals could have the
transmission bandwidth limited without noticeable
image degradation. In the context of this work, the
transmission characteristics of YIQ color space are
not relevant, but this color space has an important
characteristic: the color is divided into main
components – the “visible brightness” component
(luma, Y) and the “color” component (hue and
saturation coded into I and Q). This means that the
illumination would affect only the luma (Y) but will
leave the other components unchanged.

The illumination in YIQ color space therefore
can be modified so that both diffuse lighting
and specular reflection depend on the
surface’s texture:

  SDATF LLLYY 
(6)

TF II  (7)

TF QQ  (8)

where YF, IF and QF are the final color
components specified in YIQ color space, YT, IT
and QT are the surface’s texture color
components also in YIQ color space, LA is the
ambient light value, LD is the calculated diffuse
lighting component, and LS is the specular
reflection component. As can be observed in
Equations (6), (7) and (8), the color part of
original surface’s texture is preserved, while the
luma is affected by all three components –
ambient light, diffuse light and specular
reflection. The cost of using the aforementioned
equations is that the texture color must be either
specified in YIQ color space or be converted on
the fly. However, since the conversion between
RGB and YIQ color spaces is a simple linear
transformation, it can be done very quickly in
shaders. The actual implementation of this
approach is described in the next section.

3. Shader implementation

There are several ways of implementing the
illumination using YIQ color space. The most
efficient approach in terms of performance
would be having the surface’s texture pixels
specified in YIQ color space, but doing so
would be cumbersome when many textures
are used. Since the linear transformation can
be implemented very quickly in shaders, the
conversion from RGB color space to YIQ color
space and back can be made in the shader
itself. The entire HLSL code that is fully
compliant with NVIDIA FX Composer 2.5 [11]
(a developer tool provided by one of the
largest manufacturers of video cards) is
described below.

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene Visualization Using Programmable HLSL Shaders, Y. Kotsarenko / 673‐679

Vol. 10, October 2012 676

float4x4 WorldInverseTranspose : WorldInverseTranspose <
string UIWidget="None"; >;
float4x4 WorldViewProjection : WorldViewProjection < string
UIWidget="None"; >;
float4x4 World : World < string UIWidget="None"; >;
float3 EyePos : CameraPosition < string UIWidget="None"; >;

float3 LightPos : Position <
 string UIName = "Lamp 0 Position";
 string Object = "PointLight0";
 string Space = "World"; > = {-0.5f, 2.0f, 1.25f};

float AmbientValue <
 string UIName = "Ambient Value";
 string UIWidget = "slider";
 float UIMin = 0.0;
 float UIMax = 1.0;
 float UIStep = 0.1; > = 0.1;

float SpecularPower : SpecularPower <
 string UIWidget = "slider";
 float UIMin = 0.0;
 float UIMax = 16.0;
 float UIStep = 1.0;
 string UIName = "Specular Power"; > = 55.0;

texture ColorTexture : DIFFUSE <
 string ResourceName = "default_color.dds";
 string UIName = "Diffuse Texture";
 string ResourceType = "2D"; >;

sampler2D ColorSampler = sampler_state {
 Texture = <ColorTexture>;
 FILTER = MIN_MAG_MIP_LINEAR;
 AddressU = Wrap;
 AddressV = Wrap; };

struct OutputPhongVS {
 float4 Pos : POSITION;
 float2 TexAt : TEXCOORD0;

float3 NormalWorld: TEXCOORD1;
 float3 PosWorld : TEXCOORD2; };

OutputPhongVS PhongVertexShader(
 float3 InPos : POSITION,
 float2 InpTex : TEXCOORD0,
 float3 InNormal: NORMAL) {
 OutputPhongVS OutVS = (OutputPhongVS)0;

 OutVS.NormalWorld = mul(float4(InNormal, 0.0f),
 WorldInverseTranspose).xyz;
 OutVS.NormalWorld = normalize(OutVS.NormalWorld);

 OutVS.PosWorld = mul(float4(InPos, 1.0f), World).xyz;
 OutVS.Pos = mul(float4(InPos, 1.0f), WorldViewProjection);
 OutVS.TexAt = InpTex;

 return OutVS; }

float3 RGBtoYIQ(float3 InCol) {
 float3 OutCol;

 OutCol.y = 0.29889531f * InCol.r + 0.58662247f * InCol.g +
0.11448223f * InCol.b;
 OutCol.x = 0.59597799f * InCol.r + -0.27417610f * InCol.g + -
0.32180189f * InCol.b;
 OutCol.z = 0.21147017f * InCol.r + -0.52261711f * InCol.g +
0.31114694f * InCol.b;
 return OutCol; }

float3 YIQtoRGB(float3 InCol) {
 float3 OutCol;

 OutCol.r = InCol.y + 0.95608445f * InCol.x + 0.62088850f *
InCol.z;
 OutCol.g = InCol.y - 0.27137664f * InCol.x - 0.64860590f *
InCol.z;
 OutCol.b = InCol.y - 1.10561724f * InCol.x + 1.70250126f *
InCol.z;

 return saturate(OutCol); }

float4 LumaPhongDiffuse(float3 NormalWorld, float3 PosWorld,
float2 TexAt) {
 float3 ToEye = normalize(EyePos - PosWorld);

float3 LightVector = normalize(LightPos - PosWorld);
float3 LightVector = normalize(LightPos - PosWorld);

float3 Reflection = normalize(2.0f * NormalWorld *
dot(NormalWorld,
 LightVector) - LightVector);

 float Diffuse = saturate(saturate(dot(LightVector,
NormalWorld)) +
 AmbientValue);

 float Specular = pow(saturate(dot(Reflection, ToEye)),
SpecularPower);

 float3 TexCol = tex2D(ColorSampler, TexAt).rgb;

 float3 WorkCol = RGBtoYIQ(TexCol);

 WorkCol.y = WorkCol.y * Diffuse + Specular * 1.0 - 0.1;

 TexCol = YIQtoRGB(WorkCol);

 return float4(TexCol, 1.0); }

float4 LumaDiffusePS(OutputPhongVS InPS) : COLOR {
 return LumaPhongDiffuse(InPS.NormalWorld, InPS.PosWorld,
InPS.TexAt); }

technique PhongDiffuse < string Script = "Pass=p0;"; > {
 pass p0 < string Script = "Draw=geometry;"; > {
 VertexShader = compile vs_2_0 PhongVertexShader();

ZEnable = true;
 ZWriteEnable = true;
 ZFunc = LessEqual;
 AlphaBlendEnable = false;
 CullMode = None;
 PixelShader = compile ps_2_0 LumaDiffusePS(); }

Table 1. HLSL code for illumination using YIQ color space.

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene Visualization Using Programmable HLSL Shaders, Y. Kotsarenko / 673‐679

Journal of Applied Research and Technology 677

The code described in Table 1 according to
NVIDIA FX Composer 2.5 uses approximately 40
instruction slots when compiled to assembly, which
is relatively small considering the modern video
cards. As it was mentioned in the beginning, the
code can be converted to its GLSL equivalent with
minimal effort and without sacrificing performance.

4. Visual appearance analysis

The proposed illumination approach described in
this work was compared to the classical diffuse
lighting and Phong specular reflection (from here
referred to as Phong lighting model). The shader
code for this model can be found in literature
(see [1], [2], and [4]). A simple scene containing
one point light source and a p-q torus knot [12]
was used for rendering using the two
aforementioned techniques. The resulting
images are illustrated in Figure 1.

Figure 1. Torus Knot rendered with the light source at
different angles and different rendering techniques.

There are two groups with three images each – the first
group uses Phong lighting while the second group uses

the lighting approach described in this work. In each
group of three images the first image the light source in
front, the second image has the light positioned at the

back and the third image shows specular reflection only.

As can be seen from the above figure, when the
model is rendered with the light in front, the results
are quite similar between Phong lighting model
and YIQ-based lighting. It can be seen that the
proposed model in this case is no worse than the
classical one. However, when the light is on the
back, the classical Phong lighting model generates
grey shades as can be seen in the second image,
while the YIQ-based lighting does not. In fact,

when the specular reflection is rendered alone
without diffuse component, in the classical Phong
lighting model it is completely grey (no matter what
the surface texture is), while in the YIQ-based
lighting it depends on the surface and looks
natural. It is evident from the sixth image that in
YIQ-based lighting the specular reflection alone
can be used without the diffuse component to
simulate metallic surfaces.

5. Performance analysis

The real-time performance of the lighting approach
described in this work was tested against the
classical Phong lighting model on several
computer configurations. In the performance test a
more complex p-q torus knot was used, having
31529 vertices and 61440 triangles. The surface
texture was an image of bricks with the size of
512x512. The resulting image is shown in Figure 2.

Figure 2. Torus knot rendered with a single light source
using YIQ-based lighting model for performance testing.

The performance (in frames per second) along
with the rendering size and multisampling is
described in the table below. It is important to note
that the final image size was 720x720 in most of
the tests except on Eee PC 1000 HE, whose
display was limited to 1024x600 resolution (in that
case the size was 512x512).

Computer
Configuration

Size and
Multisampling

Frame Rate
(frames/second)

Classical
YIQ-

based

Intel Core 2
Quad Q660

2.4 Ghz, 4 Gb

720x720, No
multisampling

1240 1180

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene Visualization Using Programmable HLSL Shaders, Y. Kotsarenko / 673‐679

Vol. 10, October 2012 678

RAM DDR2
800 Mhz (Cas

Latency 5),
Nvidia

GeForce GTS
250

720x720, 8x

multisampling
389 385

Intel Core 2
Duo E6300
1.86 Ghz, 4

Gb RAM
DDR2 800
Mhz (Cas

Latency 5),
ATI Radeon
X1950 GT

720x720, No
multisampling

672 453

720x720, 6x
multisampling

430 341

Intel Atom
1.66 Ghz

N280, 2 Gb
RAM DDR2

533 Mhz, Intel
GMA 950

512x512, No
multisampling

44 35

Table 2. The performance of two lighting approaches on

different computer configurations.

The performance results shown in Table 2 indicate
that YIQ-based lighting is slower in all instances
than the classical Phong lighting model, which is
expected as the conversion from RGB to YIQ and
back takes place. However, in the latest video card
Nvidia GeForce GTS 250, the difference between
the two is around 1% using 8x multisampling and
around 5% without multisampling. The difference is
larger for ATI Radeon X1950 GT and for Intel GMA
950, where it is approximately 20% (and can be as
high as 32%, when tested on ATI video card with
multisampling disabled). From the results, we
conclude that YIQ-based lighting can be used in
real time even in the low-end portable and cheap
computer such as Eee PC 1000 HE.

6. Conclusions and future work

In this work an alternative diffuse lighting and
specular reflection approach was proposed that
uses YIQ color space for illumination instead of
RGB color space used by most of the classical
lighting models. The complete HLSL shader code
was described to be ready to use in commercial

applications. The advantage of the proposed
approach is that it eliminates the restrictions
derived from the use of RGB color space in the
classical lighting models where the diffuse color
cannot become brighter and where the specular
reflection adds certain amount of gray regardless
the source surface’s texture.

The performance of the described approach was,
in the worst case, 30% slower than the classical
lighting model, and in the best case, it was around
1% slower in the computers used in the
experiment. This indicates that there is room for
improvement in terms of performance: first, the
original texture can be specified in YIQ color space
to reduce the number of conversions by half.
Assuming that the color part (I and Q components)
of the original color is not changed, the conversion
from RGB to YIQ color space and back can be
optimized to reduce the number of mathematical
operations involved.

Although working directly in YIQ color space may
not be possible for the entire rendering pipeline,
because of programmable nature of today’s GPUs,
representing the texture in YIQ color space and
working directly in this color space with shaders
will provide the benefits of photorealism without
compromising the performance. The current
limitation is that the resulting color returned by the
pixel shader still needs to be specified in the RGB
color space, although this may be alleviated in the
future versions of DirectX and OpenGL, especially
considering the trend of general-purpose GPU
programming.

In applications with significant 3D scene
complexity such as video games, the visual
artifacts of classical illumination approaches may
not be easily apparent, while the performance
plays a major role in decision making. However, in
other industries where photo-realism is of higher
importance, the proposed alternative may provide
a significant improvement and produce real-looking
scenes.

It is important to note that the approach described
in this work is not only limited to diffuse lighting
and specular reflections. For instance, it can be
used to improve the overall quality of the Minneart
lighting model (see [1]) by making the color
brighter in some cases instead of making it darker

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene Visualization Using Programmable HLSL Shaders, Y. Kotsarenko / 673‐679

Journal of Applied Research and Technology 679

each time. Many other lighting models such as
Oren-Nayar or Cook-Torrance can benefit from
using the described approach as well. Further work
with these lighting models and the lighting
approach proposed in this work is recommended.

There are other color spaces that have a
“brightness” component in them such as YUV,
CIELAB and CIELUV [13]. Although the last two
color spaces might not be good choices for real-
time processing (according to Poynton [9]), in
applications where realism is required at the
expense of performance, using these color spaces
could be beneficial. There are other color spaces
that have a brightness component modeled closely
to the human perception, such as Guth’s ATD95
[14] and DIN99 [15], that can be used for rendering
highly detailed 3D scenes with greater illumination
accuracy based on the approach described in this
work. Further research is required to determine
whether these color spaces can be used for
illumination in shaders.

References

[1] K. Dempski and V. Emmanuel, “Advanced Lighting
and Materials with Shaders,” Boston MA, Jones & Bartlett
Publishers, 2004.

[2] F. D. Luna, “Introduction to 3D Game Programming
with Direct X 9.0c: A Shader Approach, 1st edition,”
Boston MA, Jones & Bartlett Publishers, 2006.

[3] B. T. Phong, “Illumination for computer generated
pictures,” Communications of the ACM, vol. 18, no. 6, pp.
311-317, 1975.

[4] E. Lengyel, “Mathematics for 3D Game Programming
and Computer Graphics,” 2nd edition, Boston MA,
Charles River Media, 2003.

[5] Y. Kotsarenko and F. Ramos, “Perceptual Color
Similarity Measurement”, Master Thesis, Instituto
Tecnológico y de Estudios Superiores de Monterrey,
Morelos, México, 2006.

[6] Y. Kotsarenko and F. Ramos, “Measuring perceived
color difference using YIQ NTSC transmission color
space in mobile applications,” Programacion Matematica
y Software, vol. 2, no. 2, pp. 28-43, Morelos, Mexico,
2010.

[7] D. Hearn and P. M. Baker, “Computer Graphics, C
Version”, New Jersey, Prentice Hall, 1996.

[8] W. K. Pratt, “Digital Image Processing”, 3rd edition,
New Jersey, Wiley-Interscience, 2001.

[9] C. Poynton, “Digital Video and HDTV Algorithms and
Interfaces”, San Francisco, Morgan Kaufmann, 2003.

[10] C. Poynton, “Frequenty-Asked Questions about
Color,” Charles Poynton Web Site available from:
http://www.poynton.com/ColorFAQ.html
(November 28, 2006, accessed on October 22, 2008).

[11] Nvidia Corp., “FX Composer 2.5”, NVIDIA FX
Composer 2.5 GPU Shader Authoring Environment,
available from http://developer.nvidia.com/content/fx-
composer (accessed on August, 2012)

[12] C. C. Adams, “The Knot Book: An Elementary
Introduction to the Mathematical Theory of Knots”, New
York, W.H. Freeman & Company, 1994.

[13] J. Schanda, “Colorimetry: Understanding the CIE
system”, New Jersey, Wiley-Interscience, 2007.

[14] L. S. Guth, “Further Applications of the ATD Model for
Color Vision,” Proceedings SPIE (The International Society
for Optical Engineering), vol. 2414, 1995, pp. 12-26.

[15] H. Büring, “Eigenschaften des Farbenraumes nach
DIN 6176 (DIN99-Formel) und seine Bedeutung für die
industrielle Anwendung,” 8 Workshop
Farbbildverarbeitung der German Color Group, 2002, pp.
11-17.

