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ABSTRACT 
In this work an alternative approach for diffuse lighting and specular reflections is presented that uses YIQ color space 
instead of traditional RGB color space. The classical illumination algorithms that rely on RGB color space may lead to 
unrealistic results either due to the fact that they cannot make the original color brighter (inherent limitation imposed 
by using the RGB color space) or produce incorrect shades when viewed from certain angles because in the 
calculation of the specular reflection the original texture color is not taken into account. 
 
The approach proposed in this work gets around the problem by applying illumination in YIQ color space using its 
“luma” component (Y). In this novel approach the diffuse lighting is capable of increasing the perceived brightness of 
the source texture and the resulting color is always dependant on the surface’s texture and produces reasonably 
realistic results when viewed from any possible angle. The algorithm and its HLSL shader code are described in this 
work along with the experiments that illustrate the problem and the solution. The performance benchmarks are also 
provided, showing that the proposed approach is a viable and realistic solution for applications running in real-time. 
 
Keywords: visualization, illumination, shaders, lighting, reflection. 

 
RESUMEN 
En este trabajo se presenta un nuevo enfoque para iluminación difusa y reflexiones especulares que utiliza el espacio 
de color YIQ en vez del tradicional RGB. Los algoritmos clásicos de iluminación que utilizan el espacio de colores 
RGB pueden generar resultados no realísticos ya sea porque no pueden hacer el color de la textura original más 
brilloso (limitante que se origina por utilizar el espacio de color RGB) o pueden producir un tinte incorrecto en ciertos 
ángulos porque el cálculo de la reflexión especular no toma en cuenta el color de la textura original. 
 
El enfoque propuesto evita los problemas anteriormente mencionados aplicando la iluminación en el espacio de 
colores YIQ utilizando el componente de “luma” (Y). Con este enfoque novedoso en la iluminación difusa se puede 
incrementar el brillo perceptual de un color, el cual siempre depende de la textura original. Por lo tanto, el resultado 
se ve razonablemente realístico desde cualquier ángulo. El algoritmo y su código fuente HLSL están descritos junto 
con los experimentos que muestran el problema y el resultado. Además, las pruebas de desempeño también están 
adjuntas mostrando que el enfoque propuesto es una solución viable y realística para aplicaciones corriendo en 
tiempo real. 
 
1. Introduction 
 
In many modern applications such as video 
games, movies and simulations where an artificial 
3D scene is displayed, every attempt is made to 
make this scene look realistic and closer to the 
reality. In the movie industry, typically a large set of 
powerful computers is used to create computer 
generated video frames, a process which can take 
from few seconds to several days. In the video  
game industry, an application is commonly run on  
 

 
 
a personal computer or dedicated hardware (such  
as gaming console) that has limited computational 
capabilities. During the last few years the computer 
industry evolved to assist these applications with 
powerful video cards having a graphics processing 
unit (GPU) capable of doing vast amounts of 
calculations per second – all with an effort of 
displaying more complex 3D scenes as closer to 
the reality as possible. 
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The rendering of 3D scenes on the computer 
display is typically implemented using one of the 
two technologies, or APIs – Direct3D developed by 
Microsoft and/or OpenGL managed by the 
Khronos Group. In the earlier years the entire 
rendering process was implemented by each of the 
APIs and the underlying hardware, but now it is 
possible to customize the rendering by writing 
programs that run on the GPU, or in other words – 
by using shaders. In the context of this work, the 
concept of shaders refers to high-level shader 
language (HLSL), a proprietary shader language 
developed by Microsoft for use with Direct3D API. 
OpenGL has analogous technology called GLSL. 
Although shaders written in HLSL for Direct3D can 
be ported to GLSL vice versa, the process is now 
covered here. 
 
In a typical 3D application the objects are 
illuminated by one or more lights to generate 
shades that give the illusion of depth. When the 
lighting is implemented in shaders, it is generally 
separated into two steps – applying diffuse lighting 
and specular reflection. The diffuse lighting takes 
the fact that surfaces such as matte paint appear 
equally bright when viewed from any angle 
because of the rough surface, hence its brightness 
is only dependant on the angle between the actual 
light and the surface’s normal [1]. On the other 
hand, the specular reflection works in a similar 
fashion to a mirror and is dependent on the eye (or 
camera) position [2]. In addition, a so-called 
ambient lighting is usually applied, which is simply 
a constant added to diffuse illumination 
component. 
 
Considering that a 3D model is represented by a 
series of triangles consisting of vertices and vertex 
normals, the diffuse lighting component can be 
calculated using Lambert’s Cosine Law: 
 

 0 ,max nLLD


  (1) 

 

where L


 is the vector pointing from the light 
source to the surface and n


 is the surface’s 

normal. The above equation can be applied either 
to each vertex and/or pixel, depending on the 
implementation. It is common to add the value of 
ambient lighting to the diffuse lighting component 
to make the object appear brighter when it is 
partially lit. The value LD is usually delimited within 

[0, 1] range. The specular reflection component 
according to Phong illumination model [3] can be 
calculated as: 
 

   0 ,2max nLLvLS


  (2) 

 
where v


 is the view vector pointing from the 

surface to the eye position, L


 is the vector 
pointing from the light source to the surface and n


 

is the surface’s normal. 
 

The typical calculation of the final color (for each 
vertex or pixel depending on the implementation) 
can be generalized (according to [1], [2], and [4]) as:   
 

  bg,r,  ,S  iLLLCF DAii
 (3) 

 
where Fi is the resulting color (for each red, green 
and blue components), Ci is the color value from 
the original texture, LA is the ambient light value, LD 
is the calculated diffuse lighting component and LS 
is the specular reflection component. The evident 
limitations of Equation (3) are that the original 
texture color cannot get brighter because RGB 
values are limited to [0, 1] range and that the 
specular reflection is added independently from the 
original texture’s color.  
 
The limitations described earlier are caused mainly 
by the usage of RGB color space. The authors of 
this work have previously proposed alternatives to 
use RGB color space for measuring color 
differences (or “similarities”) [5], [6], which can be 
applied to illumination as well. This is done by 
using another color space that has different 
properties and does not manifest the limitations of 
the RGB color space. 

 
2. Illumination approach using YIQ color space 
 
In order to overcome the limitations of using RGB 
color space as was described earlier, a different 
color space can be used instead. In this work, YIQ 
color space was used to assist the illumination 
approach. This color space was introduced by the 
National Television System Committee (NTSC) [7], 
[8]. The color space is composed of the 
component Y called luma [8], [9], [10], which is 
proportional to the gamma-corrected luminance of 
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a color and two other components I and Q, the 
combination of which describes both the hue and 
saturation of color. This particular color space was 
chosen because of the simple and fast conversion 
between RGB and YIQ color spaces.  
 
The values of Y, I and Q can be directly calculated 
from the non-linear r’, g’ and b’ components in the 
following way [8]: 
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The value of luma Y is defined in range of [0, 1], I 
is defined in range of [-0.5957, 0.5957] and Q is 
defined in range of [-0.5226, 0.5226].  
 
According to W. K. Pratt [8], the reasons for 
transmitting the YIQ components in television were 
that the Y signal alone could be used with existing 
monochrome receivers to display black and white 
video and that I and Q signals could have the 
transmission bandwidth limited without noticeable 
image degradation. In the context of this work, the 
transmission characteristics of YIQ color space are 
not relevant, but this color space has an important 
characteristic: the color is divided into main 
components – the “visible brightness” component 
(luma, Y) and the “color” component (hue and 
saturation coded into I and Q). This means that the 
illumination would affect only the luma (Y) but will 
leave the other components unchanged.  
 
The illumination in YIQ color space therefore 
can be modified so that both diffuse lighting 
and specular reflection depend on the 
surface’s texture: 
 

 
 
 

  SDATF LLLYY      
(6) 

 
 

TF II        (7) 

 
 

TF QQ       (8) 
 
 
where YF, IF and QF are the final color 
components specified in YIQ color space, YT, IT 
and QT are the surface’s texture color 
components also in YIQ color space, LA is the 
ambient light value, LD is the calculated diffuse 
lighting component, and LS is the specular 
reflection component. As can be observed in 
Equations (6), (7) and (8), the color part of 
original surface’s texture is preserved, while the 
luma is affected by all three components – 
ambient light, diffuse light and specular 
reflection. The cost of using the aforementioned 
equations is that the texture color must be either 
specified in YIQ color space or be converted on 
the fly. However, since the conversion between 
RGB and YIQ color spaces is a simple linear 
transformation, it can be done very quickly in 
shaders. The actual implementation of this 
approach is described in the next section. 
 
3. Shader implementation 
 
There are several ways of implementing the 
illumination using YIQ color space. The most 
efficient approach in terms of performance 
would be having the surface’s texture pixels 
specified in YIQ color space, but doing so 
would be cumbersome when many textures 
are used. Since the linear transformation can 
be implemented very quickly in shaders, the 
conversion from RGB color space to YIQ color 
space and back can be made in the shader 
itself. The entire HLSL code that is fully 
compliant with NVIDIA FX Composer 2.5 [11] 
(a developer tool provided by one of the 
largest manufacturers of video cards) is 
described below. 
 
 
 
 



 

 

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene  Visualization Using Programmable HLSL Shaders, Y. Kotsarenko  / 673‐679

Vol. 10, October 2012 676 

float4x4 WorldInverseTranspose : WorldInverseTranspose < 
string UIWidget="None"; >; 
float4x4 WorldViewProjection : WorldViewProjection < string 
UIWidget="None"; >; 
float4x4 World : World < string UIWidget="None"; >; 
float3   EyePos : CameraPosition < string UIWidget="None"; >; 
 
float3 LightPos : Position < 
  string UIName =  "Lamp 0 Position"; 
  string Object = "PointLight0"; 
  string Space  = "World"; > = {-0.5f, 2.0f, 1.25f}; 
 
float AmbientValue < 
  string UIName   =  "Ambient Value"; 
  string UIWidget = "slider"; 
  float UIMin  = 0.0; 
  float UIMax  = 1.0; 
  float UIStep = 0.1; > = 0.1; 
 
float SpecularPower : SpecularPower < 
  string UIWidget = "slider"; 
  float UIMin = 0.0; 
  float UIMax = 16.0; 
  float UIStep = 1.0; 
  string UIName =  "Specular Power"; > = 55.0; 
 
texture ColorTexture : DIFFUSE < 
  string ResourceName = "default_color.dds"; 
  string UIName       =  "Diffuse Texture"; 
  string ResourceType = "2D"; >; 
 
sampler2D ColorSampler = sampler_state { 
  Texture  = <ColorTexture>; 
  FILTER   = MIN_MAG_MIP_LINEAR; 
  AddressU = Wrap; 
  AddressV = Wrap; }; 
 
struct OutputPhongVS { 
  float4 Pos   : POSITION; 
  float2 TexAt : TEXCOORD0; 
 
float3 NormalWorld: TEXCOORD1; 
  float3 PosWorld   : TEXCOORD2; }; 
 
OutputPhongVS PhongVertexShader( 
 float3 InPos   : POSITION, 
 float2 InpTex  : TEXCOORD0, 
 float3 InNormal: NORMAL) { 
  OutputPhongVS OutVS = (OutputPhongVS)0; 
 
  OutVS.NormalWorld = mul(float4(InNormal, 0.0f), 
   WorldInverseTranspose).xyz; 
  OutVS.NormalWorld = normalize(OutVS.NormalWorld); 
 
  OutVS.PosWorld = mul(float4(InPos, 1.0f), World).xyz; 
  OutVS.Pos = mul(float4(InPos, 1.0f), WorldViewProjection); 
  OutVS.TexAt = InpTex; 
 
  return OutVS; } 
 
float3 RGBtoYIQ(float3 InCol) { 
  float3 OutCol; 
 
 

  OutCol.y = 0.29889531f * InCol.r + 0.58662247f * InCol.g + 
0.11448223f * InCol.b; 
  OutCol.x = 0.59597799f * InCol.r + -0.27417610f * InCol.g + -
0.32180189f * InCol.b; 
  OutCol.z = 0.21147017f * InCol.r + -0.52261711f * InCol.g + 
0.31114694f * InCol.b; 
  return OutCol; } 
 
float3 YIQtoRGB(float3 InCol) { 
  float3 OutCol; 
 
  OutCol.r = InCol.y + 0.95608445f * InCol.x + 0.62088850f * 
InCol.z; 
  OutCol.g = InCol.y - 0.27137664f * InCol.x - 0.64860590f * 
InCol.z; 
  OutCol.b = InCol.y - 1.10561724f * InCol.x + 1.70250126f * 
InCol.z; 
 
  return saturate(OutCol); } 
 
float4 LumaPhongDiffuse(float3 NormalWorld, float3 PosWorld, 
float2 TexAt) { 
  float3 ToEye = normalize(EyePos - PosWorld); 
 
float3 LightVector = normalize(LightPos - PosWorld); 
float3 LightVector = normalize(LightPos - PosWorld); 
 
float3 Reflection = normalize(2.0f * NormalWorld * 
dot(NormalWorld, 
    LightVector) - LightVector); 
 
  float Diffuse = saturate(saturate(dot(LightVector, 
NormalWorld)) + 
    AmbientValue); 
 
  float Specular = pow(saturate(dot(Reflection, ToEye)), 
SpecularPower); 
 
  float3 TexCol = tex2D(ColorSampler, TexAt).rgb; 
 
  float3 WorkCol = RGBtoYIQ(TexCol); 
 
  WorkCol.y = WorkCol.y * Diffuse + Specular * 1.0 - 0.1; 
 
  TexCol = YIQtoRGB(WorkCol); 
 
  return float4(TexCol, 1.0); } 
 
float4 LumaDiffusePS(OutputPhongVS InPS) : COLOR { 
  return LumaPhongDiffuse(InPS.NormalWorld, InPS.PosWorld, 
InPS.TexAt); } 
 
technique PhongDiffuse < string Script = "Pass=p0;"; > { 
  pass p0 < string Script = "Draw=geometry;"; > { 
    VertexShader = compile vs_2_0 PhongVertexShader(); 
 
ZEnable = true; 
    ZWriteEnable = true; 
    ZFunc = LessEqual; 
    AlphaBlendEnable = false; 
    CullMode = None; 
    PixelShader = compile ps_2_0 LumaDiffusePS();  } 
 
 
  

Table 1. HLSL code for illumination using YIQ color space. 
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The code described in Table 1 according to 
NVIDIA FX Composer 2.5 uses approximately 40 
instruction slots when compiled to assembly, which 
is relatively small considering the modern video 
cards. As it was mentioned in the beginning, the 
code can be converted to its GLSL equivalent with 
minimal effort and without sacrificing performance. 
 
4. Visual appearance analysis 
 
The proposed illumination approach described in 
this work was compared to the classical diffuse 
lighting and Phong specular reflection (from here 
referred to as Phong lighting model). The shader 
code for this model can be found in literature 
(see [1], [2], and [4]). A simple scene containing 
one point light source and a p-q torus knot [12] 
was used for rendering using the two 
aforementioned techniques. The resulting 
images are illustrated in Figure 1. 
 

   
 

   
 

Figure 1. Torus Knot rendered with the light source at 
different angles and different rendering techniques. 

There are two groups with three images each – the first 
group uses Phong lighting while the second group uses 

the lighting approach described in this work. In each 
group of three images the first image the light source in 
front, the second image has the light positioned at the 

back and the third image shows specular reflection only. 
 
As can be seen from the above figure, when the 
model is rendered with the light in front, the results 
are quite similar between Phong lighting model 
and YIQ-based lighting. It can be seen that the 
proposed model in this case is no worse than the 
classical one. However, when the light is on the 
back, the classical Phong lighting model generates 
grey shades as can be seen in the second image, 
while the YIQ-based lighting does not. In fact, 

when the specular reflection is rendered alone 
without diffuse component, in the classical Phong 
lighting model it is completely grey (no matter what 
the surface texture is), while in the YIQ-based 
lighting it depends on the surface and looks 
natural. It is evident from the sixth image that in 
YIQ-based lighting the specular reflection alone 
can be used without the diffuse component to 
simulate metallic surfaces. 
 
5. Performance analysis 
 
The real-time performance of the lighting approach 
described in this work was tested against the 
classical Phong lighting model on several 
computer configurations. In the performance test a 
more complex p-q torus knot was used, having 
31529 vertices and 61440 triangles. The surface 
texture was an image of bricks with the size of 
512x512. The resulting image is shown in Figure 2. 
 

 
 
Figure 2. Torus knot rendered with a single light source 
using YIQ-based lighting model for performance testing. 
 
The performance (in frames per second) along 
with the rendering size and multisampling is 
described in the table below. It is important to note 
that the final image size was 720x720 in most of 
the tests except on Eee PC 1000 HE, whose 
display was limited to 1024x600 resolution (in that 
case the size was 512x512). 
 

Computer 
Configuration 

Size and 
Multisampling 

Frame Rate 
(frames/second) 

Classical 
YIQ-

based 
 

Intel Core 2 
Quad Q660 

2.4 Ghz, 4 Gb 

 
720x720, No 
multisampling 

 

1240 1180 
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RAM DDR2  
800 Mhz (Cas 

Latency 5), 
Nvidia 

GeForce GTS 
250 

 
720x720, 8x  

multisampling 
389 385 

 
Intel Core 2 
Duo E6300 
1.86 Ghz, 4 

Gb RAM 
DDR2 800 
Mhz (Cas 

Latency 5), 
ATI Radeon 
X1950 GT 

 

 
720x720, No 
multisampling 

672 453 

720x720, 6x 
multisampling 

430 341 

 
Intel Atom 
1.66 Ghz 

N280, 2 Gb 
RAM DDR2 

533 Mhz, Intel 
GMA 950 

 

512x512, No 
multisampling 

44 35 

 
Table 2. The performance of two lighting approaches on 

different computer configurations. 
 
The performance results shown in Table 2 indicate 
that YIQ-based lighting is slower in all instances 
than the classical Phong lighting model, which is 
expected as the conversion from RGB to YIQ and 
back takes place. However, in the latest video card 
Nvidia GeForce GTS 250, the difference between 
the two is around 1% using 8x multisampling and 
around 5% without multisampling. The difference is 
larger for ATI Radeon X1950 GT and for Intel GMA 
950, where it is approximately 20% (and can be as 
high as 32%, when tested on ATI video card with 
multisampling disabled). From the results, we 
conclude that YIQ-based lighting can be used in 
real time even in the low-end portable and cheap 
computer such as Eee PC 1000 HE.  
 
6. Conclusions and future work 
 
In this work an alternative diffuse lighting and 
specular reflection approach was proposed that 
uses YIQ color space for illumination instead of 
RGB color space used by most of the classical 
lighting models. The complete HLSL shader code 
was described to be ready to use in commercial 

applications. The advantage of the proposed 
approach is that it eliminates the restrictions 
derived from the use of RGB color space in the 
classical lighting models where the diffuse color 
cannot become brighter and where the specular 
reflection adds certain amount of gray regardless 
the source surface’s texture. 
 
The performance of the described approach was, 
in the worst case, 30% slower than the classical 
lighting model, and in the best case, it was around 
1% slower in the computers used in the 
experiment. This indicates that there is room for 
improvement in terms of performance: first, the 
original texture can be specified in YIQ color space 
to reduce the number of conversions by half. 
Assuming that the color part (I and Q components) 
of the original color is not changed, the conversion 
from RGB to YIQ color space and back can be 
optimized to reduce the number of mathematical 
operations involved. 
 
Although working directly in YIQ color space may 
not be possible for the entire rendering pipeline, 
because of programmable nature of today’s GPUs, 
representing the texture in YIQ color space and 
working directly in this color space with shaders 
will provide the benefits of photorealism without 
compromising the performance. The current 
limitation is that the resulting color returned by the 
pixel shader still needs to be specified in the RGB 
color space, although this may be alleviated in the 
future versions of DirectX and OpenGL, especially 
considering the trend of general-purpose GPU 
programming. 
 
In applications with significant 3D scene 
complexity such as video games, the visual 
artifacts of classical illumination approaches may 
not be easily apparent, while the performance 
plays a major role in decision making. However, in 
other industries where photo-realism is of higher 
importance, the proposed alternative may provide 
a significant improvement and produce real-looking 
scenes. 
 
It is important to note that the approach described 
in this work is not only limited to diffuse lighting 
and specular reflections. For instance, it can be 
used to improve the overall quality of the Minneart 
lighting model (see [1]) by making the color 
brighter in some cases instead of making it darker 



 

Alternative Diffuse Lighting and Specular Reflection Approach Using YIQ Color Space for 3D Scene  Visualization Using Programmable HLSL Shaders, Y. Kotsarenko  / 673‐679 

Journal of Applied Research and Technology 679

each time. Many other lighting models such as 
Oren-Nayar or Cook-Torrance can benefit from 
using the described approach as well. Further work 
with these lighting models and the lighting 
approach proposed in this work is recommended. 
 
There are other color spaces that have a 
“brightness” component in them such as YUV, 
CIELAB and CIELUV [13]. Although the last two 
color spaces might not be good choices for real-
time processing (according to Poynton [9]), in 
applications where realism is required at the 
expense of performance, using these color spaces 
could be beneficial. There are other color spaces 
that have a brightness component modeled closely 
to the human perception, such as Guth’s ATD95 
[14] and DIN99 [15], that can be used for rendering 
highly detailed 3D scenes with greater illumination 
accuracy based on the approach described in this 
work. Further research is required to determine 
whether these color spaces can be used for 
illumination in shaders. 
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