

Journal of Applied Research and Technology 845

FSM State-Encoding for Area and Power Minimization Using
Simulated Evolution Algorithm

Sadiq M. Sait*1, F. C. Oughali2, A. M. Arafeh3

1,2,3Department of Computer Engineering
1Center for Communications and IT Research, Research Institute
King Fahd University of Petroleum & Minerals
Dhahran, Saudi Arabia.
*sadiq@kfupm.edu.sa

ABSTRACT
In this paper we describe the engineering of a non-deterministic iterative heuristic [1] known as simulated evolution
(SimE) to solve the well-known NP-hard state assignment problem (SAP). Each assignment of a code to a state is
given a Goodness value derived from a matrix representation of the desired adjacency graph (DAG) proposed by
Amaral et.al [2]. We use the (DAGa) proposed in previous studies to optimize the area, and propose a new DAGp
and employ it to reduce the power dissipation. In the process of evolution, those states that have high Goodness have
a smaller probability of getting perturbed, while those with lower Goodness can be easily reallocated. States are
assigned to cells of a Karnaugh-map, in a way that those states that have to be close in terms of Hamming distance
are assigned adjacent cells. Ordered weighed average (OWA) operator proposed by Yager [3] is used to combine the
two objectives. Results are compared with those published in previous studies, for circuits obtained from the MCNC
benchmark suite. It was found that the SimE heuristic produces better quality results in most cases, and/or in lesser
time, when compared to both deterministic heuristics and non-deterministic iterative heuristics such as Genetic
Algorithm.

Keywords: EDA, FSM Synthesis, State Encoding, Simulated Evolution, Multiobjective Optimization, Non-Deterministic
Algorithms, Desired Adjacency Graphs, Fuzzy Logic.

1. Introduction

Most tasks involved in designing VLSI systems
employ CAD tools. Digital systems are designed
based on the separation of data path and control
logic. The control logic is implemented by
synthesizing finite state machines (FSMs).
Automated design of FSMs with area and power
constraints has been of considerable interest to the
CAD community. The complexity of FSM
implementation lies in its storage elements and
combinational logic realization. It is possible to
synthesize an FSM using a minimum number of

encoding bits ( sN2log , where Ns is the number

of states in the FSM); however, using additional
bits could be justified if combinational logic was
reduced thereby reducing the overall area and/or
power consumption. If nb is the number of bits
used to encode each state, then the number of
possible assignments (hence the size of the
search space [4]) is given by

)!2(
)!2(

s
n

n

N
S

b

b


 (1)

For example, in a two state machine, if two bits are
used for encoding, then there are 12 possible
assignments. Different state assignments will
results in different area and power requirements.
For large FSMs, exploring all possible encoding
solutions for optimization is an extensive task. At
times, it may be possible to reduce the amount of
combinational logic by increasing the number of
bits per state (incompletely specified machines),
but this obviously increases the size of the search
space. Clearly, the state assignment problem
(SAP) is an NP-hard combinatorial optimization
problem similar to the travelling salesman problem.
In this work, we engineer another iterative heuristic
known as Simulated Evolution (SimE) to search for
better solutions to solve the SAP for FSMs.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 846

Previous research on two-level combinational logic
realization of FSMs using well designed
deterministic heuristics for area minimization
employed mechanisms such as implicant merging,
code covering and disjunctive coding [5]. Finding
states assignment which resulted in common
expressions and maximum literal savings was one
of the objectives in the state assignment problem
(SAP). Devadas et.al., proposed two algorithms [6]
[7], the first of which is fan-out oriented and
assigns close codes, in terms of Hamming
distances, to state pairs that have similar next
state transitions. The second algorithm, which is
fan-in oriented (also called Mustang), looks for
state pairs with higher number of incoming
transitions from the same states. Higher weights
are given to those pairs of states to be assigned
close codes. The motivation in this case is to
maximize the frequency of common cubes in the
encoded next-state functions. Another heuristic,
similar to this one, is Jedi [8] where state
assignment are made in a way similar to that
proposed by Devadas’ fan-out algorithm which
calculates the encoding affinity cost as a function
of how frequently a pair of states is represented in
next-state and output functions. The use of a
semiformal specification for code implementation
along with formal verification of finite state
machines (FSM) was reported by Torres et al. [9].

Non-deterministic general iterative heuristics such
as simulated annealing, particle swarm and tabu
search has been used to solve a variety of
combinatorial optimization problems [10, 11, 12].
For a state assignment problem, a genetic
algorithm-based state encoding, targeting
minimization of area and power, was proposed by
Chaudhury et.al. [13]. They used a unified
approach targeting static power and dynamic
power along with area trade-off. Other attempts to
use GAs to solve the SAP include the work by Aly
[14], Almaini et al [13], and others [16], [17].
Another attempt is by Amaral et al [2] who used
GA with cost function proposed by Armstrong [18].
Armstrong’s measure combines fan-in, fan-out and
output costs for measuring literal savings. Amaral
proposed a matrix representation as genotype, and
a desired adjacency graph (DAGa) as a tool for
applying heuristic rules on FSM [19].

Power consumption in CMOS circuits is mainly
attributed to charging and discharging of circuit’s
capacitance. Reducing power consumption is done
by reducing switching activity, logic area
(capacitance), or their product. Switching activities
in sequential circuits are due to logic transition on
flip-flops and primary inputs. Most of the work
reported in previous works [20] [21] tries to
minimize total switching on the flip-flops.

The aim of this work is to engineer another
evolutionary non-deterministic heuristics commonly
known as SimE. One key requirement of SimE is
to define a Goodness measure of the current
assignment of a movable element, in our case the
assignment of a binary pattern to a state. In the
process of evolution, elements with high Goodness
are given a lower probability of moving from their
current assignments. The DAG proposed by
Amaral [2] is exploited in the design of cost
estimators and Goodness measures required by
the SimE algorithm.

The rest of the paper is organized as follows. In
section 2 we discuss the construction of the
desired adjacency graphs (DAG) as proposed by
Amaral [2] for area minimization, and we propose
a new DAG for power minimization. In section 3 we
present the SimE heuristic for the state assignment
problem (SAP), using desired adjacency graph
(DAG) proposed in [2]. In section 4 we present
problem formulation, proposed Goodness
measures and an allocation function for SimE.
Experiments and results are reported in section 5.
Finally, we provide some final conclusions.

2. Desired adjacency graphs (DAGs)

The assignment of codes to states is a
combinatorial optimization problem with the size of
the search space given by equation 1. Searching
all possible encoding solutions is an extensive
work that requires sub-optimal search methods.
Table 2 shows a description of a small finite state
machine with two possible assignments.
Assignment 1 has a cost of 47 literals (in SOP form
when synthesized by “SIS” [22]) while assignment
2 has a cost of only 4 literals. Efficient techniques
are required to find the right assignment of codes
to states to reduce cost.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Journal of Applied Research and Technology 847

As discussed earlier, many heuristic techniques
have been proposed for the state assignment
problem [2, 18, 23]. Based on a paper by
Armstrong [2], Amaral introduced a tool called
desired adjacency graph (DAGa) which can be
used for applying heuristic rules to any given FSM.
The heuristic used suggest that reduction in literal
count, and thereby the cost of synchronous
sequential circuits (SSC) is possible by minimizing
the Hamming distance between predefined sets of
states which may be chosen as follows. If they are:
 Rule i: In the same set of successors of a

given state.
 Rule ii: In the same set of predecessors of a

given state with a given input condition.
 Rule iii: In the same partition for a given

output.

2.1 DAGa for an area minimization

Using the above, Amaral et al [2] proposed a
desired adjacency graph (DAGa), which is a
weighted graph that represents the strength of
connection between states (nodes of the graph).
Simply, it indicates the desirability of having states
close to each other. In order to have a low area
SSC, it is necessary to minimize the distance
between states that are strongly connected in the
DAGa. (Please refer to [2] for equations used to
build a DAGa).

As an example, given the previously described
FSM which represents the shiftreg benchmark
circuit of MCNC, table 2 shows the DAGa obtained
using equations reported in [2]. For example, we

Present state
Next state

Output Z0
Assign

#1
Assign

#2 I0=0 I0=1

S0 S0 S4 0 101 010

S1 S0 S4 1 110 000

S2 S1 S5 0 001 011

S3 S1 S5 1 100 001

S4 S2 S6 0 011 110

S5 S2 S6 1 000 100

S6 S3 S7 0 111 111

S7 S3 S7 1 010 101

Table 1. Two assignments of an FSM for “shiftreg” MCNC benchmark requiring different number of literals.

 S0 S1 S2 S3 S4 S5 S6 S7

S0 0 9 2 0 9 0 2 0

S1 9 0 1 3 1 8 0 2

S2 2 1 0 8 3 2 8 0

S3 0 3 8 0 0 3 1 9

S4 9 1 3 0 0 8 3 0

S5 0 8 2 3 8 0 1 2

S6 2 0 8 1 3 1 0 9

S7 0 2 0 9 0 2 9 0

Table 2. DAGa for “shiftreg” MCNC benchmark for area optimization.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 848

obtain DAG (0,4) = R1 + R1 + R3 + R4 = 3 + 3 + 2
+ 1 = 9. The two factors R1 are produced because
states S0 and S4 are common successors of
states S0 and S1 (Rule i), the factor R3 appears
because Z0(S0) = Z0(S4) (Rule iii), and R4 is
added because there is one transition from state
S0 to S4.

2.2 DAGp for power minimization

Since our objective is to minimize both area and
power, we propose a DAGp that can be used for
the power minimization. As is well known, the
switching activity in a circuit has a direct influence
on the power dissipated. The switching activities in
a finite state machine can be modeled as a state
transition graph (STG) G(V, E), where a vertex Si
in V represents a state of the FSM and an edge Eij
in E represents a transition from state Si to Sj . Let
Psi denote the probability of finding the state
machine in state Si, and pij denotes the transition
probability from state Si to state Sj. Interpreting the
STG as a Markov Chain, Psi is the steady states
probabilities.

The steady states probabilities can be iteratively
calculated by solving Chapman-Kolmogorov
equations. The process is terminated once the
state probabilities converge so that the difference
between successive iterations is within a user
defined tolerance value. Thus, the total transition
probability from a state Si to state Sj is the
probability that the machine in state Si multiplied by
the transition probability from state Si to state Sj.

sjijij PpP . (2)

Where Pij is the total state transition probability
from state Si to state Sj. The sum of the total state
transition probabilities between two states
indicates the amount of switching between them.

jiijij PPW  (3)

Based on the transition values calculated in STG,
a desired adjacency graph (DAGp) for power

minimization is formulated. The values of weights
in the DAGp indicate the desired relative proximity
in the state assignment of two states. By assigning
shorter distance codes to states connected with
higher values, (i.e., higher transition probability),
the overall switching on the state lines of the FSM
can be minimized.

As an example, table 3 shows the transition
probabilities pij from state Si to state Sj for the
bbara circuit in MCNC benchmark used in this
paper.

The steady state probabilities are calculated using
the script in Matlab that iteratively solves the
Chapman-Kolmogorov equations. Table 4 shows
the steady state probabilities for the bbara circuit in
MCNC benchmark.

The total transition probability from state Si to state
Sj is the probability that the machine in state Si
(steady state of Si) multiplied by the transition
probability from state Si to state Sj. The sum of the
total state transition probabilities between two
states indicates the amount of switching between
them, which equals to the value of our proposed
DAGp for power minimization. As an example, the
transition probability from S0 to S1 equals to 0.125
and the transition probability from S1 to S0 equals
to 0.0625. Thus, we obtain DAGp(1,2) = P0,1 + P1,0
= (p0,1 × Ps0) + (p1,0 × Ps1) = (0.125 × 0.155242) +
(0.0625 × 0.266667) = 0.036072. Where p0,1 and
p1,0 are the transition probabilities from S0 to S1
and from S1 to S0 respectively. And Ps0 and Ps1
are the steady state probabilities of S0 and S1.
Table 5 gives the DAGp for “bbara” MCNC
benchmark that can be used in the design of
Goodness measures required by SimE for power
optimization.

3. Simulated evolution

The SimE algorithm is a general search strategy
for solving a variety of combinatorial optimization
problems which seek to find a global optimum of
some real valued cost function cost Ω → R defined
over a discrete set Ω. The set Ω is called the state

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Journal of Applied Research and Technology 849

space and its elements are referred to as states
(do not confuse with the states of FSM). A state
space Ω together with an underlying neighborhood
structure (the way one state can be reached from
another state) form the solution space.
Combinatorial optimization problems can be
modeled in a number of ways. A generic
formulation suggested by Saab and Rao [24] is the
following: Given a finite set M of distinct movable
elements and a finite set L of locations, a state is
defined as an assignment function S: M → L
satisfying certain constraints.

Many of the combinatorial problems can be
formulated according to this generic model. In our
case the assignment is of binary patterns of fixed
length to states of an FSM.

The structure of the SimE algorithm is shown in
Figure 1. SimE assumes that there is a solution Ø
of a set M of n (movable) elements or modules.
The algorithm starts from an initial assignment
Øinitial, and then, following an evolution based
approach, seeks to reach better assignments from
one generation to the next by perturbing some ill-
suited components and retaining the near-optimal
ones. A cost function cost associates with each

assignment of movable element mi
 a cost Ci. The

cost Ci is used to compute the Goodness (fitness)
gi of an element mi, for each mi ∈ M. The algorithm
has one main loop consisting of three basic steps,
evaluation, selection, and allocation. The three
steps are executed in sequence until the solution’s
average Goodness reaches a maximum value, or
no noticeable improvement to the solution fitness
is observed after a number of iterations. The
evaluation step consists of evaluating the
Goodness gi of each element mi of the solution Ø.
The Goodness measure must be a single number
expressible in the range [0, 1]. It is defined as:

i

i
i C

O
g  (4)

Where Oi is an estimate of the optimal cost of the
element mi, and Ci is the actual cost of mi in its
current location.

The above equation assumes a minimization
problem (maximization of Goodness). Notice that,
according to the above definition, the Oi’s do not
change from generation to generation, and
therefore, are computed only once during the

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

S0 0.8125 0.125 0 0 0.0625 0 0 0 0 0

S1 0.0625 0.75 0.125 0 0.0625 0 0 0 0 0

S2 0 0.0625 0.75 0.125 0.0625 0 0 0 0 0

S3 0 0 0 0.875 0.0625 0 0 0.0625 0 0

S4 0.0625 0.125 0 0 0.75 0.0625 0 0 0 0

S5 0 0.125 0 0 0.0625 0.75 0.0625 0 0 0

S6 0 0.125 0 0 0 0 0.8125 0.0625 0 0

S7 0 0.125 0 0 0.0625 0 0 0.75 0.0625 0

S8 0 0.125 0 0 0.0625 0 0 0 0.75 0.0625

S9 0.0625 0.125 0 0 0.0625 0 0 0 0 0.75

Table 3. State transitions probabilities of “bbara” circuit for MCNC benchmark.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

0.1552 0.2666 0.1333 0.1333 0.1967 0.0498 0.0163 0.0374 0.0093 0.0023

Table 4. Steady state probabilities of “bbara” circuit for MCNC benchmark.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 850

initialization step. Hence only the Ci’s have to be
recomputed at each call to the evaluation function.
Empirical evidence [25] shows that the accuracy of
the estimation of Oi is not very crucial to the
successful application of SimE. However, the
Goodness measure must be strongly related to the
target objective of the given problem.

The second step of the SimE algorithm is
selection. Selection takes as input a bias value B,
the solution Ø together with the estimated

Goodness of each element. It partitions Ø into two
disjointed sets; a selection set SS and a partial
solution Øp of the remaining elements of the
solution Ø. Each element in the solution is
considered separately from all other elements. The
decision whether to assign an element mi to the set
SS is based solely on its Goodness gi. The
selection operator has a non-deterministic nature,
i.e., an individual with a high Goodness (close to
one) still has a non-zero probability of being
assigned to the selection set SS. It is this element
of non-determinism that gives SimE the capability
of escaping local minima. Allocation is the SimE
operator that has the most impact on the quality of
solution. Allocation takes as input the set SS and
the partial solution Øp and generates a new
complete solution Ø’ with the elements of set SS
mutated according to an allocation function. The
goal of allocation is to favor improvements over the
previous generation, without being too greedy.

4. Problem formulation

This section describes how SAP is formulated in
SimE. This includes population representation, the
use of DAGs in the development of Goodness
measures to be used in evaluating each individual
of the population, and the allocation procedure.

4.1 Solution representation

States assignment problem can be seen as a
linear or 2-D placement problem. In table 6, states

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

S0 0 0.0361 0 0 0.0220 0 0 0 0 0.0001

S1 0.0361 0 0.0417 0 0.0413 0.0061 0.0020 0.0047 0.0012 0.0003

S2 0 0.0417 0 0.0167 0.0083 0 0 0 0 0

S3 0 0 0.0167 0 0.0083 0 0 0.0083 0 0

S4 0.0220 0.0413 0.0083 0.0083 0 0.0154 0 0.0023 0.0006 0.0001

S5 0 0.0061 0 0 0.0154 0 0.0031 0 0 0

S6 0 0.0020 0 0 0 0.0031 0 0.0010 0 0

S7 0 0.0047 0 0.0083 0.0023 0 0.0010 0 0.0023 0

S8 0 0.0012 0 0 0.0006 0 0 0.0023 0 0.0006

S9 0.0001 0.0003 0 0 0.0001 0 0 0 0.0006 0

Table 5. DAGp for “bbara” MCNC benchmark for power optimization.

 Figure 1. Structure of the SimE algorithm [1].

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Journal of Applied Research and Technology 851

are placed in suitable locations associated with
different Gray codes. A data structure similar to
Karnaugh maps is employed where adjacent
slots have a Hamming distance of one. As it is
preferred that pairs of states with high DAG
values have close codes, an attempt was made
to get them as close to each other as in the 2-D
structure.

Gray coding 00 01 11 10

Locations L0 L1 L2 L3

Table 6. Locations associated with Gray Sequence.

We can think of the set of movable elements as
the states, and the set of locations as the squares
of the K-map. In order to employ the SimE
algorithm we need to define the population and a
Goodness measure for individuals. Since the
simplicity of the population representation
determines the complexity of the allocation
function, the population is represented as a linear
or 2-D array. The number of array elements equals
the number of FSM states. Each element contains
index of one Gray sequence code. As shown in the
example in table 7, the first element in the
population corresponds to the state (S0) and
contains the index of the corresponding Gray code.

S0 S1 S2 S3

L0 L2 L3 L1

Table 7. Population representation.

Giving a finite state machine with 4 states, the
final solution is the SimE population that results
in minimum cost. The algorithm will try to place
highly connected states in DAG into adjacent
locations (i.e., assign them close codes). Table 8
depicts the final solution where S0 assigned
code (00) which corresponds to the location (L0)
in Gray sequence. Similarly, S1 is assigned code
(11) which corresponds to location (L2) in Gray
sequence, and so on.

Gray coding 00 01 11 10

State assign. S0 S3 S1 S2

Table 8. Final solution sepresentation.

4.2 Goodness measure–I

Goodness measure in SimE (equation 4) consists
of two elements; Oi an estimation of optimal cost
and Ci the actual cost of individual Si in the
population. Goodness value of individual Si is
defined as the sum over all Sj states of Hamming
distance between state Si and state Sj multiplied by
DAGij. Pairs of states with high DAG values are
preferable to have close codes (minimum
Hamming distance). Estimation of the optimal
Goodness Oi is calculated as in equation 5. The
distance between individual Si and all other states
is assumed to be equal to 1.

 




1

0

s

j iji DAGO (5)

Although this estimation of Oi is not possible to be
achieved, it is still a good estimation for an optimal
case. Empirical evidence shows that the accuracy
of Oi is not very crucial to the successful
application of SimE [25].

4.3 Goodness measure–II

Goodness value of individual Si is defined as the sum
over all states of Hamming distance between state Si
and state Sj multiplied by DAGij. Estimation of the
optimal Goodness Oi is calculated as in equation 6,
where, the distance between state i and other states
is assumed to be based on the value of Wj .

 




1

0
.s

j ijiji WDAGO (6)

In any binary encoding of finite-state machines, the
number of codes that are a distance d from any
other code is calculated using mathematical
combinations. Table 9 shows an example of 3, 4
and 5-bits encoding. The number of codes that are
of Hamming distances d = 1, 2, 3, 4, 5 are listed.

Encoding
Length

Number of codes of distance (d)
from any given code

d=1 d=2 d=3 d=4 d=5

3-bits 3 3 1

4-bits 4 6 4 1

5-bits 5 10 10 5 1

Table 9. Hamming distance in n-bit encoding.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 852

Thus, for any encoding with n-bits, the total
number of codes that are of a distance (d) from
any other code is given by the following equation:

)!(!
!

dnd

n

d

n
N

b

bb
c 









 (7)

Weight vector W is built according to the above
definition. For example, in 3-bits encoding, weight
vector will be W= [1, 1, 1, 2, 2, 2, 3]. Oi is then
calculated by sorting DAGi in descending order
and applying equation 6. In Goodness measure II,
states with strong connections are multiplied by
small weights (distance) values, while weakly
connected states will be multiplied by higher
distance values. This calculation provides a more
accurate assessment of the optimal value Oi.

The actual cost Ci for individual Si is expressed
in equation 8. D(Si, Sj) is the Hamming distance
between codes of state Si and state Sj. DAGij is
the corresponding weight between state Si and
state Sj. DAG could be related to the area or
power. Ci will be low when pairs of states with
high DAGij have a small distance D (i.e.,
assigned adjacent codes due to their strong
relation represented in DAG). As Oi values are
fixed for all generations, the Goodness will be
determined by the value of Ci. As Ci approaches
the estimated optimal value Oi, the Goodness of
individual Si increases.

 




1

0
).,(s

j ijjii DAGSSDC (8)

As the heuristics suggest, an assignment with
maximum Goodness value for each individual
should result in an SSC with minimal cost.

4.4 Initialization

Initialization includes specifying bias for selection
procedure, stopping criteria which have been
chosen to be a fixed number of generations,
computing Oi for each individual in the population,
and constructing an initial population by random
code assignment.

4.5 Selection

In the selection step, each member of the
population is considered separately for selection;
selection function is used with its original
description in SimE [1]. Individuals with low
Goodness are more likely to be selected for
mutation in the next generation. On the other hand,
individuals with high Goodness have higher
chance of retaining their assigned codes in next
generation. However, they still have nonzero
probability to be assigned to selection set SS. The
value of Bias B is a function of how realistic is the
estimate of optimal cost Oi of individual Si. In case
Oi is a tight lower bound on the actual cost Ci, then
a value of (B=0) is a reasonable choice. However,
if Oi is a loose lower bound for Ci, i.e., if Oi cannot
possibly be achieved (like in our case), then a
small negative value for B should be chosen to
compensate for the lack of accuracy of Oi.

Selected elements in set SS are sorted in an
ascending order based on their Goodness value,
where elements with lower Goodness value are
processed first at allocation step.

Example inputs outputs states

bbara 4 2 10

bbsse 7 7 16

dk14 3 5 7

donfile 2 1 24

train11 2 1 11

lion9 2 1 9

s1 8 6 20

shiftreg 1 1 8

tav 4 4 4

Sand 11 9 32

Table 10. Selected MCNC benchmark circuits

used for comparison.

Avg. # selected 14 13 12 10

Bias 0 -0.05 -0.1 -0.15

Table 11. Bias Vs. average no. of selected individuals.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Journal of Applied Research and Technology 853

4.6 Allocation

After selecting and sorting individuals in an
ascending order of their Goodness values, they
are processed. Each state in the selection set SS
needs to be assigned a new code, where it should
have better Goodness compared to the previous
one. All codes assigned originally to the selected
states are now free. First state to be reallocated
can have any of these nonassigned codes, while
next states will have remaining free codes. The
state to be processed will have its Goodness
evaluated for each available code. The evaluation
process will take into consideration the remaining
states in Øp, in addition to states which already

have been reassigned new codes. The code that
maximizes the state Goodness will be chosen.

5. Implementation and results

The experiments compare performance of SimE
for the area minimization with Nova-11 Nova-22
[26] and genetic algorithm reported by Amaral [2].
Results for Jedi [8] tool were also included in the
comparison. MCNC benchmarks were used for
reporting and comparing the results in this paper,

1 Nova-1 is NOVA executed with the default option -e ig.
2 Nove-2 is NOVA executed with options -e ioh -r.

Example GA NOVA1 NOVA2 Jedi SimE-1 SimE-2

bbara 130 134 154 124 109 99

bbsse 345 312 381 289 257 275

dk14 252 252 268 346 208 203

donfile 408 321 280 169 260 174

train11 53 79 48 40 43 38

lion9 22 51 39 30 23 21

shiftreg 10 9 3 18 4 4

tav 32 35 35 35 32 32

Avg. 157 149 151 131 120 112

Table 12. SAP results comparison for area minimization (in no. of literals SOP).

Benchmark
SimE Jedi

Assign.
Cost

lit(SOP)
Assign.

Cost
lit(SOP)

bbara 6-3-15-11-2-0-8-10-14-7 92 6-10-11-14-2-3-0-8-12-4 124

bbsse
14-12-6-4-2-0-11-3-13-5-8-

15-7-1-9-10
248

15-2-12-8-4-5-0-1-14-10-3-6-
7-13-11-9

289

dk14 7-3-5-1-2-6-0 205 4-0-1-2-5-3-7 346

donfile
19-22-27-17-18-16-3-6-15-

24-26-30-32-21-31-29-20-28-
2-0-10-14-4-12

213
12-13-15-14-29-31-8-25-11-
10-9-27-20-28-4-6-30-22-16-

24-0-18-26-2
169

train11 4-1-3-0-6-9-5-2-7-11-15 38 3-5-11-7-10-13-15-2-0-9-1 40

lion9 0-1-3-11-15-7-5-4-6 19 15-13-9-11-14-12-8-10-6 30

shiftreg 7-3-6-2-5-1-4-0 4 7-4-6-5-3-0-2-1 18

tav 1-0-2-3 32 1-2-3-0 35

Avg. - 106 - 131

Table 13. States assignment for SimE, Jedi.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 854

details of selected circuits in terms of the number of
states, etc., are given in table 10. The cost is
obtained using “SIS” tools developed by UC Berkeley
[22], and it is the number of literals in SOP form,
which are required for implementing the FSM.

GA solutions reported by Amaral [2], were obtained
with a population size of 200, and run for 800
generations [2]. In our implementation, we fixed the
number of iterations to eight hundred, and bias
value of (-0.15) for Goodness measure–I and 0 for
Goodness measure II. Table 11 shows relation
between bias value and number of selected
individuals of the population. It is evident that the
increased value of bias (i.e. from -0.15 to 0) results
in an increase in the average number of selected
individuals (i.e., from 10 to 14). This behavior is due
to the use of loose bound estimation of Goodness
Oi, namely Goodness measure-I. A high (positive)

bias will increase the number of selected elements
in each iteration, which allows the algorithm to
search harder. In contrast, a negative value of bias
will have the effect of reducing the number of
selected elements for mutation.

Comparison of results is reported in table 12. Cost
reported by “SIS” tool is taken without any further
minimization to the logic obtained. Reported
numbers are averaged results as they vary due to
the random behavior of the non-deterministic
iterative heuristic. Clearly, SimE outperforms other
tools and algorithms in most cases, (except in a
few, for example results for donfile circuit when
compared to results by Jedi). While, GA is known
to be very time consuming heuristic, SimE has a
much shorter runtime (i.e., 80 to 90 sec) for used
benchmarks. It was also noted that time did not
increase rapidly with the increase of number of

Example
GA

(MWHD)
Jedi -
Best

SimE-1 SimE-2

bbara 214.7 156.5 135.98 137.6

bbsse 446.1 496.6 393.14 393.06

dk14 661.2 628.1 502.56 493.04

train11 180.4 207.1 157.18 151.94

lion9 142 145.6 117.64 107.78

s1 1165.1 1087.2 971.3 992.12

shiftreg 163.3 96.3 144.02 135.2

Avg. 424.61 360.71 323.93 321.55

Table 14. SAP Results comparison for power minimization (µW).

Benchmark
SimE

Assign. Cost lit (µW)

bbara 0-2-6-7-4-12-5-1-9-8 92

bbsse 0-4-5-1-6-7-3-2-10-14-15-8-12 248

dk14 1-3-0-4-2-7-5 205

train11 13-15-11-7-5-14-12-3-1-10-9 38

lion9 6-2-8-0-4-5-1-3-7 19

s1
0-2-6-4-1-20-3-7-19-23-31-22-9-16-

27-17-15-18-11-25
4

shiftreg 0-2-1-3-4-6-5-7 32

Avg. - 106

Table 15. State assignments for SimE.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Journal of Applied Research and Technology 855

states due to the compact population
representation. We can notice that SimE-2
achieveed better results compared to SimE-1 as
the optimal cost estimation used in Goodness
measure-II is more realistic.

 Validation of obtained state assignments was
conducted by matching the obtained logic with the
original description of the state machine. This
validation ensures that state assignment done by
SimE doesn’t change circuits’ behavior. Table 13
shows final state assignment and literal count
produced by SimE compared to Jedi assignment.
For GA and NOVA assignments you can refer to
[2]. These assignments are provided for the sake
of verification.

Power minimization results are compared with
results reported in [27] and Jedi tool using
assignment options that gives best results. In [27]
the authors are reporting power minimization using
two methods; first by using MWHD and then by a
measure called Fan-out which accounts for the
size of the logic cones. Table 14 shows that SimE
with Goodness measure–II is outperforming all
other methods. In most cases, SimE results are
better than those reported in [27] using MWHD
(except for one circuit (shiftreg) when compared to
results reported using Jedi). The values reported in
table 14 are the average of five different runs. All
the results for power minimization were calculated
using (power_estimate -t sequential) call in SIS
synthesis tool. The power values reported are in
microwatts assuming 20 MHz clock and 5 voltage
power supply. Table 15 shows the assignments of

codes for the states of the benchmark circuits
when optimized for power. Note that numbers in
different tables vary slightly due to the non-
deterministic nature of the algorithm. But as it can
be observed, the final results are close indicating
the stability of the heuristic and its implementation.

Figure 2 shows the behavior of a SimE run. The
darker line in the plot is the average Goodness
measure, and the lighter line above depicts the FSM
cost. As it can be observed, with iterations, the cost
decreases and the Goodness increases. Also
observe the hill-climbing phenomenon of SimE.

Our problem being solved consists of two
objectives to be optimized. Balancing different
objectives by a weighted cost functions is not
sufficient to reach the desired solution. One
convenient vehicle available for representing multi-
objective cost functions is fuzzy logic which
provides a required formal algebra to express and
combine trade-off objective criteria. Functions for
each objective are used (called membership
functions) which map the numerical value of
objectives to the interval [0,1] [1]. To obtain a fuzzy
logic definition of the above multi-criteria objective
function, two linguistic variables area and power
are introduced and a linguistic value for each
variable is defined, in our case small for area, and
low for power. These linguistic values characterize
the degree of satisfaction of the designer with the
values of objectives fi(x), (i=a,p). These degrees of
satisfaction are described by membership
functions µi(.) on fuzzy sets of linguistic values.

Figure 2. SimE Behavior.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 856

Membership functions for small area and low
power are built. These are non-increasing
functions, since the smaller the area fa(.) and lower
the power fb(x), the higher is the degree of
satisfaction µa(.), and µb(.). The most desirable
solution is the one with the highest membership in
the fuzzy subsets small area, and low power.
However, such a solution most likely does not
exist. Therefore, one has to trade-off these
individual criteria with each other. This trade-off is
conveniently specified in linguistic terms in the
form of the following fuzzy logic rule.

Let the fuzzy subset of good solutions be
characterized by the following fuzzy rule:

R.0 If (small area) OR (low power)
Then good solution.

We implement the fuzzy OR above using the orlike
Ordered Weighted Averaging (OWA) operator
proposed by Yager [3] where the degree of ORing
is controlled by a parameter β between [0,1].
According to the orlike operation, the above fuzzy
logic rule R.0 evaluates the following.

)(
2
1)1(

),max()(

ba

bax








 (9)

where β is a parameter between 0 and 1
indicating the degree of nearness of this orlike
operator to the strict meaning of the max
operator. Table 16 shows results obtained
using fuzzy operators compared to results
obtained for area or power individually.
Comparison between fan-out [23], Jedi and
SimE are reported in Table 17. SimE with fuzzy
logic outperforms other methods in five circuits
and performs poorly in two circuits.

6. Conclusions

In this paper we presented the engineering of an
evolutionary heuristic [1] to find better solutions for
the NP-hard state assignment problem. Solutions
in simulated evolution heuristic evolve based on
the current Goodness value of their assignments.
SimE accommodates the domain knowledge of the
designer in the design of Goodness measure
which plays an important role in the perturbation of
solutions during their process of their evolution.
Two Goodness measures are proposed, one
incorporating more domain knowledge, and this is
reflected in the performance of the heuristic in the
solutions obtained. It is evident that the more the
engineer puts in his domain knowledge in the
design of Goodness measures, the better is the
performance of the heuristic. Goodness measures

Benchmark
Area Heuristic Power Heuristic Fuzzy (MAX)

Area Power Area Power Area Power

bbara 58 162.56 63 132.46 58 136.26

bbsse 124 463.26 134 393.06 123 400.84

dk14 104 531.88 104 493.04 104 493.3

train11 20 101.84 31 151.94 21 97.64

lion9 14 86.76 16 107.78 15 80.74

s1 352 1312.88 296 992.12 294 993.2

shiftreg 4 108.04 17 135.2 4 108.04

tav 24 167.3 24 161.96 24 161.96

Avg. 88 366.82 86 320.95 80 309

Table 16. Fuzzy logic results comparison.

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Journal of Applied Research and Technology 857

in this work exploit the desired adjacency graphs
available in the literature for area optimization [2].
We propose a new desired adjacency graph for
power optimization. In order to assign codes
which are close in terms of Hamming distance,
the problem is treated as an assignment problem
with a difference. The 2-D structure to which they
are assigned is similar to Karnaugh maps, and
the heuristic seeks to find adjacent squares for
pairs of states that have a minimal Hamming
distance. The two objectives for area and power
are combined using the fuzzy ordered weighted
operator proposed by Yager [3]. Results are
compared to those published in literature and it is
seen that both in terms of quality of solutions and
the required run-time, the performance of the
SimE heuristic with the proposed Goodness
measures is excellent and can be used for other
similar NP-hard problems.

Acknowledgment

The authors acknowledge King Fahd University of
Petroleum & Minerals, Dhahran, Saudi Arabia for
support. This work was also supported under KFUPM
funded project # FT-2005/63.

References

[1] Sadiq M. Sait and Habib Youssef. Iterative Computer
Algorithms with Applications in Engineering: Solving
Combinatorial Optimization Problems. IEEE Computer
Society Press, California, December 1999.

[2] J. N. Amaral, K. Tumer, and J. Ghosh. Designing
genetic algorithms for the state assignment problem.
IEEE Transactions on Systems, Man and Cybernetics,
25(4):687 –694, April 1995.

[3] Ronald R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decision making.
IEEE Transaction on Systems, MAN, and Cybernetics,
18(1), January 1988.

[4] Peter Weiner and Edward J. Smith. On the number of
distinct state assignments for synchronous sequential
machines. IEEE Transactions on Electronic Computers,
EC-16(2):220–221, April. 1967.

[5] Bernhard Eschermann. State assignment for
hardwired VLSI control units. ACM Computer Survey,
25:415 436, December 1993.

[6] Pranav Ashar, Srinivas Devadas, and A. Richard
Newton. Sequential Logic Synthesis. Kluwer Academic
Publishers, Norwell, MA, USA, 1992.

[7] A. R. Newton S. Devadas, H. T. Ma. Mustang: State
assignment of finite state machines for optimal multi-level
logic implememations. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
November 1987.

Benchmark
GA - Fanout (MAX) Jedi -best SimE - fuzzy (MAX)

Area Power Area Power Area Power

bbara 58 181.2 73 156.5 58 136.26

bbsse 123 437.1 134 496.6 123 400.84

dk14 101 551.3 108 628.1 104 493.3

train11 23 122.2 34 207.1 21 97.64

lion9 16 105.3 19 145.6 15 80.74

s1 191 751.2 282 1087.2 294 993.2

shiftreg 2 96.3 2 96.3 4 108.04

Avg. 73 320.66 93 402.49 88 330

Table 17. Literature comparison (area & power).

FSM State‐Encoding for Area and Power Minimization Using Simulated Evolution Algorithm, Sadiq M. Sait et al. / 845‐858

Vol. 10, December 2012 858

[8] B. Lin and A. R. Newton. Synthesis of multiple level
logic from symbolic high-level description languages. In
Very Large Scale Integration, 1990.

[9] R.E. Gonzalez D.Torres, J.Cortez. Semi-formal
specifications and formal verification improving the digital
design: some statistics. Journal of Applied Research and
Technology, 7(1):15-40, April, 2009.

[10] A. E. Ylmaz F. Yaman. Impacts of genetic algorithm
parameters on the solution performance for the uniform
circular antenna array pattern synthesis problem. Journal
of Applied Research and Technology, 8(3):378-394,
December, 2010.

[11] Nareli Cruz-Cortes Ricardo Barron-Fernandez Jesus
A. Alvarez-Cedillo Gerardo A. Laguna-Sanchez, Mauricio
Olguin-Carbajal. Comparative study of parallel variants
for a particle swarm optimization algorithm implemented
on a multithreading GPU. Journal of Applied Research
and Technology, 7(3):292-309, December, 2009.

[12] A. Miranda-Vitela F. Lara-Rosano J. L. Perez-Silva,
A. Garces-Madrigal. Dynamic fuzzy logic functor. Journal
of Applied Research and Technology, 6(2):84-94,
August, 2008.

[13] Saurabh Chaudhury, Krishna Teja Sistla, and
Santanu Chattopadhyay. Genetic algorithm-based FSM
synthesis with area-power trade-offs. Integr. VLSI J.,
42:376–384, June 2009.

[14] Walid M. Aly. Solving the state assignment problem
using stochastic search aided with simulated annealing.
American Journal of Engineering and Applied Sciences,
2:703–707, 2009.

[15] A. E. A. Almaini, J. F. Miller, P. Thomson, and S.
Billina. State assignment of finite state machines using a
genetic algorithm. IEE Proceedings - Computers and
Digital Techniques, 142(4):279 –286, Jul 1995.

[16] M. Chyzy and W. Kosinski. Evolutionary algorithm for
state assignment of finite state machines. In Proceedings
of Euromicro Symposium on Digital System Design,
pages 359 – 362, 2002.

[17] N. Nedjah and Luiza de Macedo Mourelle.
Evolutionary synthesis of synchronous finite state
machines. In The 2006 International Conference on
Computer Engineering and Systems, pages 19 –24,
November 2006.

[18] D. B. Armstrong. A programmed algorithm for
assigning internal codes to sequential machines. IRE
Transactions on Electronic Computers, EC-11(4):466 –
472, Augest 1962.

[19] J. N. Amaral and Wagner C. Cunha. State
assignment algorithm for incompletely specified finite
state machines. In Fifth Congress of the Brazilian Society
of Microelectronics, 1990, pages 174–183, 1990.

[20] L. Benini and G. DeMicheli. State encoding for low
power embedded controllers. IEEE Journal of Solid State
Circuits, 30:258 – 268, 1995.

[21] S. Chattopadhyay and P. N. Reddy. Finite state
machine state assignment targeting low power
consumption. IEE Proceedings - Computers and Digital
Techniques, 151(1):61 – 70, January 2004.

[22] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan, Robert
K. Brayton, and Alberto L. Sangiovanni-Vincentelli. SIS A
system for sequential circuit synthesis. Technical Report
UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

[23] D. J. Comer. Digital Logic and State Machine
Design. Saunders College Publishing, 3rd edition, 1995.

[24] Y. Saab and V. Rao. Stochastic Evolution: A Fast
Effective Heuristic for some Generic Layout Problems. In
27th ACM/IEEE Design Automation Conference, pages
26–31, 1990.

[25] R. M. Kling and Prithviraj Banerjee. Optimization by
simulated evolution with applications to standard cell
placement. In Proceedings of the 27th ACM/IEEE Design
Automation Conference, DAC ’90, pages 20 25, New
York, NY, USA, 1990. ACM.

[26] T. Villa and A. Sangiovanni-Vincentelli. Nova: state
assignment of finite state machines for optimal two level
logic implementation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
9(9):905 –924, Sep 1990.

[27] A. El-Maleh, Sadiq M. Sait, and F. Nawaz Khan.
Finite state machine state assignment for area and power
minimization. In Proceedings of IEEE International
Symposium on Circuits and Systems, 2006.

