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ABSTRACT 
This paper presents a novel current transformer (CT) saturation detection approach based on Gaussian Mixture 
Models (GMMs). High accuracy is the advantage of this method. GMMs are trained with secondary current of CT. The 
appropriate performance of the proposed method is tested by simulation of different fault conditions in 
PSCAD/EMTDC software. The results show that the trained GMMs can successfully detect CT saturation with high 
accuracy. 
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1. Introduction 
 
Current transformer (CT) saturation distorts the 
secondary current and in consequence leads to 
operating delay or malfunction of protection relays 
(e. g. under reaching of over current relays, 
overestimation of fault loop impedance in distance 
relays) [1]. Therefore an appropriate saturation 
detection method is necessary to maintain the 
protection system reliability. 
 
A method for detecting CT saturation onset based 
on the abrupt change in the current when CT 
saturates is suggested in [2]. This method can 
detect the saturation successfully only if the 
current collapses to zero after inception of 
saturation; however, it may operate incorrectly 
when the current does not change instantly when 
an anti-aliasing low-pass filter is used. 
 
In [3], an algorithm for calculating the core flux 
from the secondary current in order to compensate 
the saturation is proposed. This algorithm 
calculates the core flux and detects saturation 
based on given CT parameters. 
 
Another approach proposed in [4] is based on 
evaluating the mean of the error and the mean and 
variance of the current magnitude. The error is 
derived on the following assumption: If the current  
 

 
 
is a perfect sinusoid, the summation of the current 
and its second-order derivative is zero over time. 
In [5] an impedance-based CT saturation detection 
algorithm for bus-bar differential protection is 
suggested. Calculation of power system source 
impedance at the relay position is based on a first-
order differential equation. This method uses 
voltage and current signals of the bus-bar to detect 
CT saturation. 
 
Another CT saturation detection algorithm based 
on the third difference of the secondary current is  
proposed in [6]. The effects of remanence flux in 
the core and a low-pass filter on the saturation are 
included in this method. 
 
A method based on symmetrical components is 
suggested in [7]. The zero-sequence differential 
current gradient with respect to a bias current is 
utilized to detect saturation in a numerical current 
differential feeder protection relay. 
 
Another approach for detecting CT saturation is 
the use of artificial intelligence (AI) techniques 
such as artificial neural networks (ANNs) (e.g., [8]). 
In [9], it is proved that considerable improvement 
of the operation and quite simple achievement of 
adaptive features of protection function may be  
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obtained by utilizing various AI techniques [1]. 
Neural computing methodologies have some 
advantages over conventional methods. However 
there are no general rules for choosing the type of 
ANN structure and its further parameters (such as 
number of layers and neurons, neuron activation 
function, and input signals) which depend on 
designer experiences with ANN usage. To 
overcome this drawback, in [1] an optimization 
approach based on the genetic algorithm is 
proposed. 
 
GMMs have been used as classifiers in a lot of 
applications such as speaker identification (SI) 
[10], multiple limb motion classification [11], image 
processing and classification [12,13], control 
engineering [14], simplification of controller design 
[15], and rotating machinery fault diagnosis [16]. In 
[17] wavelet based GMMs are used for 
magnetizing inrush current Identification. Recently, 
a time-domain analyzer based on GMMs has been 
introduced to discriminate permanent and transient 
faults [18]. 
 
The ability of GMMs  to solve nonlinear and high 
dimensional pattern problems makes them an 
appropriate choice in power system transient 
classifications [19]. In this paper, a new approach 
for CT saturation detection using GMMs is 
presented. Two GMMs are trained with the 
secondary current of CT. One of them is trained 
with CT secondary current when the fault inception 
angle is between 0–90 degrees and the other one 
is trained when the fault inception angle is between 
90-180 degrees. This method of training GMMs for 
different fault inception angle improves the 
accuracy of the algorithm. 
 
2. Gaussian Mixture Models 
 
The mathematical formulation of GMM is 
presented in this section [17]. 
 
2.1 Definition 
 
Mixture models are types of probabilistic density 
models that comprise a number of component 
functions. These component functions, which are 
usually, Gaussian are combined to provide a 
multimodal density. These models are semi-
parametric alternatives to nonparametric 
histograms (which can also be used as densities) 

and provide better flexibility and precision in 
modeling the underlying statistics of sample data. 
For an S-class pattern recognition system, a set of 
GMMs 1 2{ , ,..., }S   are associated with S 

classes. A random variable x with D-dimensions is 
said to follow a Gaussian mixture model, when its 
probability density function can be formulated by 
Equation 1 following the constraints presented in 
Equation 2. 
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where k  is the mixture weight for the kth 

component,  1 1 1,..., , ,..., , ,...m m m        is 

the complete set of parameters to define the model, 

and  ,k k k    is the mean and covariance of 

the kth component, respectively. The Gaussian 
mixture density is a weighted linear combination of 
m component Gaussian density functions, 

1 2, ,..., m   . Each component density is a D-variant 

Gaussian function parameterized by a D×1 mean 
vector and a D×D covariance matrix. The 
component’s density ( | )kP x  is a normal 

probability distribution defined by Equation 3: 
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2.2 Training Process 
 
The goal of model training in a GMM-based 
classification system is to estimate the parameters 
of the GMM, g so that the Gaussian mixture 

density can best match the distribution of the 
training feature vectors. For a set of n independent 
and identically distributed vectors 1 2{ , ,... }nX x x x , 

the corresponding likelihood of a mixture is 
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where P is the likelihood of the data X given the 
distribution parameters of . Specifically, by having 
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the distribution parameters in  , the goal is to find 

̂  that maximizes the following likelihood: 
 
ˆ arg max ( | )P X


                                               (5) 

 
Usually, direct maximization of this function is 
difficult. The logarithm of the above probability, 
which is called the log-likelihood function given by 
Equation 6, is easier to calculate. 
 

1 1
log ( | ) log ( | )
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The logarithm of maximum likelihood estimation of 
each model   cannot be solved analytically. The 
expectation maximization (EM) algorithm presented 
in [19] is widely used to estimate the parameters of 
GMM. EM is an iterative algorithm which maximizes  
the likelihood probability generated by each GMM, 

( | )gP X  , given the data for that class. The EM 

algorithm has two main steps: 
 
2.2.1 E-step 
 
In this step, the posterior probability of sample ix in 

the tth step is calculated using the following 
equation: 
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2.2.2 M-step 
 
This re-estimation process will continue by 
replacing 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 1

ˆ , ..., , , ..., , , ...t t t t t t t
m m m              

instead of ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1, ..., , , ..., , , ...t t t t t t t

m m m       , 

by using the following equations: 
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The above-mentioned method is discussed in more 
details in [20]. It should be noted that it is preferred 
to assume the S GMMs independent in 
calculations. In the case of independent classes, 
the estimation problem of S class pdfs can be 
divided into S separate estimation problems. 
 
3. Implementation Details 
 
3.1 CT Model 
 
A 132 kV power system including a CT is simulated 
to study CT saturation. The modeled CT is based 
on the Jiles-Atherton theory of ferro magnetic 
hysteresis [21]. In this model, the effects of 
saturation, hysteresis, remanence, and minor loop 
formation are modeled on the basis of the physics 
of the magnetic material [22]. In [23], the accuracy 
of this model has been checked. In [24], ANN is 
used to enhance the accuracy of this model. This 
model has been previously used to study the CT 
saturation compensation in [25]. 
In this model, the total magnetization (M) has been 
split in to two components [26]: 
 

rev irrM M M                                                   (11) 

 
where revM and irrM  are reversible and irreversible 

magnetization components, respectively. irrM  is 

described as follows: 
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where   is a directional parameter to distinguish 
between the ascending and the descending part of  
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the hysteresis loop and Man  is the unhysteretic 
magnetization provided by the Langevin function. 
 

(d / d )sign H t                                         (13) 
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Finally, revM  is given by 

 
( )rev an irrM c M M                                          (15) 

 
Among the five parameters of the JA model, sM  

and a  are the parameters of the unhysteretic curve 
which determine the saturation behavior of the 
magnetic core according to the Langevin function. 
The simulated CT in the present study is similar to 
the model used in [25], with the exception of the 
rated voltage, which  is 132 KV in the present 
study. The model of the used CT is shown in Figure 
1. Also, the parameters of the simulated CT are 
given in Table 1. 
 

 
 

Figure 1. CT model. 
 
 

Rated voltage 132 kV 

Turn ratio 2000:1 

Area 6.5ᵡ10-4 m2 

Path length 0.5 m 

Frequency 50 Hz 

Secondary winding 
resistance and inductance 

Rs=0.5 Ω 
Ls=8*10-4 H 

 
Table 1. Parameters of simulated CT. 

 
 
 
 

3.2 Training Patterns 
 
The training data set of a GMM should contain the 
information needed to generalize the problem. For 
this purpose, different fault types with different fault 
conditions are modeled using an EMTDC 
electromagnetic transient program [22]. A simple 
132 kV power system is considered and several 
simulations for generating training patterns are 
done by changing fault current, fault type, fault 
inception angle, and burden. A combination of 
different fault conditions is shown in Table 2. 
The saturation of CT is confirmed when the relative 

difference between the primary current '
1i (related to 

the secondary) and the secondary current 2i is 

higher than 10% of the primary current [1]. 
Therefore, the time dependant training function for 
detecting the saturation is defined as follows: 
 

'
1 2

'
1

( ) ( )
1 | | 0.1

( ) ( )
0

i n i n
if

Sat n i n

otherwise

 
 




                     (16) 

 

fault current Different values up to 33 kA 

fault type 
Single phase, phase to phase, 

three phase 

fault inception angle 
Different values between 

(0,180) 

burden 
5Ω<|Zload|<20Ω 

0.5<cosφ<1 

 
Table 2. Data for generating training patterns. 

 
3.3 GMM Classification 
 
In this stage, the objective is to find the model 
which has the maximum probability maxP for a given 

observation sequence. The test patterns are 
provided for each of the GMM 
models 1 2( , ,..., )

S
P P P   , and S probabilities are 

computed and compared, i.e. , 1,2,...,iP i S . 

Class f associated with the GMM that has the  



 

Current Transformer Saturation Detection Using Gaussian Mixture Models, M. Moghimi Haji  et al. / 79‐87 

Journal of Applied Research and Technology 83

highest Gaussian mixture likelihood probability 

maxP  is chosen as the predicted class for the given 

feature set. A feature vector x  produced by one 
type of signals (saturated or unsaturated secondary 
current of CT) is assumed. The identity of the signal 
is determined by finding signal model f from S 

models which maximizes the probabilities across 
the signal set : (1, )g g S  : 

 

1
arg max ( | )f g

g S
P x

 
                                            (17) 

 
By using the Bayes rule, Equation 17 can be 
expressed as 
 

1

( | ) ( )
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( )
g g

f
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P x P

P x 

 
                                (18) 

 
By assuming equal probabilities for all models and 
noting that ( )P x is the same for them, the 

identification task can be summarized as finding the 
logarithm of the following equation: 
 

1
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 
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Equation 19 can be expressed as the following 
equation for simplicity. 
 

1 1
arg max [log ( | )]

m

f kg kg
g S k

P x 
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where kg and kg are mixture weight, mean, and 

covariance of the gth signal model, respectively. 
 
3.4 GMM Parameters 
 
In order to achieve better performance of the 
Gaussian mixture model, an effort to investigate an 
optimum configuration of algorithmic issues must 
be considered [11]. These issues include 
convergence threshold, model order selection, and 
the form of the covariance matrix. 
Convergence threshold of the EM Algorithm: The 
convergence threshold of the EM algorithm is 
defined as the difference between probabilities 

( | )gP X  between two consecutive iterations. The 

convergence threshold and the maximum iteration 

number are two conditions for stopping the EM 
algorithm. Different values of the convergence 
threshold were carefully examined and a value of 
0.0005 was found to be the best for achieving good 
performance.  
 
GMM Model Order: The GMM order selection is the 
most crucial factor in the performance of this 
classifier [11]. The objective is to choose the 
number of mixture components that yields the 
highest discriminative accuracy for the test data 
set. Theoretically, too few mixture components can 
yield a GMM which does not accurately model the 
distinguishing characteristics of classes. However, 
too many components can also reduce the 
performance, while increase the computation 
burden. It also makes the classification more 
complex. This is especially important for situations 
with smaller amounts of training data [11]. A larger 
model order should be considered when larger 
amounts of training data are available. Therefore, 
the optimal number of mixture components for the 
GMM must be carefully examined to achieve high 
classification performance. The optimal number of 
mixture is achieved by computing the classification 
rate presented in Equation 21 for test data set and 
varying the number of mixtures. 
 

Correct classified transient events
Classification rate

Total transient events
  

(21) 
 
Form of the covariance matrix: Another effective 
issue on the performance of the classifier is the 
form of the covariance matrix. The form of the 
covariance matrix may be full or diagonal. In this 
work, diagonal covariance matrices are selected. 
This choice is based on empirical evidence that 
shows that diagonal matrices outperform full 
matrices. The diagonal matrix GMMs are more 
computationally efficient than full covariance GMMs 
for training since repeated inversions of a D×D 
matrix are not required [11]. 
 
In the saturation detection problem, two GMMs 
should be trained. One for saturated and the other 
for unsaturated secondary current signals. The 
process of finding optimal GMMs is shown in the 
flowchart in Figure 2. After these two GMMs are 
found, the identification process for a new signal is 
as presented in the flowchart in Figure 3. 
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4. Simulation Results 
 
In this section, the training and testing process of 
GMMs for CT saturation detection is presented. As 
said in the previous section, a few hundred 
simulations have been performed. 70% of them are 
used for training and the remaining 30% are used for 
testing. Fault inception angles within [0,180] are 
considered in this study and two GMMs are trained. 
One of them for detecting the saturation when fault 
inception angle is between 0-90 degrees, and the 
other one for fault inception angles between 90-180 
degrees. Fault inception angles between 180-360 
degrees are not considered because of similarity. 
When a fault occurs, a switch can easily select one of 
the GMMs according to the fault inception angle. 
Training multiple GMMs for different fault inception 
angle ranges improves the accuracy of the method. 
Moreover, it does not need additional equipment or 
additional computation time. The primary and 
secondary currents of the used CT for fault inception 
angles equal to 45 and 135 degrees are illustrated in 
Figure 4(a) and Figure 4(b), respectively. 
 

 
 

Figure 2. GMM training process. 

 
 

Figure 3. Signal identification process. 
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Figure 4. Primary and secondary currents 
 of CT  for fault inception angles equal  
to a) 45 degrees and b) 135 degrees. 

 
As can be seen in Figure 4, the wave forms of the 
CT for these cases have a great difference; 
therefore, training only one GMM for all of inception 
angle deteriorates the accuracy of the method. 
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The implementation results are presented in Table 
3 for various numbers of input samples. To show 
the advantage of using two GMMs, the results of 
using only one GMM for all inception angles within 
[0,180] is also presented in this table. 
 
To show the ability of the proposed method to 
detect saturation in new situations (which were not 
included in the prepared data set), the trained GMM 
responses for two new cases are illustrated in 
Figures 5 and 6. Additionally, two examples of 
comparison between the developed GMM-based 
saturation detector and a chosen deterministic CT 
saturation identification scheme based on the 
calculation of the third derivative of the CT 
secondary current [27] are shown in these figures. 
 

Input sample 
length 

Classification rate (%) 

GMM1 
[0-90o) 

GMM2 
(90-180o] 

GMM 
[0-180o] 

4 88.86 92.72 83.06 

7 93.45 95.99 86.83 

10 94.95 94.50 89.40 

13 96.16 95.15 90.76 

16 94.96 94.59 92.63 

 
Table 3. Classification rates of the trained GMMs for 

various numbers of input samples. 
 
Figures 5 and 6 show that by using GMMs all 
starting and ending points of CT saturation 
intervals are properly detected. As can be seen in 
these figures, the third derivative shows high 
spikes at the beginning of the saturation, but there 
are no such spikes at the end of the saturation. 
Hence, this method detects the starting moments 
of the saturation properly but may have problems 
in detecting saturation endings. 
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Figure 5. Comparison of CT saturation detection methods 

for fault inception angle equal to 27 degrees,  
a) CT signals, b) GMM1 response,  

c) third derivative of the secondary current. 
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Figure 6. Comparison of CT saturation detection methods 

for fault inception angle equal to 162 degrees,  
a) CT signals, b) GMM1 response,  

c) third derivative of the secondary current. 
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5. Conclusion 
 
A new approach for detecting CT saturation is 
presented in this paper which is based on a 
classification method called GMM. Secondary 
current samples are separated in two classes as 
saturated and unsaturated. GMMs are trained with 
the secondary current of CT in different conditions. 
To improve the accuracy of the method, two 
different GMMs are trained for fault inception 
angles between 0-90 degrees, and 90-180 
degrees. Simulations are performed to confirm the 
effectiveness of the proposed GMM-based 
saturation detector. The results show that the 
proposed method can successfully detect the 
starting and ending points of saturation. 
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