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ABSTRACT 
Two new versions of the Euler-Poincaré formula are proposed considering two new defined cuboids: the tetra-voxel 
and the octo-voxel, without losing information on the number of vertices and edges. The well-known relationship 
between contact and enclosing surface concepts,  as well as the relationships between vertices, edges and enclosing 
surfaces,  allowed us to compute an  innovative algorithm for obtaining alternative versions of the Euler-Poincaré 
formula. This is a very important topological descriptor of 3D binary images. We considered not only topological but 
geometric aspects. Our method was compared to other proposals, obtaining that our proposed contact surface-based 
method offers more advantages. 
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RESUMEN 
Se proponen dos nuevas versiones de la fórmula Euler-Poncaré. Para ello se consideran dos definiciones de 
cuboides: los tetra-voxeles y los octo-voxeles, de forma que no haya pérdida de información en el número de vértices 
y aristas. La conocida relación  entre superficie envolvente y superficie de contacto, así como sus relaciones con los 
vértices y aristas, nos permitió implementar un nuevo algoritmo  para obtener versiones alternativas de la fórmula 
Euler-Poincaré, la cual es un descriptor topológico muy importante para imágenes binarias 3D. No solamente  
consideramos los aspectos geométricos sino también topológicos. El método propuesto fue comparado con otros, y 
obtuvimos que el nuestro, basado en la superficie de contacto, ofrece mayores ventajas.  
 

 
1. Introduction 
 
Many works about calculating Euler-Poincaré 
formula (also known as Euler characteristic or 
Euler number) have appeared in previous studies 
[1] - [12]. In these papers, an effort to compute 
Euler characteristic is made to find the number of 
holes (genus) in 2D objects. 
 
The problem of computing Euler-Poincaré formula 
for 3D (three-dimensional) objects is a challenge 
because a volumetric representation is suitable to 
be used, since cavities and tunnels are part of 

 
 
many objects in the real world. Some papers have  
showed up to solve the problem of obtaining the 
Euler-Poincaré formula for 3D objects [15] - [21].  
 
A way to compute new versions of the Euler 
number is in terms of the complexes. In fact, some 
of them maintain vertices and edges in their 
proposals. See for example [11] and [25]. In these 
papers, algorithms travel through an object and 
compute Euler number given a list of vertices, and 
moving through an object vertex by vertex, and
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then calculate number of edges. One of the 
contributions of this paper is to find a new version 
without computing vertices and edges. 
 
Euler-Poincaré formula is an important topological 
invariant that 3D objects have, and can be adapted 
as a shape descriptor [22]., It can also be used to 
estimate the connectivity of a structure [13]. The 
Euler number has been widely applied to solve 
specific problems. For example, Vogel and Roth 
[17] calculated Euler characteristic to determine 
soil pore structure. Pierret et al., [14], used it to 
reconstruct and quantify macropores. Uchiyama et 
al., [16] considered each voxel face connected; 
next, they calculated Euler-Poincaré formula 
directly by clustering and labeling entire bones. 
Lehmann et al., [18] analyzed the effect of 
geometry on water flow and fluid distribution. In 
part of their work they employed the Euler 
characteristic to predict fluid phase distribution in 
porous media. Velichko et al., [20] utilized the 
Euler characteristic to differentiate graphite 
morphologies. This allows the understanding 
growth mechanisms and cast iron properties.  
 
By using the contact perimeter and contact area, 
respectively, Bribiesca [29] proposed recently, a 
method to compute Euler characteristic, or genus, 
on 2D and 3D of face thin connected objects. He 
proved his method by considering, in the 2D case, 
different pixels representations, such as square, 
triangular and hexagonal resolution cells; in the 3D 
case, the voxels with different polyhedral 
representations, like unit cubes and octahedrons. 
In our paper, we also use the idea of computing 
the contact area and introduce two types of 
cuboids: the octo-voxel and the tetra-voxel applied 
in two proposed alternative versions of the Euler-
Poincaré formula. 
 
The rest of the paper is organized as follows: In 
section 2, we give some concepts utilized throughout 
the paper. In section, 3 we propose a method for 
obtaining the new Euler number expressions. In 
section 4, we describe the way to obtain the required 
numbers of octo-voxels, tetra-voxels, enclosing 
surfaces and edges. In section 5, we apply the 
method to a sample of 3D voxelized objects. In 
section 6, results and discussions are presented. 
Finally, in section 7, we give our conclusions. 
 
 

2. Some important concepts  
 
In this section we provide some important concepts 
and definitions used throughout this paper. 
 
Definition 1. A voxel v is a resolution cell of a 
three-dimensional grid, that has three Cartesian 
coordinates x(i,j,k)={(r,s,t)R3:{|r-i|  1/2, |s-j|  1/2, 
|t-k|  1/2} and an intensity value, vijk={0,1}. If the 
intensity of the voxel is 1, we can say 1-voxel, 
whereas if the intensity is 0 we can say 0-voxel. 
 
Definition 2. Sc is the unit area shared by faces of 
two adjacent voxels when they touch. 
 
Definition 3. S is the unit outer area of the faces 
shared between a 1-voxel and 0-voxel. 
 
Definition 4. Contact surface area Sc is the 
summation of all contacts given by two faces when 
two voxels touch. 
 
Definition 5. Enclosing surface area S is the 
summation of all Si faces adjacent to 0-voxels faces. 
 
Definition 6. When a 0-voxel is Turned on it 
becomes a 1-voxel. 
 
Definition 7. Simplex refers to one of the 
composed parts of a polyhedron, such as one of its 
vertices, edges, faces, or volume. 
 
2.1 The well-known Euler number expression 
 
The Euler-Poincaré formula relates to the numbers 
of vertices, edges, faces, pieces of 3D regions, 
pieces of 4D (four- dimensional) regions, etc, of 
graphs, polygons, polyhedra, and even higher-
dimensional polytopes. This formula can be 
presented in many different ways. For a single 3D 
polyhedral body without any holes or cavities, 
Euler [23]  originally stated it as:  
 
n0 - n1 + n2 = 2.                                                    (1) 
 
Poincaré [24] extended the formulation to a D-
dimensional space: 
 
n0 - n1 + n2 - n3 +...+ nD-1 =1 + (-1)D-1,                  (2) 
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where ni denotes an element of dimensionality i, or 
simplexes; e.g., n0 represents the number of 
vertices, n1 the edges, n2 the faces and n3 
represents the volume elements. An alternative 
way that permits us to find topological invariance is 
to define the Euler-Poincaré formula, , as 
 

 = n0 - n1 + n2 - n3 +...+(-1)knk  



D

i
i

i n
1

.)1(        (3) 

 
Unlike Equation(2), in which the solution is given 
by its right side, Betti numbers [25,26] are the 
solution for Equation(3). Of course, since the 
original expression of the Euler characteristic was 
given for polytopes, in Equation (3), we can also 
work with irregular or non polyhedral objects, such 
as depicted in Figure 1. In this figure, the object 
has a D=3 dimension, and =1. Clearly if the 
object consists of O simply connected 
components, n0 - n1 + n2 - n3 counted over the 
entire object would be just O. Next, suppose that a 
tunnel is introduced into the image, for example, by 
drawing an edge through the 0's area between two 
existing vertices (see Figure 2 left) on a border. 
This change gives an addition to  of 0-1+0-0, so 
that =-1. Therefore =-1 will hold for any 
distinct tunnel added to the image, whereas if a 
cavity is introduced by drawing a surface between 
existing vertices and edges, =+1, and Euler-
Poincaré formula is increased by +1 (see Figure 2 
right). Then, if the complete 3D-image consists of 
O objects, T tunnels (also known as genus) and C 
cavities, we will have [25], 
 
 = O+C-T = n0 - n1 + n2 - n3                                (4) 
 

 
 

Figure 1. Two triangulations for a 3D 
solid object: a cuboid. 

 
Now, since triangulation principle (see triangulation 
method [1,25]) is valid for 3D binary objects, n0 will 
be the number of crossing points of the voxels, n1 

the edges, n2 the internal and external faces of the 
voxels, and n3 the number of voxels. 
 

 
 

Figure 2. Adding a tunnel (left) or a 
surface (right) to a 3D object. 

 
2.2 Well defined cavities 
 
In this paper we consider face-connected adjacent 
voxels. If a 0-voxel is not face connected, we 
proceed to turn on another voxel to obtain face 
connectivity (Definition 6), taking care not to 
change the topology of the object, nor its shape. In 
[25] to avoid modifying the topology of the objects, 
a detailed analysis on deleting and turning on 
voxels is made. Face connectivity permits to avoid 
cases like that depicted in Figure 4, in which a 
cavity is connected to another 0-voxel through a 
vertex (or an edge). 
 
An object can be seen as composed of a region 
and its border. Of course, this concept should be 
defined as follows: given a shape, its border points 
satisfy the condition that a neighborhood of radii , 
centered on one of its border points, contains 
points of both the inner and outer region. In our 
paper, the objects are not continuous but 
discretized for the minimal discrete elements, the 
voxels. If we change the above mentioned for a 
continuous case, the discretized objects have 
borders, such that their voxels satisfy the 
assumption that a neighborhood of radii \delta and 
centered in one such voxel contains both inner and 
outer region voxels.   
 
As it is well known, the different neighbors x(i,j,k) 
of a voxel centered in position v(p,q,r), are defined 
by the neighborhoods of Equation(5). 
 
The current voxel v in its N(6) neighborhood can 
share only one or more faces with its neighbors, 
whereas, if in N(12) neighborhood it can share 
only edges. 
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Figure 3. The four different neighborhoods around a 
central voxel: a)N(6), the voxel has six neighbors 
adjacent to its faces, b) N(12), the voxel has 12 
neighbors adyacent to its 12 edges c) N(18), the 
voxel has 18 neighbors adjacent to its 12 edges 

and its 6 faces, and d) N(26), the voxel has 26 
neighbors adjacent to its edges, faces, and 

also to its eight vertices. 
 
In N(18) neighborhood v can share its faces and 
edges. Finally, in N(26) the voxel can share faces, 
edges and vertices. (see Figure 3) for an illustration. 
 
When the input data correspond to regions 
(particularly cavities or tunnels) originally separated 
by a vertex (see Figure 4) or an edge, we shall 
proceed to strengthen the barrier between the two 
regions, simply turning on a voxel. This is, if a 0-voxel 
is in the N(26) neighborhood of another 0-voxel, a well 
defined barrier between them has to appear. In such 
cases the cavities (tunnels) will be separated by the 
minimum image element, the voxel.  
 
A 1-voxel v is said to be emerging after a 0-voxel is 
turned on, and causes no decrease and no 
increase in the number of connected components,  

holes and cavities in a given 3D object. Notice that 
we use an emerging voxel without modify the 
number of cavities and tunnels in the local region 
where v appears. So, we take into account only 
cavities (tunnels) with face connected voxels. 
When a 0-voxel has one of the mentioned 26 
neighbors, we proceed to turn it on.  
 

 
 

Figure 4. Cavities are given by 0-voxels, and can be 
joined by a vertex. In this case, turning on one of the 

0-voxels joined by a vertex reinforces the 
barrier between the two cavities. 

 
3. The proposed   
 
In this section we present two concepts that will 
help simplify the known Euler-Poincaré formula, 
the octo-voxel and the tetra-voxel. 
 
3.1 Relationship between vertices, edges, enclosing 
surfaces and voxels. 
 
The following definition and an important 
relationship between contact surface and 
enclosing surface of a voxelized object  allows us 
to obtain our proposed contact surface-based 
Euler number . 
 
Definition 8. An octo-voxel is a 222 volume of 
eight adjacent voxels. 
 
Lemma 1. Given a voxelized object, let n0 be the 
number of vertices, n1 the number of edges, n3 the 
number of voxels, and S the enclosing surface. 
Then Vo = 2n1-4n3-2S-n0 is increased by 1 if and 
only if an octo-voxel is completed. So, Vo denotes 
the number of octo-voxels. 
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Proof: 
The proof is by construction. Consider a unit cube 
as a voxel. In this case n0=8, n1=12, n3=1 and S=6, 
so Vo =0. Given a unit cube (see Figure 5, n3=1) if 
we add to one of its faces more edges and 
external faces in such way that another adjacent 
unit cube is considered (Figure 5, n3=2), we clearly 
see that, n0 and S are increased by 4, whereas n3 
by 1 and n1 increases by 8, which implies Vo = 0. 
The same happens when adding other four 
vertices and faces to other of its faces. To 
complete the parallelepiped of four unit cubes 
(Figure 5, n3 = 4), two more vertices and two more 
external faces are needed. As it can be seen, in 
these cases Vo = 0 again.  
 
Now, let us complete a cube of eight hexahedra from 
the last parallelepiped. If another unit cube is placed 
on one of the faces, four vertices and four faces are 
needed. By adding another two hexahedra, two 
vertices and two faces are necessary. In all these 
cases Vo = 0. As can be observed, while the octo-
voxel is not completed, a change in S has the same 
amount as a change in n0. 
 
The problem of knowing Vo = 0 corresponds to 
solve the next equation for the changes n1, S, 
n0 while looking for different configurations, before 
completing an octo-voxel, 
 
2n1 - 4n3- 2S - n0 = 0                                (6) 
 
Before completing an octo-voxel, we can increase 
the number of voxels by 1. So, 
 
2n1 - 2S - n0 = 4,                                        (7) 
 
under the following restrictions: S  5, n0  4, n1 
 8 and S = n0. 
 
The solutions for Equation (7) are: [n1,S,n0] = 
[8,4,4] for the steps 2,3 and 5 and [5,2,2], while for 
steps 4, 6 and 7, are respectively, as shown in 
Figure 5. 
 
On the other hand, for those cases in which Vo is 
incremented by 1, we have, 
 
2n1 - 2S - n0 = 5.                                         (8)  
 

Clearly, the solution is [n1,S,n0] = [3,0,1], which 
is the configuration when an octo-voxel has been 
completed. This means that, to complete the cube, 
by adding the eighth unit cube, only one vertex and 
one unit cube (n0 = 1 and n3 = 1, respectively) 
are needed, whereas three more edges (n1 = 3) 
and no new external faces (S=0) are necessary. 
So, Vo = 1. This result means that 2n1 - 4n3- 2S - 
n0 will be increased by 1, if and only if, an octo-
voxel is completed. � 
 

 
 
Figure 5. Constructing the tetra-voxel: from n3=1 to n3=4, 

and the octo-voxel: from n3=1 to n3=8. 
 
Recently, Bribiesca [29] proposed a relationship 
between a contact surface of a voxelized object 
and its enclosing surface.  
 
2Sc + S = Fan3,                                                   (9) 
 
where Sc is the contact surface area, S is the area 
of the enclosing surface, and a is the voxel face 
area (in this case a is equal to one) and F is the 
number of polyhedron faces. This equation will be 
highly important to obtain our proposed c and to 
provide the proof of the next theorem. 
 
Theorem 1. Let F be the number of polyhedron 
faces. The contact surface-based Euler number 
can be written in terms of Vo, contact Sc and 
enclosing S surface, as follows: 
 

F
)()( oc1

c
 - FVSF-10S + 5+F- Fn

                      (10) 
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Proof:  According to Proposition 1, we have, 
 
n0 = 2n1 - 4n3 - 2S - Vo 
 
substituting this Equation in Equation (4) we get, 
 
  = 2n1 - 4n3 - 2S - Vo - n1 + n2 - n3. 

 
or, 
 
 = n1 - 5n3 - 2S + n2 - Vo  
 
But, n2 is the total number of object faces: n2 = S + 
Sc and, from Equation (9), n3 = (S + 2Sc)/F. So, we 
have, 
 

oc
c VSSS

F

SSn



 2

)2(51  

 
or, 
 

F

FVFSFSFSSSFn occ 


2)2(51  

 
Simplifying, we obtain, 
 

c
oc

F

FVSFSFFn
 




)10()5(1  

 
In the particular case the polyhedron is a unit cube, 
Equation (10) can be rewritten in the next corollary. 
 
Corollary 1. Euler number for objects composed of 
6-connected unit cube can be expressed by  
 

.
3
2

6
11

1 occ VSSn                                      (11) 

 
Proof: Let us consider F=6 in Eq.(10) and 
demonstration is immediate. The reader can verify 
it easily. 
 
After the demonstration of Theorem 1, follows the 
Corollary 1, and a new interesting equation in 
terms of contact and enclosing surface of a 3D 
binary object has been achieved.  
 
 

Even more, considering again Equation(11), c can 

be rewritten in terms of the number of voxels, n3 as 
in Equation (12) of Corollary 2. 
 
Corollary 2. Euler number for objects composed of 
6-connected unit cube can be expressed in terms 
of the edges, enclosing surface, voxels and octo-
voxels as: 
  

.2
2
3

31 oc VnSn                                     (12) 

 
Proof: From Equation(9) substitute Sc in 
Equation(11).         � 
 
This last equation now appears in terms of number 
of edges n1, enclosing surface S and, number of 
voxels and octo-voxels (n3 and Vo, respectively). Of 
course, in an implementated program, counting the 
voxels, at the same time,  allows us to know the 
number of octo-voxels.  
 
3.2 Relationship between edges and enclosing 
surface  
 
In this subsection we introduce the tetra-voxel and 
find a relationship between edges and enclosing 
surface, which allows us to obtain an important 
and simplified Euler-Poincaré Formula. 
 
Definition 9. A tetra-voxel is an array of four 
composed voxels, that forms a cuboid of any of 
these combinations: 122, or 212, or 221. 
 
Relationship between number of edges and 
enclosing surface is given by tetra-voxel definition 
as in the next theorem.  
 
Theorem 2. Let Vt be the number of tetra-voxels. 
This can be expressed in terms of edges and 
enclosing surface as in the following equation, 
 
Vt= n1 - 2S,                                                     (13)  
 
where n1 is the whole number of edges, and S the 
enclosing surface of the object. 
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Proof: The proof of this theorem, is analogous to 
Lemma 1. To support the demonstration refer to 
Figure 5 from n3 = 1 until n3 = 4. � 
 
Corollary 3. Euler-Poincaré formula can be written 
in terms of enclosing surface, voxels, tetra-voxels 
and octo-voxels as: 
 

.2
2
1

3 otc VVnS                                  (14) 

 
Proof. From Equation (13), substitute n1 in 
Equation(12).      � 
 
Definition 10. Let the super-voxel Vs be expressed 
as Vs = 2n3 - Vt+Vo, which is the operation between 
the different cuboids defined: voxels, tetra-voxels 
and octo-voxels, respectively.  
 
Then, the Euler number proposed can be rewritten 
as in the following corollary: 
 
Corollary 4. Let S be the enclosing surface of a 3D 
voxelized object and Vs its super-voxel. The Euler 
number can be expressed simply in terms of its 
enclosing surface and its super-voxel as: 
 

sc VS 
2
1                                                    (15) 

 
Proof. By substituting Definition 10 in Equation (14).                
 
As it can be seen, now Euler-Poincaré formula has 
been simplified in terms of enclosing surface and 
the defined cuboids. This relates the shape of the 
object and its interior! So, we think this equation is 
an important contribution to the state-of-the-art. 
 
4. Voxel neighborhood analysis context  
 
Equation (12) can be performed by counting the 
voxels, octo-voxels, surfaces and edges, whereas 
to perform Equation (14), what mainly needs to be 
determined is Vs and S. We conceive a 3D object 
as an arrangement of ones (the 1-voxels) and 
zeros (the 0-voxels) ordered in slices, columns and 
rows (see Figure 6).  
 
Let vijk be the voxel with coordinates x(i,j,k) (i.e. 
rows, columns and slices, respectively). To count  
 

the 1-voxels, we go to the arrangement in a 
scanline order. To compute correctly the enclosing 
surface, the first and final slices, are full of zeros, 
as well as the first and last columns and first and 
last rows. 
 

                
 

Figure 6: Defined coordinates (i,j,k) to 
order the covering of voxels. 

 
The total number of 1-voxels are as follows, 
 

n3 = .
,,


kji
ijkv                                                     (16) 

 
While checking each voxel vijk, we have to verify its 
2  2  2 neighborhood to count the number of 
octo-voxels Vo. If such a neighborhood is full of 1-
voxels, an octo-voxel has to contribute to the 
summation.  So, the total number of octo-voxels is, 
 

.{0,1} ,,  1, = 
,,

,,  
kji

rkqjpiijko rqpvvV     (17) 

 
Also, while checking the voxel vijk, we have to 
verify its 1  2  2, or 2  1  2, or 2  2  1 
neighborhood to count the number of tetra-voxels 
Vt. If such a neighborhood is full of 1-voxels, a 
tetra-voxel has to contribute to the summation.  So, 
the total number of tetra-voxels is, 
 

,1 = 
,,

,, 
kji

rkqjpiijkt vvV                           (18) 

 
where [p,q,r]={[0,0,0]}  {p=0  q,r  {0,1}; q=0  
p,r  {0,1};r=0  p,q{0,1}}. 
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On the other hand, to count the number of outer 
faces, we have to verify if one or more faces of the 
voxel x(i,j,k) is exposed to the background, i.e. if 
one or more of the neighbor voxels:  x(i,j-1,k), 
x(i,j,k-1), x(i-1,j,k), x(i,j+1,k), x(i+1,j,k), x(i,j,k+1) 
represent 0-voxels. For each of these 0-voxels, the 
number of outer faces, S, is increased by one: #S = 
1. So, 
 


kji

SS
,,

.#                                                     (19) 

    
Given n disjoint 1-voxels in an image, clearly the 
total number of edges is n1(v1,v2,...vn)=12n. 
However, if the voxels share their edges as 
happens in a 3D grid, counting the edges means 
taking into account the neighborhood in which the 
voxels are adjacent. If two voxels, vp,vq, are adjacent 
in the N(6) neighborhood, then n1(vp,vq)=122-4 
because both share four edges in the grid. 
 
To count the edges, we check the arrangement of 
zeros and ones in the scan line order. From the 
origin of coordinates (row=0, column=0, slice=0) 
we start to cover all the 1-voxels. The first visited 
voxel has twelve edges; however, the next number 
#e of edges could vary depending whether the next 
voxel is either zero or one. Assuming we are 
covering the array of voxels and that we reached 
voxel vp as shown in Figure 7, as in the order 
mentioned above. If (h) represents the 
neighborhood, how many edges #n1

(h) should be 
added to the vp neighbors count?  
 
The answer is: the voxel edges in N(6), say # n1

(6), 
minus the voxel edges in only N(12), say # n1

(12). 
 

 
 

Figure 7. Current voxel and its ten neighbors checked. 
 
 
 

This is given in the next equation: 
 
#n1

(t) = #n1
(6) - # n1

(12)                                     (20) 
 
To compute each of the terms of the last equation, 
we should take into account the next analysis. The 
voxel vp has the following neighbors in the N(6): x6(i-
1,j,k); x7(i,j-1,k); x8(i,j,k-1).  Notice that, until now, 
we have not checked the three other vicinity 
voxels. If one of the voxels associated to these 
coordinates is a 1-voxel, then #n1

(6) = 12-4=8. If 
there are two, #n1

(6) =12-4-3=5; if there are three: 
#n1

(6) =12-4-3-2=3. Now, depending on the number 
of 1-voxels in this neighborhood, we have to add 
12, 8, 5, or 3 to the edges.  
 
Theorem 3. Let m be the number of 1-voxels 
adjacent to the vp voxel, and considering N(6) 
neighborhood, we should add the following edges 
to the total vp voxel number: 
 
n1

(6) = 2+(4-m)(5-m)/2,                                     (21) 
 
where m  [0,3]. The proof can easily be made by 
substituting the integers of the just mentioned 
interval. Equation (21), is an ad hoc expression 
constructed to obtain the values for  n1

(6), i.e., when 
substituting the integers of m in Equation(21), we 
obtain 12,8,5, or 3, respectively. � 
 
We additionally have to consider the 1-voxels in 
the N(12) neighborhood, in which edges could be 
shared: 
 
v10=[i-1, j-1, k]=1   v6=[ i -1, j, k]=0v7=[i,j-1,k]=0, 
 
v9=[i, j-1, k-1]=1   v7=[i, j-1, k]=0   v8=[i, j,k-1]=0,   
 
v5=[i, j+1, k-1]=1   v7=[i, j, k -1]=0,  
 
v4=[i -1, j +1, k]=1    v6=[i -1, j,k]=0, 
 
v2=[i-1, j, k-1]=1 v6=[i-1,j,k]=0v8=[i,j,k-1]=0,  
 

(22) 
 
Thus, the edge-component for the N(12) is 
determined as sum of the fulfilled conditions:
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 #n1
(12)={0,1,2,3,4,5} are the edges shared if none, 

one or more of these conditions are fulfilled. So, 
the total numbers to be added to the counted 
edges are: 
 
#n1

(t)= # n1
(6) - # n1

(12) = 2+(4-m)(5-m)/2 - # n1
(12).   (23) 

 
5. Application of the new Euler number 
expressions 
 
The proposed c formulas mainly given in 
Equations.(12) and (15) and the method given in 
the last section to implement them, has been 
carried out. Some objects with tunnels and/or 
cavities have been used to prove our proposed c 
formula. We tested  
 
Equations (12) and (15) with 15 different object 
shapes having different cavities and tunnels. To 
demonstrate our proposed formula, we applied it to 
the simple objects of Figure 8. The first object, 
Object0, is composed of 8 voxels and one tunnel. 
Of course, no octo-voxels are present. The second 
object, Object1, is a cuboid composed of 36 
voxels. No tunnels, cavities and octo-voxels are 
present. The third object of Figure 8. Object2, is 
composed of 37 voxels, and three tunnels.  
 

 
 
Figure 8. Objects to apply the method; a) Object0, 

with a tunnel going through, b) Object1, with 
no cavities and no tunnels, c) Object2, 

with three tunnels. 
 
Figure 9, presents two different points of view of 
Object2 for a better assessment of its tunnels.  In 
contrast, Figure 10 shows an object with two

tunnels and two cavities, called Sphere5. Notice 
that the tunnels and cavities are exposed. In 
Figure 11, a cheese-like object is shown. This 
object is composed of a higher number of voxels, 
728,082, and has one cavity and four tunnels. In 
Figure 12. a vase sample and its voxelized version 
are shown, whereas in Figure 13 there is a cavity . 
In Figure 14 a bookcase in wichtwo tunnels and 
three cavities are shown.  
 

 
 

Figure 9. Two different points of view of the 
Object2 showing its tunnels shape. 

 
Finally, Figure 15, represents objects of the same 
Euler characteristic. They correspond to a Torus, a 
Cup and a Dragon. 
 

           
 

Figure 10. Sphere object with two 
tunnels and two cavities. 
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Figure 11. Cheese voxelized object, composed of 782 
082 voxels. The object has four tunnels and one cavity. 

 

 
 

Figure 12. A Vase; a) original b )voxel representation. 
The object has two tunnels and one cavity. 

 

       
 

Figure 13. A middle part of the closed vase; 
a) original b) voxel representation. 

 

                  
 

Figure 14. The bookcase showing its three 
cavities and two tunnels. 

 

 
 

Figure 15. cup, dragon and a torus objects having 
only one tunnel (handle). They have the same 

Euler characteristic. 
 
6. Results and Discussion 
 
Table 1, has a summary of the main results. We 
tested c with a different number of cavities and 
tunnels for sphere objects, as it can be appreciated 
in Table 1. In Table 1, Torush has two tunnels and 
no cavities, so its Euler number is -1. On the other 
hand, Object0, Torus and Dragon have no cavities 
and one tunnel, whereas vase has one cavity and 
two tunnels, and the Euler number is 0 in these 
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four cases. Object1, sphere0 and sphere5 have 
the same number of tunnels and cavities, so its 
Euler number is 1. Sphere2 has two cavities and 
one tunnel, whereas bookcase has three cavities 
and two tunnels, so their Euler number is 2. 
 
Sphere2 and sphere3 have two cavities and no 
tunnels, and their Euler number is 3. Sphere1 has 
three cavities and no tunnel, and its Euler number 
is 4. Finally, object2 has no cavities and three 
tunnels, whereas cheese has one cavity and four 
tunnels, so their Euler number is -2. 
 
Figures 9 to 15 show the objects used for the 
experiments.  
 
As has it been explained, two new expressions of 
Euler  Poincaré Formula have been obtained 
considering a relationship between contact 
surfaces in voxelized objects. In fact, the concept 
of octo-voxels allows  us to know the number of  
vertices, n0, that initially appears in the original 
Euler number expression, without computing it 
directly. Moreover, the concept of tetra-voxels  
allows us to know the number of edges, n1, also, 
without, computing it directly. On the other hand, 
n2, the number of faces (contact and external), has 
been also simplified by computing only the outer

surfaces of the 3D voxelized objects. We can get 
this by inspecting only if there is a pair of 1- and 0-
voxel as neighbors in the 3D grid. To count the 
cuboids, we simply visit the voxels and inspect the 
vicinity.  
 
We have proposed  look for an Euler-Poincaré 
formula by analyzing the relationship between 
simplexes (vertices, edges, faces and volume 
elements). The proposed formulas are rich in 
shape parameters, like the relationship between  
contact and enclosing surfaces. Vt is related 
tovertices and enclosing surface. Vo is related to 
vertices, edges, voxels and enclosing surface. 
 
As we note, Equation(12) is an expression that 
contains explicitly edges, enclosing surface and 
cuboids, whereas Equation(15) contains only 
enclosing surface and cuboids. 
 
To go further in the computation of new topological 
characteristics, like connected components, number 
of tunnels and cavities, we think these equations can 
help other researchers to find shape descriptors, that 
relate not only enclosing surfaces, contact surfaces 
and number of voxels (as has been done in [29]), but 
also vertices and edges, in order to have a better 
understanding in the object shapes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Object C T n1 S Vo Vt n3 c 

Object0 0 1 64 32 0 0 8 0 

Object1 0 0 184 66 12 52 36 1 

Object2 0 3 225 102 0 21 37 -2 

Sphere0 0 0 32,911 3,360 8,222 26,191 9,824 1 

Sphere1 3 0 32,645 3,834 7,698 24,977 9,596 4 

Sphere2 2 0 32,553 3,960 7,558 24,633 9,526 3 

Sphere3 2 0 32,542 4,022 7,494 24,498 9,506 3 

Sphere4 2 1 32,539 4,026 7,492 24,487 9,503 2 

Sphere5 2 2 32,472 4,158 7,358 24,156 9,438 1 

Torus 0 1 36,167 6,538 6,756 23,091 9,802 0 

Torush 0 2 35,980 6,708 6,547 22,564 9,686 -1 

Dragon 0 1 141,656 18,844 31,846 103,968 40,772 0 

Bookcase 3 2 17,803 5,484 1,389 6,835 4,093 2 

Vase 1 2 65,374 20,440 4,786 24,494 14,964 0 

Cheese 1 4 2,265,744 81,148 687,860 2,103,448 728,082 -2 

 
Table 1. Results of the proposed Euler number to a sample objects. 
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6.1 Comparison to other methods 
 
In our proposed method, to compute Euler-
Poincaré formula is considered to check each 
voxel only once, and a series of conditions are 
implemented to obtain the different parameters 
when inspecting the 26-neighborhood. 
 
For alternative ways to compute the Euler number, 
some other interesting methods have been reported. 
 
We compared our method with other four recent 
works: (1) Toriwaki and Yonekura [25] proposed a 
new Euler number in terms of connectivity. (2) Lin 
et. al [27] proposed a new Euler number by a local 
analysis topology, and expressed a new formula 
without knowing the number of simplex nor the 
shape parameters of the geometry object. In these 
two works, despite a detailed analysis was 
performed, no tested objects were presented. (3) 
Bribiesca [21] first skeletonized the object and 
computed a new Euler number expression. His 
proposed Euler number is in terms of enclosing 
and contact surfaces, but without knowing the 
number of simplexes. (4) Saha and Chaudhuri 
[28], firstly skeletonized the object, and then 
computed a new Euler number, not knowing 
number of simplexes nor more parameter shapes. 
In these two papers, the methods were applied to 
very simple objects after squeletonization, which 
involves more computation time. 
 
6.2 Computational advantage of our method 
 
On the one hand, mathematically speaking, Vs of 
Equation(15) represents all the operations that have 
to be made with cuboids, i.e. with voxels, tetra-voxels 
and octo-voxels. On the other hand, computationally 
speaking, Vs can be computed in only one visit of the 
whole binary file. As Figure. 6 suggests, the object 
can be stored in a binary file of zeros and ones. Each

 1-voxel (represented by 1 in a binary file) 
encountered contributed to the summation given by 
Equation(16). Right, before visiting another voxel, the 
vicinity of the current voxel has to be inspected, to 
know if it belongs to a tetra- or an octo-voxel. For 
contributing to the summations of Equations (17) and 
(18)  depends if the neighbor voxels are turned on (1-
voxels) in the four or eight array neighborhood. On 
the other hand, the surface can be computed also in 
the same visit, simply by checking if each 1 of the 
data file is a neighbor of a 0 (i.e. if a 1-voxel is a 
neighbor of a 0-voxel). On the other hand, computing 
the standard Euler formula given in Equation(3), is 
more complex and hard to work with binary files.  
Besides of the analysis made above, a rigorous 
geometric analysis has to be made to compute 
adequately the original Euler number, because 
simplexes have to be managed for each 1 in the 
binary file, i.e. eight vertices, 12 edges and six faces, 
of a unit cube, have to be handled in memory storage 
for each 1 of the file. Clearly, this requires more 
source code in programming and more complexity in 
time processing. 
 
So, Equations (14) or (15)  are easier to compute 
than the standard formula. 
 
From our proposed formulas, we can indirectly 
determine the number of vertices, edges and contact 
faces, i.e., we can know them from the other relations 
obtained through the paper. Our method is rich in 
parameter shapes, because we know the number of 
vertices, edges, and also, the relationship between 
enclosing and contact surface, which  allows us to 
know how compact an object is. The discrete 
compactness is a shape descriptor given in literature 
[29], that has been used to analyze and recognize 
object shapes  [30] - [32]. As we mentioned it above, 
these equations can help other researchers to find 
shape descriptors. Table 2, summarizes this analysis 
and discussion. 
 
 
 
 
 
 
 
 
 
 
 

Criterion 
Saha 
(1996) 

Toriwaki 
(2002) 

Lin 
(2008) 

Bribiesca 
(2010) 

Our Method 

No Skeletonization No Yes Yes No Yes 
Maintaines number of simplexes No No No No Yes 
Contains shape parameters No No No Yes Yes 
Tested in samples Yes No No Yes Yes 

 
Table 2. Comparison of our method with recent methods. 
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7. Conclusions 
 
In this paper, we have presented a new method to 
compute the Euler-Poincaré Formula for 3D 
objects. Our method consists of considering a 
voxelized object with tunnels and/or cavities, 
thanks to the relationship between contact voxel 
faces with enclosing surface. The introduction of 
the octo-voxels and tetra-voxels, allows us to 
propose two new versions of the Euler-Poincaré 
formula. Specifically, a very simple and elegant 
equation has been obtained. It relates the 
enclosing surface with the interior of an object. 
Implementing such an equation is very simple: 
when  checking each voxel, we know whether the 
voxel is part of an octo-voxel or tetra-voxel and if it 
is part of the enclosing surface or not. 
 
As a future work, the relationships found between 
simplexes could be used to relate geometrical and 
topological aspects that allow other researchers 
finding shape descriptors. 
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