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ABSTRACT 
This paper presents a method called the Short Term Protection (STP) which is applied to fixed networks where 
flows1 are constrained to follow specific routes, where the admission-process is distributed, per-route, and where 
the traffic is sensitive to delay (like MPEG4 traffic). The share of bandwidth of any route is protected, in the short-
term, against the traffic-increment of its intersecting-routes. In the long term, in every congested link, the share of 
bandwidth between the routes that intersect at that link is proportional to the average relative measured demands 
of those routes. The nodes act autonomously, without central administration. This method is expected to: 1)  help 
network administrators to have confidence, within a time-frame , about the amount of bandwidth they count  on for 
every route; 2)  allow a simple bandwidth management in the network, with prospect to be scalable to at least tens 
of nodes. This paper presents the general and detailed operation of the method, the evaluation of the method, by 
simulations, including a comparison with other method, a discussion of a possible scenario of application, 
conclusions and possible paths for further research. 
 
Keywords: quality of service (QoS); bandwidth sharing; distributed traffic control. 

 
RESUMEN 
Este artículo presenta un método llamado short term protection -STP- (Protección a Corto Plazo) que se aplica a 
redes fijas donde los flujos1 están restringidos a seguir rutas específicas, donde el proceso de admisión es 
distribuido, por ruta, y donde el tráfico es sensible a retrasos (como el tráfico MPEG4). La porción de ancho de banda 
de cada ruta está protegida, en el corto plazo, contra incremento de tráfico en rutas de intersección. En el largo plazo, 
en cada enlace congestionado, la proporción de ancho de banda entre las rutas que se interceptan en ese enlace es 
proporcional a las demandas relativas promedio medidas de esas rutas. Los nodos actúan de manera autónoma, sin 
administración central. Se espera que este método: 1) Ayude a los administradores de la red a tener confianza,  por 
un periodo de tiempo, acerca de la cantidad de ancho de banda con la que cuentan para cada ruta; 2) Permita una 
administración simple en la red, con prospecto de ser escalable hacia al menos decenas de nodos. Este  artículo 
presenta la operación general y detallada del método, la evaluación del método, por simulaciones, incluyendo una 
comparación con otro método, un diálogo sobre un posible escenario de aplicación, conclusiones y posibles rutas 
para investigación futura. 
 
 

                                                      
1 A flow is a sequence of related packets that enter a network through the same source-node and leave the network 
through the same egress-node. 

1. Introduction 
 
In contrast with other works which, for optimization 
purposes, propose schemes to share bandwidth 
between the diverse classes in networks which 
implement Quality of Service (QoS), this paper 
proposes a method which manages the available 
bandwidth inside a single class of a QoS-imple-
menting network, to help simplify the admission-
process to this class. So, in order to facilitate the 

1. Introduction 
 

explanations in this paper, the concept of class is 
not used; the concept of available bandwidth of a 
class is expressed, simply, as the available 
bandwidth of a network, and the concept of flow-
admission, to a class, is expressed as the flow 
admission to a network. 
 

Networks with limited resources, which offer 
satisfactory QoS to their admitted flows, may
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suffer from deterioration of the QoS offered, after 
increasing their traffic (maybe as a consequence of 
admitting new flows). This deterioration may be 
small, and consequently permissible, while there are 
still plenty of available resources in the network; but 
along with the increase of more and more traffic in 
the network this deterioration may grow to the point 
where it becomes intolerable. 
 
The admission-process for a flow, to enter a net-
work, implies the operation of a predictive evaluation 
to avoid granting admissions which could turn the 
offered QoS, in the network, unacceptable. A network 
where every flow is admitted, with the restriction of 
traversing the network through a specific route, may 
be called: a network with per-route admission. The 
QoS offered to flows, in this kind of networks, is 
expected to be easier to maintain, compared to the 
QoS offered in networks where flows may take 
different paths at different moments. 
 
The admission-process to a network with per-
route admission may be called a per-route 
admission-process. In this case, every admission 
decision is made for a specific route. A network 
with per-route admission, which does not 
implement bandwidth reservation in any one of its 
routes, allows for more flexibility in the use of its 
bandwidth, with the drawback that these routes 
may intersect one another. 
 
For example, a portion of a network is represented 
in Figure 1 with three routes, 1 1s d , 2 2s d  and 

3 3s d , that converge at node x, arriving, each 

one, to the node's input interface A, B and C, 
respectively, and sharing the bandwidth of the 
node's output-interface D. In this paper, this node 
and the routes are referred to as intersection node 
x and intersecting-routes, respectively. These 
routes converge, specifically, at the output-
interface D of node x (it can be said that the routes 
converge at the link coming out of node x through 
the output-interface D). For the sake of clarity, the 
output-interface D, of node x, is called the 
intersection output-interface D. 
 

 
 
Figure 1. Routes 1 1s d , 2 2s d  and 3 3s d  intersect at 

the output-interface of node x, the intersection-node. 
This node has three input interfaces: A, B and C,  as well 

as one output-interface D (which is an intersection 
output-interface) at which the traffic of the three 

intersecting-routes converge. 
 

Whenever one route increases its traffic it may 
cause a decrease in the available bandwidth of its 
intersectingroutes, with a possible consequential 
deterioration of the QoS offered in those routes. 
 
A per-route admission-process can be centralized 
or distributed. It is centralized if it is aware, at all 
times, of the traffic conditions in all the routes of 
the network, so that, before granting an admission 
to a route, it considers the possible effects of the 
admission in all the routes of the network. 
 
A per-route admission-process is distributed if there 
is a separate admission-process for every route on 
the network, meaning that every admission-process 
is aware, only of the traffic conditions in its route, 
without considering the possible effects in the 
intersecting-routes when granting an admission. 
When evaluating if an admission to a route is 
granted or not, it is easier to consider the traffic 
conditions in just that route. This simplicity makes 
the distributed admission-processes to be more 
scalable, compared with its centralized-admission 
counterpart, but also, this simplicity is concomitant 
with the possible, inadvertent, deterioration of the 
QoS in intersecting-routes. 
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Within the type of networks which implement QoS 
without bandwidth reservation, those which 
implement per-route, distributed, admissions 
represent an important subset of networks, where 
the difficulty of the admission-process is alleviated. 
 
This paper introduces a method called short-term 
protection (STP) method, which is intended to 
protect the routes of a network with per-route, 
distributed, admission, without bandwidth reserva-
tion, against the bandwidth decrease resulting from 
sudden increments in traffic in intersecting-routes. 
This method is  easy to manage and adjusts in 
accordance to the bandwidth necessities of the 
routes. This method is prospected to be scalable 
to, at least, tens of nodes, and it is projected to be 
helpful for the network's route-administrators to 
have confidence, at least within a time- frame, 
about the amount of bandwidth they can count on. 
 
The STP method is implemented at every output-
interface of a core-node, on a network. Each node 
working with the method acts autonomously, 
without needing to be aware of the existence of 
routes, or of the existence of flows on the network, 
and without marking any packet. This method does 
not require any central admission authority on the 
network; still, this method is expected to attain a 
single extensive behavior on the networks where it 
is implemented. 
 
The STP method is aimed to protect the bandwidth 
of routes, so the QoS parameter to evaluate this 
method is associated with the routes. To understand 
the operation of the STP method, think that a copy 
of the STP method operates in every output-
interface of every node. At an output-interface, this 
method protects every queue at that interface, 
against the increase traffic in the other queues. 
Each queue represents a route intersecting at that 
node. So, the protection of the queue has an 
extending effect to protect the associated route (the 
input interfaces of nodes are considered to have no 
queuing delay [1]). At the ending, the protection 
offered by this method is reflected in the protection 
of the delay in the routes. 
 
The QoS parameter of interest, in this paper, is the 
end-to-end delay in every route, so, the terms 
“route-delay” and “delay in route” refer to this end-
to-end delay. Thus, the protection of the method is 
evaluated with regard to this delay. The delay in a 

given route depends on the available bandwidth at 
every node of the route, including those nodes 
where the route intersects with other routes. 
 
To the best of the author's knowledge, there is no 
method which is oriented to work inside a class, 
which assigns, in the output-interfaces of every 
core-node, a different queue for every input 
interface of the node, as the STP method does (as 
it is explained in section 3). 
 
The rest of the paper is organized as follows: 
Section 2 presents the motivation to do this work, 
and presents related work. Section 3 presents the 
conceptual framework of the STP method. Section 
4 presents experimental results. Section 5 
explores the scaling possibilities of the STP 
method. Section 6 presents a discussion of the 
scenarios where the STP method could be used; 
some application-considerations of the method; 
and a discussion of the STP method with regard to 
tendencies of QoS. Section 7 presents the 
conclusions derived from this paper, as well as 
some possible paths for further research. Finally, 
the demonstration of a theorem, related with the 
STP method, is given in Appendix A. 
 
2. Background and related work 
 
The STP method is motivated by some 
characteristics of the types of nodes used by the 
DiffServ model [2, 3] and by the network conditions 
proposed in [4, 5], where the networks considered 
have predefined routes, the admission-processes 
is per-route, distributed, and where the admission 
decisions are taken at the edges of the routes. 
These last two works highlight the problem of the 
traffic interactions between intersecting-routes, and 
they make reference to a method in which the 
routes can get information about the traffic of the 
other routes, to take admission decisions which do 
not unacceptably impact the intersecting-routes, 
with the cost of affecting the simplicity of their 
proposed per-route admission-process.  However, 
the main research goal of these work is the 
admission-process itself, rather than the route 
intersection problem. 
 
There are methods which obtain the most effective 
share of bandwidth between classes in a network, 
in terms of a global indicator to be optimized; 
however, these methods do not address the route-
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intersection problem inside a single class. A 
method like  this is presented in [6], where the 
authors describe a method referred to as a 
Reinforcement-Learning algorithm, to attain the 
most effective share of bandwidth between 
different classes in a network, through the 
maximization of a global gain-figure (resulting from 
the addition of the gains of all the classes in that 
network). 
 
This method uses a central bandwidth manager 
which uses a feedback scheme to periodically 
propose a new bandwidth allocation, which is 
expected to be better than the one being used. 
The new setting is applied and tested and the 
algorithm learns. The prospective characteristic of 
this algorithm is the reason why the authors 
identify it as “proactive”, in contrast with other 
reactive algorithms which are based on control-
feedback principles. This method considers that 
there is contention between classes for bandwidth. 
The allocation of bandwidth for the diverse classes 
is done through the adjustment of the weight of 
each class, used by the scheduler located at each 
output-interface, in every node. There is a central 
bandwidth-manager, in charge of running the 
algorithm and evaluating the global gain. 
 
Comparatively, the STP method considers the 
contention for bandwidth, not between classes but 
between intersecting-routes within a class. This 
method allocates bandwidth through dynamic 
queue-weight adjustments, at every output-
interface of every node where two or more routes 
intersect; however, there is no central authority 
which allocates bandwidth or which evaluates a 
global gain: the nodes operate autonomously when 
allocating bandwidth. 
 
A Coordinated-Schedulers method is presented 
in [7], which provides guaranteed service, in 
terms of end-to-end delay, without per-flow state 
in the network core. In this method, the nodes 
modify the value of each arriving-packet's 
priority-index (stored in its header), which 
represents the eligible time for the packet to be 
serviced. Any packet that was serviced late, at 
an upstream node, as a consequence of the 
excess of traffic in other classes contending for 
bandwidth in that node, arrives to the 
downstream node with a favorable priority-index 
value, in comparison with packets of other flows 

contending for service, and which might have been 
serviced early at their respective upstream nodes. 
This method provides natural coordination between 
the nodes to attain a global behavior and with the 
nodes operating autonomously, with the complexity 
that it requires the marking of every packet. This 
method is of special interest in the present paper 
(see subsection 4.5), since it can be used, for 
comparison purposes, applied to protect a route 
against intersecting-routes within a single class. 
 
In [8], a scheduling algorithm is proposed, which 
intends to deliver fair bandwidth between 
classes and enhance the bandwidth utilization 
on a network offering QoS. In the scheduler, this 
method adjusts the weight of the queue of every 
class, based on the queue-length. A class gets 
more bandwidth if the size of its queue is bigger 
than the size of the other queues. Each node 
operates autonomously. 
 
In [9], a method is proposed, which adaptively adjusts 
the weights of a weighted packet-scheduler, such as 
a weighted-round-robin scheduler, in every core-
node of a network, to protect the Premium Service 
against the transient burstiness of the Expedited-
Forwarding per-hop behavior (PHB), in the 
differentiated service architecture. The weights adjust 
according to the average queue-sizes. The nodes 
operate autonomously and cooperate to obtain QoS 
indicators, achieving low loss rate, low delay and 
delay jitter for the premium service. 
 
In [10], a scheme with two parts is presented. The 
first part is an algorithm which operates 
autonomously at every core-node. The algorithm 
changes the weights of the per-class work-
conserving WFQ (weighted fair queuing) scheduler, 
at the time of every packet-arrival. With a PGPS-like 
(packet-by-packet generalized processor sharing) 
method, the algorithm calculates the packet 
attention-time (Next(t)), and if the waiting-time is  
longer than that calculated for the last packet 
arrived to the queue, then the queue-weight is 
increased. The purpose of the algorithm is to 
maintain dynamic fairness according to the delay 
status of every queue. The second part of the 
scheme is a flow shaping algorithm operating at 
every class-queue of the edge-nodes, to maintain 
fairness between different flows. This algorithm has 
an excessive work-load calculating weights at the 
time of every packet arrival. 
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Finally, in [11], a sophisticated scheme for 
operation in a DiffServ (differentiated services) 
network is presented. This scheme includes a self-
adaptive algorithm operating autonomously at 
every core-node, which controls local delay and 
loss values, by adjusting buffer sizes, queue-
dropping thresholds and weights of the per-class 
weighted schedulers of the node, with the objective 
of maintaining delay bounds, differential loss 
bounds, and bandwidth priority assurances, across 
the service classes throughout the core network. 
 
In order to attain global QoS objectives, all these 
methods may allow sudden impacts on flows 
“already admitted” which have not increased their 
traffic. Besides, all these methods focus on the 
share of bandwidth between classes. 
 
3. The STP method 
 
This section presents the operation of the STP 
method. The general scenario for this method is 
presented in Figure 1.  Let  us consider that node x 
works with the STP method. A node like this has, 
at every one of its output-interfaces, one queue for 
every one of its input interfaces (considering that 
the queues in a node are formed only at its output-
interfaces [1]). Specifically, node x would have 
three queues at its output-interface D, one for 
every one of its three input interfaces. Each queue 
of the intersection output-interface has a weight 
which may change, slowly, according to an 
updating algorithm which periodically compares 
the traffic coming from each input interface, 
through the evaluation of the average length of 
each queue. With this algorithm, the queues at the 
output-interface compete for bandwidth. 
 
3.1 Initial assumptions, general procedure and 
nomenclature of the method 
 
This subsection explains the operation of the STP 
method, implemented in one intersection output-
interface of a node, where it is supposed that there 
are N queues, where N ≥ 2. At the beginning of the 
operation of the method the queues are empty and 
all the weights have the same value. 
 
The method calculates the average length of every 
queue each time a packet arrives or departs from 
that queue. This average length (avg) is computed 

with the use of Equation 1 (as it is done in [12]), 
where wq is the averaging parameter, and q is the 
instantaneous queue-length. 
 

(1 )q qavg w avg w q     (1) 

 
This equation acts as a low-pass filter. The 
smallest the value of wq the smoother the output 
will be. The value for wq is set to 0.002, to cope 
with the burst behavior of the instantaneous 
queue-length. 
 
Besides the calculations of the average-lengths of 
the queues, the method makes its main bulk of 
calculations at the ending part of every time-
interval of size  (for simplicity it is called “a time 
interval  ”) the first time-interval beginning at time 
t0. The time interval  should be sufficiently big as 
to be able to observe many arrivals and departures 
of packets. In this paper  = 1(s). 
 
These calculations have the objective to obtain a 
new set of weights for the queues. The beginning 
of the ending part of each time interval  is 
represented with (t0 + (r + 1)) (meaning: just 
before time (t0 + (r + 1)) ), where r is an integer 
such that r ≥ 0. 
 
The time-interval required to complete this bulk of 
calculations is very small, compared with , so, in 
the algorithm of the method it is considered that 
these calculations take no time2 and begin and 
finish at time (t0 + (r + 1)). 
 
Only at time (t0 + (r + 1)), the new set of values, 
recently computed for the queue-weights, replace 
the set of current queue-weights (those that were 
in use in the time interval  that just ended). There 
may be a small time to wait before doing this 
updating in the scheduler, as required by the 
normal operation of the scheduler.  So, the weights 
used by the scheduler are fixed from time (t0 + r) 
to time (t0 + (r + 1)), and the new weights take 
effect at time (t0 + (r + 1)). The weight of queue i, 
at time t, is written as ( )i t . 

 

                                                      
2 The STP method should take less than 200 floating-point 
operations, which are calculated in several nanoseconds by 
modern processors. 
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In this paper the STP method uses a WFQ 
scheduler [13] (also called packet-by-packet 
generalized processor sharing), but the method is 
not intended to be restricted to this kind of work-
conserving scheduler. 
 
At the beginning of every bulk of calculations, the 
method checks if all the queues are empty. If so, 
the time resets to t0, leaving the queue-weights as 
they were. If at least one of the queues is not 
empty, then the calculation of a new set of values, 
for the queue-weights, takes place. 
 
In the calculations for every queue i, the method 
computes an indicator (represented with iI  see 

Equation 9), to compare the current weight of the 
queue with its current relative average-length. The 
term “relative” means that the average length of 
the queue is divided by the sum of the average 
lengths of all the queues of the intersection output-
interface. The weight of every queue is decreased 
if its relative average length results smaller than its 
current weight; otherwise, that weight is increased. 
In this method, every weight-change is always very 
small, and always all the queue-weights add up to 
1. The weight-increment of queue i, from time 
(t0 + r) to time (t0 + (r + 1)), is written as 

0( )i t r  , such that: 
 

0 0 0( ) ( ( 1) ) ( )i i it r t r t r            (2) 
 
The average length of queue i, at time t, is written 
as ( )iQ t . 

 
Whenever, after a calculation for updating the 
weights, the indicator iI  indicates that queue i has 

to decrease its weight, the value for its decrement 
is calculated as: 
 

0 0( ) ( )i it r f t r
T

        (3) 

 

In Equation 3. T is a period of time such that T /  
 is an integer, T /   >> 1, and f is a negative factor 
which causes the value of 0( )i t r   to be 

negative too. If from time (t0 + r), queue i obtained 
T /   consecutive results indicating that it has to 

decrease its weight, then it would hold that: 
 

 
0 0

0

( )

( ) 1

i i

f
i

T
t r t r

t r e

   


 

        
  

 

  (4) 

 
The proof of Equation 4 is given in Theorem 1, in 
Appendix A, which makes use of Equations 2 and 3. 
 
In Equation 4, it is useful to make f to be equal to 
f(P) = ln(1  P), where P is a small positive 
constant, such that P > 0 and P << 1. So, given 
that 1  P < 1, then f(P) = ln(1  P) < 0, such that 
the value of 0( )i t r   is negative. Then Equation 

4 turns into Equation 5. 
 

 
0 0

(1 )
0 0

( )

( ) 1 ( )

i i

ln P
i i

T
t r t r

t r e P t r

   


   

        
  

    

 (5)  

 
Equation 5 can be rewritten as: 
 

0

0

( )
(1 )

( )
i

i

t r T
P

t r

 
 

 
 


   (6) 

 
This ratio means that the weight of queue i has lost 
(P x 100)% of its value, in the big interval of length 
T. For example if P = 0.2, this ratio is equal to 0.8 
and the weight loss is 20% of the weight value. 
 
That is why the argument P is called “the loss factor”. 
 
With the above results, it is observed that the STP 
method enforces the weight-loss of the queue to 
be limited in relation with the factor P, in a big 
interval of length T (in the evaluation part –see 
Section 4– of this paper the value of T is 960(s)). 
Equation 3, then turns into Equation 7. 
 

0 0( ) (1 ) ( )i it r ln P t r
T

        (7)  

 
Also, it is important to notice that, as  / T << 1, 

then 0| ( ) |i t r   << 1, and 0| ( ) |i
i

t r


   << 1. 
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Note. For the calculation of Equation 7, when the 
value of P is very small, then ln(1  P)  P, and 
the calculation of the logarithm could be 
considered to be useless, but when the value of P 
is not  too small (0.2 for example), then the 
calculation of the logarithm is necessary. 
 
STP method steps 
 
BEGINNING. 
 
Require: At 0t t r   

The values of the queue-weights were left intact, or 
they have just been calculated. In the last case, 
with the calculated weights, make sure3 that: 

 

0
1

0

( ) 1

0 ( ) 1

N

i
i

i

t r

t r

 

 


 

  

    (8) 

To update the weights of the queues in use, with 
the new calculated weights, follow the next steps. 
 

Require: At 0( ( 1) )t t r      

 
if all the queues are empty then 
 
Make 0t t  
 
The values of the weights are kept intact. 
 

1r r   
 
Go to the BEGINNING. 

 
end if 
 
At this stage at least one of the queues is not 
empty, so a calculation to obtain a new set of 
values, for the queue-weights, is about to 
commence. 
 
In this recently finished interval of length , obtain 
the average lengths of the queues, and the values 
of the weights in use. 
 
for { 1i N  } do 

                                                      
3  Each one of the calculated-weighs is divided by the sum 
of these weights. This corrects any possible, very small, 
deviation from 1, which the sum of the weights could have. 

Calculate the indicator 0( ( 1) )iI t r    , as: 

 

0

0
0

0
1

( ( 1) )

( ( 1) )
( )

( ( 1) )

i

i
iN

j
j

I t r

Q t r
t r

Q t r




 











  

 
 

 
  (9) 

 
Note. The second member of the assignment-
expression 9 has two terms. The first term is the 
relative average length of queue i. The second 
term, 0( )i t r  , is the weight in use for queue i. 

So this indicator is a comparison of these two 
values. 
 

if 0( ( 1) ) 0iI t r      then 

 
Queue i  is marked to lose weight and it is 
considered to be in the set L of queues (where L 
stands for Loss). 
 

0( )i t r   is calculated with Equation 7, repeated, 

as an assignment expression, in expression 10. 
 

0 0( ) (1 ) ( )i it r ln P t r
T

         (10) 

 
end if  0( ( 1) ) 0iI t r      

 

if 0( ( 1) ) 0iI t r      then 

 
For this uncommon situation, queue i is considered 
to be in the set L of queues, and its weight-
increment is assigned the zero value. 
 

0( ) 0i t r     (11) 

 
end if 0( ( 1) ) 0iI t r      

 
if 0( ( 1) ) 0iI t r      then 

 
Queue i is marked to gain weight, and it is 
considered to be in the set G of queues (where G 
stands for Gain). 
 
No calculation of 0( )i t r   is made, but after the 

ending of this loop. 
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end if 0( ( 1) ) 0iI t r      
 
end for 1i N   
 
for i G   do 
 

0

0
0

0

( )

( ( 1) )
( )

( ( 1) )

i

i
j

j Lj
j G

t r

I t r
t r

I t r















  

  
   

    


 (12) 

 
end for i G   
 

1r r   
 
Go to the BEGINNING 
 
END 
 
Remarks of the STP method. 
 
When adding both members of expression 12, 

i G  , expression 13 is obtained: 
 

0

0

0
0

( )

( ( 1) )

( )
( ( 1) )

i
i G

i
i G

j
j Lj

j G

t r

I t r

t r
I t r


















  

 
 
   

    






 (13) 

 
Such that: 
 

0 0( ) ( )i j
i G j L

t r t r 
 

         (14) 

 
So the sum of the weight-increments is equal to 
the negative of the sum of the weight-decrements. 
 
4. Evaluation 
 
This section presents the evaluation of the STP 
method with the use of the ns-2 simulator [14, 15]. 
To evaluate the STP method, the DS tools for ns-2 
[16] were modified to add the WFQ packet-
scheduling proposed in [17], with some 
amendments and also several additions, made in 
order to dynamically change the weights of the 
scheduler according  to the proposed STP method. 

Note that on the network used for the experiments, 
every input interface of the intersection nodes of 
the network carries the traffic of only one route 
which intersects at that node. That is why each 
queue of each one of the intersection output-
interfaces is referred to as “the queue of” a specific 
route. It must be clear that these naming 
simplifications may not be valid in other general 
cases, for the STP-method application. 
 
4.1 Construction of the network topology 
 
The network topology used in the experiments is 
shown in Figure 2. This topology is a bounded 
network, similar to that found in the Figure 4  in [7]. 
 
The network has three core-nodes ( 0c , 1c  and 2c ), 

and eight edge-nodes ( 1e , ..., 8e ). In this network, 

the core-nodes are the only nodes where the routes 
intersect, so the core-nodes are the intersection-
nodes. More specifically, the intersection output-
interfaces of the core-nodes are those at the links: 

0 1c c , 1 2c c  and 2 8c e . All the other interfaces 

of the core-nodes and all the output-interfaces of the 
edge-nodes use a single queue. 
 

 
 

Figure 2. Topology of the bounded network used in all 
the experiments. The network has three core-nodes ic , 

and eight edge-nodes ie . Outside the network there are 

source nodes is , and destination nodes id . The 

network is traversed by seven routes, which intersect in 
groups of three routes. Even though the STP method is 

presented with its benefits, a route 1 1s d   is used to 

observe a weakness of the STP method. 



 

 

A Method with Node Autonomy to Preserve QoS in Networks with Per‐Route Admission, A. Mateos‐Papis / 42‐64

Vol. 11, February 2013 50 

Outside the network boundaries there are seven 
source nodes, 1s , ..., 7s , and seven destination 

nodes, 1d , ..., 7d . All the output-interfaces of these 

nodes have one queue. 
 
In this network topology, there are seven routes 
( 1 1s d ,  2 2s d , ... 7 7s d ). Route 1 1s d , which 

is the longest one, traverses 7 nodes: 1s , 1e , 0c , 

1c , 2c , 8e  and 1d . The other routes are smaller, in 

terms of traversed nodes. For example, Route 

2 2s d  traverses 6 nodes: 2s , 2e , 0c , 1c , 5e  and 

2d , and Route 3 3s d  traverses 6 nodes: 3s , 3e , 

0c , 1c , 4e  and 3d . These three routes intersect at 

the intersection output-interface of core-node 0c  

(going to core-node 1c ). 

 
Routes 1 1s d , 4 4s d  and 5 5s d  intersect at 

the intersection output-interface of core-node 1c  

(going to core-node 2c ). Finally, routes 1 1s d , 

6 6s d  and 7 7s d  intersect at the intersection 

output-interface of core-node 2c  (going to core-

node 8e ). There are no other intersections on this 

network. 
 
Only route 1 1s d  intersects with two routes 

three times, that is, at the intersection output-
interface of each one of the three core-nodes. 
All the other routes intersect with two routes at 
the intersection output-interface of just one 
core-node. 
 
The links inside the network have a bandwidth of 
30(Mb/s). The links connecting the edge-nodes with 
the outside nodes have a bandwidth of 100(Mb/s). 
Every link has 0.05(ms) of propagation delay. 
 
Figure 2, also shows route 1 1s d  . If this route 

were in use, it could not be distinguished apart 
from route 1 1s d  by the STP method, at nodes 

0c , 1c  and 2c , as both routes enter the network 

through node 1e . If the STP method were also 

used at the intersection output-interface of node 

1e , then these two routes could be distinguished 

by the method at that node. 
 

The conditions for the experiments are: 
 

 As it has been highlighted, in every 
experiment of this paper, throughout all the 
experiment-time, each flow follows the same 
route. That is, there is just one flow 
considered for every route, therefore the 
packets of a flow are referred to as the 
packets of the corresponding route. 

 

 The result of each experiment is the calculated-
delay of the packets to pass through their 
respective routes (so this is an end-to-end 
packet-delay). The delay obtained for every 
route is the 98-percentile-delay, that is, this delay 
is the delay of the packet in the limit of the 2% 
most delayed packets to go across the route. 
This delay is calculated for every interval of 
120(s), inside the experiment time-duration. 
 

 The delay-calculations use the trace-files 
obtained from the tests done. 

 

 The reported result of each experiment is the 
average of the results of 10 simulations, which 
is referred to as the result of the experiment4. 

 

 In the experiments of this paper, a flow is 
created from the traffic generated by the “traffic 
sources” (or simply the “sources”). A source is a 
place where traffic is generated in ns-2. A 
source is connected to a “source node” (like 
any one of the source-nodes, is , of Figure 2). 

 

 This network was tested with UDP-based 
MPEG4 traffic (see subsection 6.2 for a 
discussion about source traffic). For this 
purpose, the algorithm to generate this kind of 
traffic [19] was added to ns-2. The average 
rate, with the selected settings for this 
algorithm, turned out to be 0.621(Mb/s) for each 
source. The lengths of the generated packets 

                                                      
4 The result of every experiment is the mean value of the 
results of 10 simulations. This is an estimated mean. In 
order to locate the confidence interval to indicate the 
reliability of the estimate, the Bootstrap Percentile 
Confidence Interval method was used, using 1000 
different re-samples of the 10 simulation-results. This 
method has been successful with a broad range of 
probability distributions [18]. The method indicated that, 
with a 90% probability, the real mean value lies within a 
window located from 6.67% below to 6.99% above the 
estimated mean value. 
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varied, but generally that length was of 
1000(bytes). 

 
 In comparison to the newer traffic-generation 

methods, which use test beds [20], the traffic 
generation method in this paper could be 
considered to be restrictive in terms of its lack 
of precision in its inter-packet generation times, 
and also in terms of its lack of responsiveness 
with regard to changes on the network 
conditions, including the network traffic; 
nevertheless, the following points may be 
noted: 

 
o As the buffers, of the nodes, used in the 

experiments of this paper are large, to avoid 
the loss of packets, as a result of queue 
saturation, the results in these experiments 
should not be sensitive to slight deviations in 
packet-generation patterns. The time-scales 
used in the experiments of this paper are, 
rather, capacity-planning scales. 
 

o The limitation of the lack of responsiveness 
indicated is handled, in this paper, by doing 
diverse experiments, all of them beginning 
with the same traffic conditions. Each 
experiment has 1560(s) of experiment time-
duration, and at time 600(s), there is a 
change in the traffic conditions, to test the 
reaction of the STP method, and the 
reaction of other methods also tested in this 
paper, for comparison purposes. This 
change in the traffic conditions is caused 
when route 2 2s d  increases its traffic at 

time 600(s). 
 

 In the experiments, the initial traffic in every 
route is big enough to make the waiting times of 
the packets, in the queues of the intersection 
output-interfaces, considerable. In this way, the 
delay-increment in the routes, caused by the 
traffic-increment in route 2 2s d , can be 

observed in the results of the experiments. 
 
o In every experiment, from 0(s) to 600(s) of the 

experiment-time, the flow of every route has 
12 sources. Then, at time 600(s), there is a 
change in the traffic conditions, as the flow of 
route 2 2s d  increases its number of sources 

at that time. As indicated, the purpose of this 

increment is to observe the delay-impact on 
the other routes of the network. 

 
 In this paper, diverse solutions to handle traffic 

are tested, besides the STP method which is 
presented in subsection 4.4. All these solutions 
are presented to compare their results. 

 
 The experimental settings for the tested-

solutions, that is, the topology and traffic 
situations of the experiments are the same for 
all the solutions, where four routes are selected 
to show their results. These routes are: 1 1s d , 

2 2s d , 3 3s d  and 4 4s d . 
 

 The experimental settings of the experiment of 
subsection 4.6 are an exception. In this subsec-
tion the experimental settings are a different 
from those of the other experiments. 

 
4.2 Solution with one queue at the intersecting 
output-interfaces of the core nodes 
 
In this solution all the intersection output-interfaces 
of the core-nodes have just one output-queue, a 
situation which could be referred to as “the 
traditional solution” to handle the traffic. 
 
Figure 3, shows the results of the experiments for 
this solution. Subfigures 3-A through 3-D show the 
results of four different experiments. The 
difference, from one experiment to the following  
one, is the number of sources increased in route 

2 2s d  at time 600(s). The increments are: 2, 4, 6 

and 10 sources, for each experiment, at time 
600(s). Label “s1 02” stands for “Route-delay in 
route 1 1s d , where, at time 600(s), route 2 2s d  

increases its traffic in 2 sources”. The other labels 
have similar meaning. 
 
In all subfigures it is observed that, at time 600(s), 
there is an increase of delay in every one of the 
routes 1 1s d , 2 2s d  and 3 3s d . These incre-

ments depend on the traffic-increase in route 
2 2s d . In every subfigure the delay in route 

1 1s d  is bigger than the delay in each one of the 

other routes, as route 1 1s d  is the longest one. 

Every route-delay results, mainly, from the delay at 
the intersection output-interface of core-node 0c  
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(going to core-node 1c ). All these three routes 

suffer the same delay at this output-interface 
because the packets of these routes are placed in 
the same single queue of the interface. Note that 
the two lines corresponding to the delay in route 

2 2s d  and the delay in route 3 3s d  are, 

practically, overlapped. 
 
The delay in route 4 4s d  is not affected by the 

increment of traffic in route 2 2s d  because these 

two routes do not intersect. 
 
In this, and in all the tested solutions, it is the 
route 2 2s d  (its administrators) itself which 

would have to evaluate, within its admission 
procedure, the amount of delay it can tolerate 
before admitting new traffic. 
 

4.3. Solution with three queues, with fixed weights, at 
the intersecting output-interfaces of the core nodes 
 
In this solution, at the intersection output-interface 
of every core-node, 0c , 1c  and 2c , there are 

three queues, one for each one of the three input 
interfaces of the node. Each queue has a fixed 
weight, equal to the weight of each one of the 
other two queues. This is another solution which 
can be referred to as “traditional”. 
 
The subfigures of Figure 4, show the results of the 
experiments for this solution. The meaning of the 
labels of these subfigures is similar to those of 
Figure 3. In all subfigures it is observed that, as a 
result of the increase of traffic in route 2 2s d , at 

time 600(s), there is a delay-increment in this 
route; the delay in route 1 1s d  and the delay in 

 
 

 
Figure 3. Delay-results of the experiments where each core-node has just one queue at its intersection output-

interface. Label “s1 02” stands for “Route-delay in route 1 1s d ” where at time 600(s) the route 2 2s d  increases its 

traffic in 2 sources”. The other labels have similar meaning. 



 

A Method with Node Autonomy to Preserve QoS in Networks with Per‐Route Admission, A. Mateos‐Papis / 42‐64

Journal of Applied Research and Technology 53

route 3 3s d  are both barely affected; and the 

delay in route 4 4s d  is not affected. 

 
In this case, the fixed weights of the queues of 
routes 1 1s d  and 3 3s d , at the intersection 

output-interface of core-node 0c , have protected 

these routes from the traffic-increase in route 

2 2s d . 

 
4.4 Solution with the STP method 
 
In this solution, at the intersection output-interface 
of every core-node 0c , 1c , and 2c , the STP 

method operates with parameters T = 960(s) and 
P = 0.25. 
 
For this solution, at the intersection output-
interface of every core-node, there are three 
queues, each queue corresponding to each one of 
the three input interfaces of the node. 

The subfigures of Figure 5 show the results of 
experiments for this solution. The meaning of the 
labels of these subfigures is similar to those of 
Figures 3 and 4. 
 
It has been observed that, at time 600(s), the delay 
in route 2 2s d  increases as a consequence of 

the increase of traffic in this route, also at time 
600(s). The delay-increment in route 2 2s d  is 

more pronounced depending on the amount of 
traffic increased in this route. 
 

After time 600(s), the delay in route 2 2s d  

decreases as a result of the gradual weight-increase 
of the queue of this route (remember that this queue 
is located at the intersection output-interface of core-
node 0c ). This weight increases as a result of the 

bigger average length of the queue. 
 

The delays in routes 1 1s d  and 3 3s d  have a 

slight increase, at time 600(s), as these routes 

 
 

Figure 4. Delay-results of the experiments where each core-node has three queues at its intersection 
output-interface. The three queues have equal, fixed,  weights. The meaning of the labels 

of these subfigures is similar to those of Figure 3. 
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are protected, to a void having a sudden loss of 
bandwidth and, consequently, a sudden increase 
in delay. From this time on, within the experiment-
time, these delays increase slowly and steadily. 
The delay in route 4 4s d  is not affected, as this 

route does not intersect with route 2 2s d . 

 
It is important to note that, although the STP 
method is acting at the intersection output-
interface of each one of the three core-nodes, the 
method is effectively giving protection to route 

1 1s d , only at the intersection output-interface of 

core-node 0c , because that is the only output-

interface having a change in its average traffic 
(Section 5 shows results of other evaluations of the 
STP method where route 1 1s d  has more 

intersecting-routes increasing its traffic). 
 
Figure 6, shows the weights of the three queues at 
the intersection output-interface of core-node 0c .

Subfigures 6-A through 6-D show these weights for 
the cases corresponding to traffic-increments, in 
route 2 2s d , of 2, 4, 6 and 8 sources, 

respectively, at time 600(s). Note that the addition 
of the weights of the three queues is equal to 1, for 
every abscissa point of any one of the graphs. 
Notice also that in no case, a weight (every weight 
has a beginning value of 0.333) decreases its 
value in more than 25% at the ending of the 
experiment; in other words, no weight becomes 
as small as 0.333 x 0.75 = 0.25, at the ending of 
the experiment. 
 
Before time 600(s), the tendency of the weight 
may vary, even though these results come from 
the average of several simulations; but from 
time 600(s) on, the tendencies are clear: the 
weight, corresponding to the queue of route 

2 2s d , increases, and the weights, 

corresponding to the queues of the other two 
routes, decrease. 
 
 

 
 

Figure 5. Delay-results of the experiments using the STP method at the intersection output- 
interfaces of the core-nodes. The meaning of the labels of this figure is similar to those  in Figures 3 and 4. 
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4.5 Solution with the method of coordinated multi-
hop scheduling service 
 
In the explanation of this solution the term “delay 
of flow” is preferred over the term “delay in route” 
(even though there is still one flow per route)  due 
to the fact that this method regards very 
specifically  to the flows on the network. 
 
The method presented in this section is a special 
case of the Coordinated Multi-hop Scheduling 
Service (CMS): a work-conserving variant of the 
core-stateless jitter virtual clock (CJVC). This 
method was presented in [7] to protect flows of 
one class against the traffic increase of flows of 
other classes in a network. In the case where a 
flow is delayed as a consequence of the 
increase of traffic of another flow, which shares 
the same output-interface of a core-node, then 
the method helps the affected flow giving it a 
higher priority in the next core-node, where the 

flow goes through, allowing it to “catch up” (as 
[7] indicates). The purpose of this method is to 
try to maintain a low value in the overall delay of 
the flow, across its whole route. 
 
In this paper, this method is applied on a network 
to protect flows in the same class, against the 
increase of traffic of flows in intersecting-routes. A 
general explanation of the form of operation 
implemented is as follows. At the ingress node, the 
method stores, in the header of each packet, a 
priority-index which is used by the output 
scheduler of the node, to serve the packet (the 
smaller the priority-index value the higher the 
priority). The value of this priority-index depends 
on the time the packet arrives at the ingress node 
(the smaller the time the smaller the index value). 
Then, every time the packet arrives at a 
downstream core-node, that node uses the priority-
index value of the packet to recalculate a new 
priority-index value for that packet (basically 

 
 

Figure 6. Weights of the queues, at the intersection output-interface of core-node 0c , in the experiments using the 

STP method at the intersection output-interfaces of the core-nodes. The label “+2 c0 s1” stands for “Weight of  
queue of route 1 1s d , at the intersection output-interface of core-node 0c , when route 2 2s d  increases  

its traffic in 2 sources, at time 600(s)”. The other labels have similar meaning. 
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adding the maximum time that may be needed to 
retransmit the packet), which is again stored in the 
packet. Then, the packet waits to be served at a 
specific queue corresponding to the packet's flow, 
located at the output-interface of the node. The 
scheduler of the output-interface serves that 
packet which has the smallest priority-index value 
(highest priority), among those packets which wait 
in front of each queue of the interface. 
 
Specifically, Equation 15 shows the calculation of 
the priority-index of packet k, of flow i, at node j, 
where k

il  is the packet size, ir  is the reserved 

bandwidth for flow I ( k
i il r  is the maximum time to 

retransmit the packet), k
it  is the time of arrival of 

the packet at the first hop, and k
i  is a slack-

variable assigned to the packet. The unit of the 
priority-index is given in seconds. 
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For this method, in this subsection, a set of 
experiments is presented where the flow which 
increases traffic is not able to harm the flows of 
intersecting-routes, whereas in subsection 4.6 
another single experiment is presented where 
the flow which increases traffic is able to harm 
other flows. 
 
For the first set of experiments ir  is equal to 

2.4(Mb/s), meaning that the flow of every one of 
the three intersecting routes, at every core-node, 
has a reserved bandwidth of 8% of the capacity of 

the output link of the core node (of 30(Mb/s)); k
i  

is equal to 0.0003(s) for the flow which follows the 

long-sized route, 1 1s d ; k
i  is equal to 

0.000375(s) for the flow which follows any one of 
the middle-sized routes, 2 2s d , 3 3s d , 4 4s d , 

5 5s d ; and k
i  is equal to 0.0005(s) for the flow 

which follows any one of the small-sized routes, 

6 6s d  and 7 7s d . 

 

Subfigures 7-A through 7-D show the results of 
four different experiments, where the flow of route 

2 2s d  increases its number of sources in 2, 4, 6 

and 10, respectively, at time 600(s). As a result of 
these increments, it can be observed that, in terms 
of delay, the flow of route 2 2s d  has a sudden 

impact at 600(s); the flows of routes 1 1s d  and 

3 3s d  are both barely affected; and the delay of 

the flow of route 4 4s d  is not affected. The 

reason for this "self-inflicted" delay-impact in the 
flow of route 2 2s d  is that the packet arrival-rate 

of this flow is bigger than the packet-arrival rate of 
the other flows. As each packet of a flow has a 
bigger priority-index value (representing less 
priority) compared to that of the previous packet, of 
the same flow, then, the priority-index values of the 
packets of the flow of route 2 2s d , queued at the 

intersection output-interface of core-node 0c , are 

bigger (representing less priority) than the priority-
index values of the packets of the flows of routes 

1 1s d  and 3 3s d , queued at the same interface. 

So the packets of these last two flows have 
advantage, when evaluated for service, with 
respect to the packets of the flow of route 2 2s d . 

 
In this case, the flow packets of route 1 1s d  arrive 

at core-node 1c  having priority-index values not 

necessarily smaller or bigger than those of the 
packets of the flows of routes 4 4s d  and 5 5s d , 

so the method does not favor any one of these 
flows, at the output-interface of node 1c . 

 
4.6 CMS-method solution where flow 2 2s d  has 

advantage over the other flows 
 
This is the only solution which has an 
experiment with traffic conditions different from 
those of the experiments of the other solutions . 
The reason  for this is to give the flow of route 

2 2s d  the biggest advantage in this 

experiment. In this experiment, the results of a 
single simulation are observed. 
 
The number of initial sources are 13, 13, 8, 14, 14, 
0, 0, for the flows of routes 1 1s d  through 7 7s d , 
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respectively. The flow of route 2 2s d  increases 

its traffic, at time 600(s), in 6 flows. The reserved 
bandwidth for all flows is 6(Mb/s), except for the 
route flow of 2 2s d , which has 9(Mb/s). 

In this experiment, the values for k
i  are smaller to 

obtain smaller priority-index values. These index 
values are equal to 0.00012(s), for the flow of the 
long-sized route 1 1s d ; and equal to 0.00015(s), for 

the flow of each one of the middle-sized routes 

2 2s d , 3 3s d , 4 4s d  and 5 5s d ; and equal to 

0.0002(s), for the flow of each one of the small-sized 
routes 6 6s d  and 7 7s d . 
 

CMS is very sensible to the amount of bandwidth 
reservation for flows. In this experiment, the flow of 
route 2 2s d  has more reserved-bandwidth than the 

bandwidth reserved for each one of the other flows 
(the flows of routes  1 1s d  and 3 3s d ), at the

output-interface of node 0c . Looking at Equation 15, 

the priority-index values of the packets, of the flow of 
route 2 2s d , have a smaller growing rate, from 

one packet to the next one, meaning that the 
tendency is to give smaller priority-index values 
(higher priority) to these packets, and thus, 
contributing to cause an important impact to the other 
two flows (the flows of routes  1 1s d  and 3 3s d ), 

at the output interface of  node 0c  when the flow of 

route 2 2s d  increases its traffic. 
 

In this case, it can be seen how CMS protects the flow 
of route 1 1s d  against the increase of traffic of the 

flow of route 2 2s d , by giving the flow of route 

1 1s d  a higher priority at the output-interface of node 

1c , but, affecting, as a consequence, other flow, in an 

immediate form (the flow of route 5 5s d  is the one 

which is affected -as it is shown subsequently). 
 

 
 

 
Figure 7. Delay-results of the CMS-method experiments. CMS being in its special case, the work-conserving variant 
 of the CJVC method. This method is applied to a network with intersecting-routes, working with a single class. Label 

“s1 02” stands for “Delay of the flow of route 1 1s d  where, at time 600(s), the flow of route 2 2s d  increases its  

traffic in 2 sources”. The other labels have similar meaning. 
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Subfigure 8-A shows the delay of the flow of each 
one of the routes 1 1s d , 2 2s d , 3 3s d  and 

4 4s d . It can be seen that the flow of route 1 1s d , 

at time 600(s), suffer of an increase of delay, and 
the flow of the route 2 2s d  barely increases its 

delay as a consequence of its increase of traffic. 
The flow of route 3 3s d  is almost not affected, in 

terms of its delay, because it has less traffic, and so 
the priority-index values of its packets are smaller 
(higher priority). The flow of route 4 4s d  

decreases its delay, and the reason is explored in 
the explanation of subfigure 8-C. 
 

Subfigure 8-B shows the results for the delay of 
the flow of each one of the routes: 1 1s d , 2 2s d

and 3 3s d , at the intersection output-interface of 

core-node 0c . 
 

Subfigure 8-C shows results for the delay of 
the flow of each route: 1 1s d , 4 4s d  and 

5 5s d , 

at the intersection output-interface of core-
node 1c . It can be seen that the flow of route 

1 1s d  has almost no delay throughout all the 

time of the experiment. The delay of the flow 
of route 4 4s d  is roughly 43(ms), before time 

600(ms), and it decreases to roughly 9.3(ms) 
after 600(ms). The delay of the flow of route 

5 5c d  is the one affected as it increases its 

delay from around 5(ms) to around 43(ms), at 
time=600(ms).  
 
 

 
 
 

Figure 8. Delay-results of the CMS-method experiments with the special case of the work-conserving variant of the CJVC 
method. This method applied to a network with intersecting-routes, working within a single class. The flow  

of route 2 2s d  has advantage over the other flows. Label “s1 06” stands for “End-to-end delay (route-delay) 

 of the flow of route 1 1s d ”, and Label “s1_c0 06” stands for “Delay, at  the intersection output-interface of  

core-node 0c , of the flow of route 1 1s d “.  Both labels also indicate that at time 600(s), the flow  

of route 2 2s d  increases its traffic in 6 sources. The other labels have similar meaning. 
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This affectation  is caused by:  1- the increase  of 
traffic of the flow or route 2 2s d , 2- the protection of 

the flow of  route 1 1s d 5, and 3- because even 

though the flows of routes 4 4s d and 5 5s d  have 

the same number of sources, in this experiment the 
flow of route 4 4s d  has less traffic than that of the 

flow of route 5 5s d . 

 
Subfigure 8-D shows the delay-results for the flow 
of route 1 1s d , at the intersection output-interface 

of core-node 0c , and at the intersection output-

interface of core-node 1c . The flow of route 1 1s d  

has approximately 12.5(ms) of delay at the output-
interface of core-node 0c  (to go to core-node 1c ) 

before 600(ms), and after that time, the delay at 
that output-interface increases to approximately 
30(ms). At the intersection output-interface of core-
node 1c  (to go to core-node 2c ) the delay of the 

flow of route 1 1s d  is at all times very close to 

0.57(ms). So, the delay of the flow of route 1 1s d  

is compensated by this method. 
 
5. Scaling possibilities of the STP method 
 
In order to explore the scaling possibilities of the 
STP method, six additional experiments were 
done, with mainly the same settings used for the 
evaluation of the solution with the STP method 
(subsection 4.4), but with a change in the value 
of parameter P. 
 
The settings of these experiments are shown in 
Table 1. 
 

                                                      
5 From subfigures 8-A and 8-D, it is important to notice that 
the result of adding the delay observed at the output-
interface of node 0c , plus the delay observed at the output-

interface of node 1c , for the packets of the flow of route 

1 1s d , is not necessarily smaller than the delay observed 

for the packets of this flow to go end-to-end through this 
route. The reason for this is that the 2% most delayed 
packets to go across the intersection output-interface of 
core-node 0c  are not necessarily the same 2% most 

delayed packets to go across the intersection output-
interface of core-node 1c . 

In the experiments route 1 1s d  is subject to the 

increment of traffic, in 10 sources, at time 
600(s), in one, two or three of its intersecting 
routes: 2 2s d , 4 4s d  and 6 6s d , as Table 1 

indicates. In this Table, for every experiment, a 
row with an “x” indicates that there is an 
increment of traffic in the corresponding route, 
for example, in experiment #2, routes 2 2s d  

and 4 4s d  increment their traffic, each one, in 

10 sources, at time 600(s). 
 
The first group of three experiments corresponds 
to parameter P = 0.25, and the results are given 
in Figures 9-A and 9-B. The second group of 
three experiments corresponds to parameter P = 
0.10, and the results are given in Figures 9-C 
and 9-D.  
 
Subfigure 9-A presents the delay in route 1 1s d  

for experiments 1, 2 and 3 (corresponding to P = 
0.25). It can be observed that, from time 600(s), 
the delay in this route grows, as more 
intersecting-routes increase their traffic. 
 

Exper. 1 2 3 4 5 6 
P 0.25 0.1 

2 2s d x x x x x x 

4 4s d  x x  x x 

6 6s d   x   x 

 Figs. 9-A and 9-B Figs. 9-C and 9-D 

 
Table 1. Settings of the six experiments, to explore the 

scaling possibilities of the STP method. 
 
Subfigure 9-B presents the delay in route 2 2s d  

for experiments 1, 2 and 3 (corresponding to P = 
0.25). It can be observed that, as routes 2 2s d , 

4 4s d  and 6 6s d  do not intersect each other, 

the delay of route 2 2s d  is not affected if routes 

4 4s d  and 6 6s d  increase their traffic. 

 
Subfigures 9-C and 9-D are similar, respectively, 
to subfigures 9-A and 9-B, but the value of 
parameter P is 0.1 (10%). It can be observed that 
the delay-changes in routes 1 1s d  and 2 2s d  

are smaller than those observed in subfigures 9-A 
and 9-B. 
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Wrapping up, when a route has tenths of 
intersecting-routes, and a worst-case occurs in 
which many of those intersecting-routes 
synchronize increasing their traffic within a small 
window of time then, the impact on the intersected 
route could be severe. To limit this possible 
impact, the selection of the values for parameters 
P and T should be either: 1- A smaller value for 
parameter P, 2- A bigger value for parameter T, 3- 
A combination of both possibilities. 
 
The relation about the time increment, of the delay in 
a route, as a function of the values of parameters P 
and T, and as a function of the number of the 
intersecting-routes, is still a matter  of study . 
 

 

 
 
6. Discussion 
 
6.1. A scenario where the STP method could be 
used 
 
The Internet has a basic design as a Best-Effort 
network, composed of thousands of different 
networks [21]. In the “middle-mile” Internet, 
internetwork data communication is affected by 
peering-point congestion between, possibly 
competing, networks; performance limitations of 
routing protocols (BGP); and unreliable networks. 
 
One approach to use the Internet, without 
changes, to address quality issues, is the Delivery  
 

 
 

Figure 9. Delay-results of the experiments using the STP method at the intersection output-interfaces of the core-
nodes. Label “s1 10s2 10s4 00s6 P25” stands for “Route-delay in route 1 1s d , where at time 600(s), each one of 

route 2 2s d , and route, 4 4s d  increase their traffic in 10 sources, and where P = 0.25”. 

The other labels have similar meaning. 
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Network. A delivery network is a virtual network 
over the Internet, which needs no changes to the 
underlying Internet, offering enhanced reliability 
and performance of delivery. One main objective of 
a delivery network [22] can be to minimize the 
long-haul communications in the Internet, where 
middle-mile bottlenecks are found (like peering 
points between networks). This is done through the 
use of many distribution servers, the use of 
application-layer multicast services, and the use of 
multiple alternate-paths across the middle mile of 
the Internet. 
 
A scenario for the operation of the STP method 
can take ideas of operation of the delivery network. 
One scenario could be a delivery network devoted 
to the delivery of time-sensitive traffic, like that of 
video-conference. This network could span several 
underlying specific networks of Internet Service 
Providers (ISPs), with interconnection points which 
did not represent bottlenecks. The ISPs would 
jointly cover big business areas. 
 
The network would have fixed-routes to connect to 
the networks of the clients. The nodes of the ISPs 
would run the STP method to give the required 
service to the delivery network. The admission-
processes would be per-route, which would be in 
charge of verifying the fulfillment of the delay-limit 
expected in the route. There would be no 
bandwidth reservation in the routes and the output-
interfaces of the nodes should have big-enough 
buffers to limit the amount of lost packets because 
of possible overload-situations. 
 
Regarding the transport protocol suggested, 
there would be two variants of the scenario. For 
the first variant, it is interesting to observe the 
tendencies of use of UDP and TCP in the 
Internet. By the year 2009, TCP sessions were 
still responsible for most packets and bytes in 
the Internet, but in terms of flows, UDP was the 
dominant transport protocol [23] (mainly from 
P2P applications using UDP for their overlay 
signaling traffic). There is a report about UDP 
traffic, in a campus connection to the Internet, 
which states that UDP traffic has grown steadily, 
in the years 2008 to 2011 [24], to reach a share 
of 22% of the total traffic. 
 
The use of UDP as the transport protocol is 
suggested for the first variant of the scenario. The 

reason for this is that the network of the scenario is 
devoted to delay-sensitive traffic, and it operates 
with admission-control. The main use of the 
network would be for the strict delay-sensitive 
traffic (like that of video-conference), although less 
strict delay-sensitive traffic could also be admitted 
(like that of streaming traffic originated from stored 
or live content distribution). The nodes of the 
underlying ISPs might still use the spare bandwidth 
to send low-priority traffic, like TCP traffic, in other 
class, using the best effort service. 
 
For the second variant of the scenario, the 
transport protocol selected would be a TCP-
Friendly protocol, like a form of DCCP [25] 
(suitable for flows with timing constraints such as 
streaming media or flows from or multi-player on-
line games or telephony and video-conference). In 
this variant, TCP traffic could also use the delivery 
network, in the same class, but subject to the 
admission-process. 
 
Regarding transmission capacity, as the 
considered schedulers are work-conserving, the 
STP method should not impose a decrease of the 
transmission capacity in the network. 
 
6.2 STP-method application considerations 
 
The first consideration, to be in mind, is that, under 
situations of little traffic on a network, the STP method 
is not better than the case of using a single queue at 
every intersection output-interface of the network. 
 
Another consideration is that a possible problem of 
the method can be the situation where, in an 
output-interface, the queue of a given route "A" has 
the biggest weight of them all. This route may 
decrease its traffic, allowing the other intersecting-
routes, at that output-interface, to increase their 
traffic. As the weight decrement of a queue is slow, 
route "A" could suddenly increase its traffic, while 
its queue still has the biggest weight. This could 
cause important problems to the other routes. 
 
6.3. The STP method and the tendencies of QoS 
 
Some modern traffic engineering approaches try to 
achieve near-optimal traffic distribution in the 
networks, without the use of overlay networks 
(networks like those with fixed routes), which are 
considered to be administratively costly as they 
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may require the nodes to establish many logical 
connections. The optimal distribution functions 
used in these approaches do not observe the 
concept of QoS so, for these approaches, the 
adoption of a method like the STP method does 
not seem to be suitable. It seems that the issues of 
quality in these approaches should be addressed 
by application-layered solutions. 
 
On the other side, other approach to QoS, called 
Quality-of-Service Routing [26, 27, 28], tries to 
identify, on a fixed topology, a feasible source-to-
destination path that satisfies a set of QoS 
constraints, i.e., a path on which all links have 
sufficient resources to satisfy the diverse constraints, 
like delay, delay-jitter, cost, reliability, throughput. 
This approach does not include the concept of 
admission, but it rather tries to find a route for every 
“routing request”. The routes on these networks have 
intersections, so, the STP method, applied to these 
networks, seems to be suitable. 
 
7. Conclusions and future work 
 
This paper addressed the problem of the 
intersection between routes, on networks admitting 
delay-sensitive flows, where each one of these 
flows is constrained to follow a specific route. The 
main contribution of this paper was to present an 
innovative method, called short term protection 
method (STP method), operating independently in 
every node of the network, oriented to be easily 
managed, with a prospect to be scalable to at least 
tenths of nodes, and oriented to attain a single 
extensive behavior in the network. The goal of the 
method is to help maintain the QoS in the routes of 
these networks, while these routes are subject to 
the increasing traffic in intersecting-routes. 
 
In the results of the tests done, this method  
proved to be effective and with promising 
possibilities with regard to its scaling orientation. 
The STP method is compared  to other method, 
oriented to protect flows against the increment of 
traffic in other flows, on a network. The benefits of 
the STP method are observed. 
 
Future lines of research are: 1- Make the STP 
method become proactive (instead of reactive); 2- 
Study the way in which the STP-method's 
parameters affect its performance; 3 Integrate an  
 

additive increase/multiplicative decrease (AIMD) 
mechanism to the STP method, observing if the 
weight-loss of a route is due to the own decrease 
of traffic in the route, or to the increment of traffic in 
the intersecting-routes; 4- Study the STP method 
with more types of traffic. 
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Appendix A 
 
Theorem 1. Proof of Equation 4. 
 
Consider that queue i obtains T /  consecutive results 
indicating that it has to lose weight, where, as already 
stated,   and T are a small and a big intervals of time, 
respectively, such that T /  is a big integer. 

 
Equations 2 and 3 are repeated here, for 
convenience, as Equations. A-1 and A-2. 
 

0 0 0( ) ( ( 1) ) ( )i i it r t r t r            (A-1) 

 

0 0( ) ( )i it r f t r
T

       (A-2) 
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Mixing these equations the next one is obtained: 
 

0 0( ( 1) ) ( ) 1
/i i
f

t r t r
T

   


      
 

 (A-3) 

 
This was the result of the weight of queue i after the 
first interval, as a function of its initial weight. 
Similarly, the weight for the next interval would be: 
 

0 0( ( 2) ) ( ( 1) ) 1
/i i
f

t r t r
T

   


       
 

 (A-4) 

 
Mixing these last two equations it is obtained that: 
 

   

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 

2

0 0( ( 2) ) ( ) 1
/i i t

T

f
t r r  (A-5) 

 
So, for the T /  consecutive increments, the 
following equation is obtained: 
 

/

0 0( ( / ) ) ( ) 1
/

T

i i
f

t r T t r
T



    

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 

 (A-6) 

 
If T /  is big, then the factor with the exponent can 
be approximated to: 
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And with this, it is obtained that: 
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And, 
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And with this the theorem is demonstrated. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


