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ABSTRACT 
In this paper, a synchronization of Cellular Neural Networks (CNNs) in nearest-neighbor coupled arrays, is numerically 
studied. Synchronization of multiple chaotic CNNs is achieved by appealing to complex systems theory. In particular, 
we consider dynamical networks composed by 3D CNNs, as interconnected nodes, where the interactions in the 
networks are defined by coupling the first state of each node. Four cases of interest are considered: i) synchronization 
without chaotic master, ii) master-slave configuration (directed ring), iii) open ring configuration (a path), and iv) 
directed path configuration. In addition, an application to chaotic communication networks is given. 
 
Keywords: Chaotic synchronization, nearest-neighbor coupled networks, cellular neural networks (CNNs), chaotic 
communications. 

 
RESUMEN 
En este trabajo se estudia numéricamente la sincronización de redes neuronales (CNNs) en arreglos acoplados  con 
arreglos cercanos. Usando la teoría de sistemas complejos se logra la sincronización de múltiples CNNs. En particular, 
consideramos redes dinámicas compuestas por 3D CNNs, como nodos de la red, donde las interacciones en las redes 
se definen por el acoplamiento del primer estado de cada nodo de red. Se consideran cuatro casos de interés: i) 
sincronización sin maestro caótico, ii) configuración maestro-esclavo (anillo dirigido), iii) configuración de anillo abierto 
(camino) y iv) configuración de camino dirigido. Además, se da una aplicación a redes de comunicación caótica. 
 

 
1. Introduction 
 
Generally, a chaotic oscillator is a nonlinear 
deterministic system that possesses complex 
similarity to random behavior, continuous broad-
band power spectrum, and sensitive dependence 
on initial conditions, see e.g. [1–5]. Synchronization 
of chaotic systems have been developed and 
thoroughly studied over the past two decades, see 
e.g. [6–17] and references therein. It is a topic of 
both theoretical and practical interests. Because of 
its applications in communications, cryptography, 
neural networks, etc. For example, in engineering, 
mainly in the design of chaotic secure/private 
communication systems, see e.g. [18–26]. 

 
 
On the other hand, a complex dynamical network 
can be defined as a set of interconnected nodes, 
each node is considered a basic element with 
behavior depending on the nature of the network. 
These classes of structures have been observed 
in computer sciences, economy, biology, physics, 
chemistry, engineering, and social sciences, see 
e.g. [27–29]. 
 
 Nowadays, synchronization is required in complex 
dynamical networks with many coupled identical 
nodes. The scenario where the connected nodes 
have chaotic behavior is particularly interesting. 
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Synchronization in complex dynamical networks 
has direct applications in different fields, see e.g. 
[24, 30–47]. Some interesting studies on artificial 
neural networks are reported in [48, 49]. In 
particular, Cellular Neural Networks (CNNs) exhibit 
chaotic dynamics, and so on, synchronization of 
CNNs becomes an important area of study. For 
example, CNN has broad applications in image 
and video signal processing, robotic, and biological 
visions [50]. In addition, synchronization of CNNs 
in different arrangements is very interesting by its 
possible application for security communication of 
encrypted information in a network of multiple 
users. Chaos plays a fundamental roll in the 
storage and retrieval of information in artificial and 
natural neural networks. Chaos has been observed 
and studied in CNNs [51, 52], in particular, some 
works on chaotic networks synchronization of 
CNNs with different coupling topologies can be 
consulted in [24, 39, 40, 43, 44]. 
 
Promising results on chaotic synchronization of 
coupled 3D CNNs in irregular arrays has been 
shown in [50]. However, the synchronization in 
nearest-neighbor coupled networks has direct 
application to chaotic communication systems. 
 
The main goal of this paper is to synchronize 
multiple chaotic 3D CNNs (as interconnected 
nodes), that conform nearest-neighbor dynamical 
networks. This  goal is achieved by appealing to 
results from complex systems theory. We arrange 
the chaotic 3D CNNs in nearest-neighbor coupled 
arrays in four scenarios: without chaotic master 
node, as a directed ring, as an open ring (path), 
and as a directed path. Finally, we present an 
application to chaotic communication in directed 
path coupled networks. 
 
The organization of this paper is as follows: In 
Section 2, we describe the 3D CNN mathematical 
model to be used as fundamental node to 
construct the nearest-neighbor coupled networks. 
In Section 3, a brief review on synchronization in 
complex dynamical networks is given. In Section 4, 
we show the design of nearest-neighbor dynamical 
networks constructed using interconnected 3D 
CNNs and the synchronization in such networks. In 
Section 5, an application to encrypted chaotic 
network communications is presented. Finally, 
some concluding remarks are given in Section 6. 
 

2. 3D CNN as fundamental node to be used to 
construct networks 
 
Consider the following three-dimensional (3D) 
continuous time CNN [52], 
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where Si is a monotone differentiable function 
which is bounded above and below. T = (Tij) is a 
3x3 matrix, called weighting matrix or connection 
matrix describing the strength of connections 
among neurons and Ii is a constant vector. In [52] it 
has been shown that under certain conditions the 
model Equation 1 exhibits chaotic behavior. The 
simplified mathematical model of a 3D CNN to be 
used to construct the nearest-neighbor dynamical 
networks, is given by [52]: 
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where x  R3 is the state vector, and 
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The values for weighting matrix Equation 3 are 
given by: T11 = 1.49, T12 = 2, T13 = 1, T21 = -2, T22 = 
1.7, T23 = 0, T31 = 4, T32 = -4, and T33 = 2. The 3D 
CNN model defined by Equations 2 and 3 
generates a chaotic attractor, see Figure 1. where 
the chaotic attractor (double-scroll type) of the 3D 
CNN is projected onto the (x1, x2, x3)-space, when 
we have used the initial conditions x1(0) = 0.14, 
x2(0) = -0.5, and x3(0) = 0.1. 
 

 
 

Figure 1. Chaotic attractor of 3D CNN projected  
onto the (x1, x2, x3)-space. 
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Next, we show the arrangements for nearest-neighbor 
dynamical networks by using as coupled chaotic 
nodes to 3D CNNs defined by Equations 2 and 3. 
 
3. Synchronization of complex dynamical 
networks 
 
3.1 Complex dynamical networks 
 
We consider that  complex dynamical networks are 
composed  by N identical nodes, linear and 
diffusively coupled through the first state of each 
node. Each node constitutes a N-dimensional 
dynamical system, described as follows   
 

,Niuf i 1,2,..., ,xx )( ii        (4) 
 
where xi = (xi1, xi2,…,xiN)T  RN is the state vector of 
the node i, ui  RN is the input signal of the node i, 
and is defined by 
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the constant c > 0 represents the coupling strength, 
and   RNxN is a constant 0-1 matrix linking 
coupled states. Assume that  = diag(r1, r2,…, rN) is 
a diagonal matrix with ri =1 for a particular i and rj = 
0 for j  ≠ i. This means that two coupled nodes are 
linked through their i-th state. Whereas, A = (aij)  
RNxN is the coupling matrix, which represents the 
coupling configuration in Equations 4 and 5. If there 
is a connection between node i and node j, then aij 
= 1; otherwise, aij = 0 for i ≠ j. The diagonal 
elements of coupling matrix A are defined as 
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Let suppose that the dynamical network, Equations 
4 and 5, is connected in the sense that there are no 
isolated clusters. Then, the coupling matrix A is a 
symmetric irreducible matrix. In this case, zero is 
an eigenvalue of A with multiplicity 1 and all the 
other eigenvalues are strictly negatives [45, 46]. 
Synchronization state in complex dynamical 
networks, Equations 4 and 5, can be characterized 
by the nonzero eigenvalues of the coupling matrix 
A. The complex dynamical network, Equations 4 

and 5, is said to achieve (asymptotically) 
synchronization, if [45]: 
 

. t    ttt as )()()( N21     ,xxx        (7) 

 
The diffusive coupling condition in Equation 6 
guarantees that the synchronization state is a 
solution, s(t)  Rn, of an isolated node, that is 
 

s s( ) ( ( )),t f t   (8) 

 
where s(t), can be an equilibrium point, a periodic 
orbit or, a hyperchaotic attractor. Thus, stability of 
the synchronization state, 
 

),()()()( N21 tttt sxxx    (9) 

 
of complex networks in Equations 4 and 5, are 
determined by the dynamics of an isolated node, 
i.e. the nonlinear function f (and its solution s(t)), 
the coupling strength c, the inner linking matrix , 
and matrix A. In this work we choose  = [1,0,…,0], 
with this liking matrix, we can guarantee at least 
network sinchronization of the first state of all 
nodes. Network synchronization among the first 
states of the nodes is enough to achieve the final 
goal of the chaotic synchronization that is the 
transmission of encrypted information. If we want to 
achieve network synchronization of all states of the 
nodes, then we should use all states of the nodes 
as signal timing, rather than just the first state. 
 
3.2 Synchronization conditions 
 
Theorem 1 [45, 46] Consider the dynamical 
network in Equations4 and 5. Let  
 

N321 0       (10) 

 
be the eigenvalues of its coupling matrix A. 
Suppose that there exists a NxN diagonal matrix   

D > 0 and two constants d < 0 and  > 0, such that 
 
    NIΓ  dΓ(t))Df(d(t))Df( T sDDs  

 (11) 

 
for all d ≤ d , where IN  RN×N is an unit matrix. If, 
moreover, 
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 2c ,d             (12) 

 
then, the synchronization state, Equation 9, of 
dynamical network in Equations 4 and 5 is 
exponentially stable. 
 

Since 2 < 0 and d < 0, inequality in Equation 12 is 
equivalent to: 
 




2

c .
d

             (13) 

 
Synchronizability of dynamical network in Equations 
4 and 5 with respect to a specific coupling 
configuration can be characterized by the second-
largest eigenvalue (2) of coupling matrix A. 
 
3.3 Nearest-neighbor coupled networks 
 
The coupling configurations commonly studied in 
synchronization of complex dynamical networks are 
the so-called: globally coupled networks, nearest-
neighbor coupled networks, and star coupled 
networks. In this work, we concentrate on the 
synchronization in nearest-neighbor coupled 
networks with identical nodes (3D CNNs). In the 
sequel, we will show the particular arrangement of 
the coupling matrix for this class of complex 
dynamical networks. A nearest-neighbor coupled 
network consists of N nodes arranged in a ring, 
where each node i is adjacent to the neighbor 
nodes i ± 1, i ± 2,...,i ± K/2 where K is even, with 
coupling matrix defined by: 
 




























K

K

K








001

1100

011

101

A             (14) 

 
 
 
 
 
 
 
 
 

and the second largest eigenvalue given by: 
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For a fixed K, 2 decreases to zero as N goes to 
infinity 
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  (16) 

 
condition in Equation 15 implies that the networks 
no synchronize if N is too large. 
 
4. Synchronization of 3D CNNs in nearest-
neighbor networks 
 
In this section, first, we show the particular 
arrangements of nearest-neighbor dynamical 
networks, considering four coupling scenarios: 
nearest-neighbor networks without chaotic 
master, directed ring, open ring (path), and 
directed path, by using the 3D CNN-node 
(Equations 2 and 3) as fundamental node (see 
Figure 2). Finally, we show synchronization in the 
designed dynamical networks. 
 

 
 

Figure 2 a) Nearest-neighbor coupled network, b) 
directed ring coupled network, c) open ring (path) 

coupled network, and d) directed path coupled network. 
 
The complex dynamical networks to be constructed 
with N coupled 3D CNNs Equations 2 and 3, take 
the following form (according to Equations. 4 and 5), 
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for i = 1,2,…,N, with input signals defined by 
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If the input signals (Equation 17) are ui1  0 for                  
i = 1,2,…,N, then we have the original set of N 
uncoupled 3D CNNs (Equations 2 and 3), which 
evolve according to their own dynamics, and of 
course, the uncoupled N nodes are not

synchronized. In particular, for the networks in 
Equations. 16 and 17, we consider N = 5 and  = 
diag(1,0,0) from Equation 5, that is, we have five 
3D CNN-nodes composing the (nearest-neighbor) 
dynamical networks to be synchronized. 
 
Let us rewrite explicitly, the arrangements of the 
(nearest-neighbor) dynamical networks (Equations 
16 and 17) for five nodes. The first 3D CNN-node is 
given by: 
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the second one is described by 
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the third one by means of 
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the fourth one by 
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and the fifth one as 
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In the sequel, we present four nearest-neighbor 
connection topologies for networks with five 3D 
CNN-nodes, in the four cases: nearest-neighbor 
networks without chaotic master node, directed 
ring, open ring (path), and directed path. 
 
Case 1 (Network without master node): Five 
uncoupled chaotic 3D CNN-nodes (Equations 2 
and 3) to be synchronized in a dynamical network 
in a nearest-neighbor configuration without master 
node, see Figure 2(a). 
 
The coupling matrix (Equation 14) for this case with        
K = 2, is given by 
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and the second largest eigenvalue is: 
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For synchronization purpose, we have designed the 
input signals ui1 = g(xi1; c), i = 1, 2,…,5 to construct 
the mentioned arrangement, that explicitly are 
given by: 
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To construct the nearest-neighbor coupled network 
without master node shown in Figure 2(a), we use 
Equations 18 and 22, with input signals from 
Equation 23. We take the initial conditions: x11(0) = 

0.14, x12(0) = 0.5, x13(0) = 0.1, x21(0) = 0.15, x22(0) = 
0.6, x23(0) = 0.2, x31(0) = 0.16, x32(0) = 0.7, x33(0) = 
0.05, x41(0) = 0.13, x42(0) = 0.4, x43(0) = 0.25,            
x51(0) = 0.12, x52(0) = 0.45, and x53(0) = 0.3. With 

 1d  we can stabilize to zero all the states of a 

single (isolated) node. With  1d , we can obtain 
from Equation 13,  0.7236c , for the computer 
simulations we have used the coupling value          
c = 70. With these values the Theorem 1 
guarantees synchronization in the network with five 
chaotic 3D CNN-nodes. Figure 3, shows chaos 
synchronization in the first state of five 3D CNN-
nodes, xi1, i = 1,…,5, and the chaotic attractor 
corresponding to new chaotic collective behavior in 
the dynamical network (Equations 18 to 22) with 
input signals (Equation 23), projected onto the (x11, 

x12, x13)-space. Figures 4 and 5, show the phase 
diagrams of the second and third states, from these 
figures we can see that the second and third states 
do not synchronize. 
 
Case 2 (Directed ring): Five uncoupled chaotic 3D 
CNN-nodes (Equations. 2 and 3) to be 
synchronized in a nearest-neighbor network with 
directed ring configuration, see Figure 2(b).  
To construct the proposed arrangement, we have 
used the coupling signals xi1, i = 1,…,5 for the five 
3D CNN-nodes. For this purpose, we have 
designed the input signals ui1 = g(xi1; c), i = 1,…,5, 
that explicitly are given by: 
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  (24) 

 
Now, by using Equations 18 to 22 with input signals 
(Equation 24) among chaotic 3D CNN-nodes, we 
have constructed the nearest-neighbor network 
with directed ring configuration shown in Figure2(b) 
to be synchronized. For this network, the 
corresponding coupling matrix is given by 
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Figure 3. Synchronization in the first state (xi1, i = 1,…,5) of five chaotic 3D CNNs in nearest-neighbor configuration 
without master node, and the new chaotic attractor of the collective behavior in the network,  

projected onto the (x11, x12, x13)-space. 
 

 
 

Figure 4. Phase diagrams of the second state (xi2, i = 1,…,5) of five chaotic 3D CNNs in nearest-neighbor 
configuration without master node, and the new chaotic attractor of the collective behavior  

in the network, projected onto the (x11, x12, x13)-space. 
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 
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A

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0
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0 0 0 1 1

 

 
with eigenvalues: 1 = 0, 2 = -0.691 + 0.9511j,     
3 = -0.691 – 0.9511j, 4 = -1.809 + 0.5878j, and   
5 = -1.809 – 0.5878j. Matrix A is no longer 
symmetric, however their nonzero eigenvalues 
have negative real part, so Theorem 1 still holds. 
Initial conditions and the constants d and d are 
the same as in previous case, and with coupling 
value c = 70. With these values the Theorem 1 
guarantees chaos synchronization in the 
dynamical network with five 3D CNN-nodes.  
The Figure 6. shows chaos synchronization in 
the first state of five CNN-nodes, i.e., xi1, i = 
1,…,5, and the chaotic attractor of the collective 
behavior imposed by the master node 1 in the 
dynamical network, projected onto the (x11, x12, 
x13)-space. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 3 (Open ring (path)): Five uncoupled chaotic 
3D CNN-nodes (Equations 2 and 3), to be 
synchronized in a nearest-neighbor network with 
open ring (path) configuration, see Figure 2(c).  
To construct the proposed arrangement, we have 
used the coupling signals xi1, i = 1,…,5 for the five 
3D CNN-nodes. For this purpose, we have 
designed the input signals ui1 = g(xi1; c), i = 1,…,5, 
that explicitly are given by: 
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         (25) 

 
Now, by using Equations 18 to 22 with input signals 
(Equation 25) among chaotic 3D CNN-nodes, we 
have constructed the nearest-neighbor network 
with open ring (path) configuration, shown in Figure 
2(c) to be synchronized. For this network, the 
corresponding coupling matrix is given by: 
 
 

 
 

Figure 5. Phase diagrams of the third state (xi3,  i = 1,…,5) of five chaotic 3D CNNs in nearest-neighbor 
configuration without master node, and the new chaotic attractor of the collective behavior 

 in the network, projected onto the (x11, x12, x13)-space. 
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with eigenvalues: 1 = 0, 2 = -0.382,     3 = -1.382, 
4 = -2.618, and   5 = -3.618. Initial conditions and 

the constants d  and d are the same as in previous 
case, and with coupling value c = 70. With these 
values the Theorem 1 guarantees chaos 
synchronization in the dynamical network with five 3D 
CNN-nodes. Figure 7. shows chaos synchronization 
in the first state of five CNN-nodes, i.e., xi1, i = 1,…,5, 
and the chaotic attractor of the collective behavior 
imposed by the master node 1 in the dynamical 
network, projected onto the (x11, x12, x13)-space. 
 
Case 4 (Directed path): Five uncoupled chaotic 
3D CNN-nodes (Equations 2 and 3,) to be 
synchronized in a nearest-neighbor network with 
directed path configuration, see Figure 2(d). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To construct the proposed arrangement, we 
have used the coupling signals xi1, i = 1,…,5 for 
the five 3D CNN-nodes. For this purpose, we 
have designed the input signals ui1 = g(xi1; c), i = 
1,…,5, that explicitly are given by: 
 



 

 

 

 

11

21 11 21

31 21 31

41 31 41

51 41 51

0,

( ),

( ),

( ),

( ).

u

u c x x

u c x x

u c x x

u c x x

       (26) 

 
In this case, u11 = 0 because the node 1 is the 
master node, i.e. it does not receive any input 
signal from any other node of the network; the 
role of the node 1 is to drive to other nodes. Now, 
by using Equations 18 to 22 with input signals 
(Equation 26) among chaotic 3D CNN-nodes, we 
have constructed the nearest-neighbor network 
with open ring (path) configuration, shown in 
Figure 2(d) to be synchronized. For this network, 
the corresponding coupling matrix is given by 
 
 
 

 
 

Figure 6. Synchronization in the first state (xi1, i = 1,…,5) of five chaotic 3D CNNs in nearest-neighbor network 
with directed node configuration, and the new chaotic attractor of the collective behavior in the network, projected 

onto the (x11, x12, x13)-space. 
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with eigenvalues: 1 = 0, 2 = 3 = 4 = 5 = -1. 
Matrix A is no longer symmetric, however their 
nonzero eigenvalues have negative real part, so 
Theorem 1 still holds. Initial conditions and the 

constants d  and d are the same as in previous 
case, and with coupling value c = 70. With these 
values the Theorem 1 guarantees chaos 
synchronization in the dynamical network with 
five 3D CNN-nodes. Figure 8, shows chaos 
synchronization in the first state of five CNN-
nodes, i.e., xi1, i = 1,…,5, and the chaotic 
attractor of the collective behavior imposed by 
the master node 1 in the dynamical network, 
projected onto the (x11, x12, x13)-space. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remark 1: It is important to mention that an exact 
synchronization was only achieved in the first state 
in the four cases (i.e., in second and third states, 
the synchronization is approximate, that is, the 
synchronization error is approximately to zero). 
Figures 4 and 5, show the phase diagrams of the 
second and third states for the first case of study. 
From these figures we can see that the second and 
third states do not synchronize. This behavior of the 
second and third states is repeated in the next 
three cases of study. 
 
5. Encrypted chaotic communications 
 
In this final section, we apply the synchronization of 
five chaotic 3D CNNs with directed path configuration 
(Fig. 2(d)), to secure communication of confidential 
information. In particular, we construct a chaotic 
communication network system to transmit a 
encrypted pulse train as information. The purpose is 
to send the pulse train, from a transmitter (chaotic 3D 
CNN-node 1) to each receiver (3D CNN-nodes N2, 
N3, N4, and N5) via public channels. 
 
 

 
 

Figure 7. Synchronization in the first state (xi1, i = 1,…,5) of five chaotic 3D CNNs in nearest-neighbor network 
with open ring configuration, and the new chaotic attractor of the collective behavior in the network, projected 

onto the (x11, x12, x13)-space. 
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Figure 9. shows the chaotic communication 
scheme to transmit hidden messages from node N1 
(transmitter) to the four remote receivers. The 
transmission is achieved by using chaotic switching 
technique, see e.g. [2, 4, 10-14]. In this technique, 
a binary signal m(t) is used to modulate one 
parameter of transmitter (node N1). According to 
the value of m(t) at any given time t; the transmitter 
has either the parameter value p or p’. For 
example, if is a ‘0’ bit for transmission, then the 
transmitter has the parameter value p, otherwise 
the parameter value is p’. So, m(t) controls a switch 
whose action changes the parameter values 
between p and p’ in the transmitter, while the 
remote receivers have all time the parameter value 

 
p. The synchronization error ei+1(t) = xi;1(t) - xi+1,1(t),  
i = 1, 2, 3, 4 decides if the received signal 
corresponds to a ‘0’ or ‘1’ bit. Thus, when 
transmitter and each receiver synchronize (i.e.,  
ei(t) = 0, i = 2, 3, 4, 5) can be interpreted as a ‘0’ bit, 
and when transmitter with the receivers no 
synchronize (i.e., ei(t) ≠ 0, i = 2, 3, 4,  5) will be 
interpreted as a ‘1’ bit. The diference between p 
and p’ must be small so the transmitter node does 
not lose its chaotic behavior, but big enough to 
produce a momentaneous lose of synchrony with 
the other nodes of the network (receivers). This 
momentaneous lose of synchrony can be detected 
in the synchrony error. The correct value of p’ is 
selected experimentally. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Synchronization in the first state (xi1, i = 1,…,5) of five chaotic 3D CNNs in directed path configuration, 
and the new chaotic attractor of the collective behavior in the network, projected onto the (x11, x12, x13)-space. 

 
 

Figure 9 . Chaotic communication network system to transmit encrypted image messages. 
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In this work, to transmit an encrypted train pulse via 
chaotic switching, let T11 be the parameter to be 
modulated in the 3D CNN (Equation 18) node N1. 
The binary information m(t) is adding to T11 as 
follows, T11(t) = T11+r·m(t), where r = 0:01. Let us 
consider the train pulse shown in Figure 10(a) as 
the confidential message to be transmitted. In 
Figure 10(b), the first state of node N1 without 
transmission is showed. Figure 10(c) illustrates the 
train pulse transmission through an insecure 
channel in the communication network, when the 
parameter T11 in the transmitter (node N1, Equation 
18) is switched between T11 = 1.49 (to encode a ‘0’ 
bit) and T’11 = 1.5 (to encode a ‘1’ bit). At the 
remote receiver ends, the synchronization error

detection ei(t) = xi;1(m(t)) - xi+1,1(t), i = 1, 2, 3, 4 is 
achieved for the recovered binary sequence m’(t) 
after a low-pass filtering stage. Finally, from m(t), 
the recovered train pulse message is shown in 
Figure 11. The rule to obtain the binary sequence 
m’(t) is based on the synchronization error 
detection ei(t),   i = 2; 3; 4; 5 for each bit period to 
assign a ‘0’ or ‘1’ bit, as follows: when in the 
receiver ends we have ei(t) ≠ 0, then is a ‘1’ bit and 
when ei(t) = 0, then is a ‘0’ bit. Note that, an 
eavesdropper (in any public channel of the 
communication network system) will obtain the 
encrypted image shown in Figure 10(c), 
constructed from the transmitted chaotic signal    
x11 (m(t)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10 (a). Train pulse m(t) to be transmitted, (b) first state of the transmitter node N1 without transmission, (c) 
first state of the transmitter node N1 modulated with the message and transmitted through public channel. 

 

 
 

Figure 11. Synchronization error in each receiver node. 
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In the sequel, by using the same chaotic 
communication network system (see Figure 9), we 
illustrate the encrypted image transmission. 
Previously, in the encryption process, the image 
message is converted to a binary sequence, to 
obtain m. Figure 12 shows the image message to 
be sent to set of remote receivers, Figure 13, 
shows the chaotic encrypted image message, and 
Figure 14, the recovered image message from m’ 
by the nodes N2, N3, N4, and N5. If we use a 
different node to transmit the message only the 
subsequent nodes will recover the message, in 
Table 1 a relation of this is shown. If we want to 
transmit a message to a prior node, we will need 
another directed path network in the opposite 
direction in order to have a full duplex connection. 
 

 
 
Figure 12. Original image message (“mime”) to be sent. 

 

 
 

Figure 13 Chaotic encrypted image message through 

insecure channel.  
 
6. Concluding remarks 
 
In this paper, we have presented the 
synchronization of multiple coupled chaotic 3D 
CNNs. We have achieved synchronization in the 
designed of a nearest-neighbor complex networks 
in four scenarios, without chaotic master node, in a 
directed ring configuration, open ring (path) 
configuration and directed path configuration. It was 
shown that, in the three last presented cases, the 
synchronization in second and third states is only 
approximate, while the first state is synchronized, in 
the first scenario the syncronization is complete. In 
addition, based on synchronization of multiple 3D 
CNNs in nearest-neighbor coupled networks we
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have presented an application to chaotic 
communications to transmit a train pulse as 
messages, from a single transmitter (node N1) to 
remote multiple receivers (nodes N2, N3, N4, and 
N5) via public channels. We also give an example 
transmitting an image. 
 

 
 

Figure 14. Recovered image message ("mime"). 
 

Transmitter node Receiver nodes
N1 N2, N3, N4 and N5 
N2 N3, N4 and N5 
N3 N4 and N5 
N4 N5 
N5 None 

 
Table 1. Transmission scheme. 
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