
 

 

Journal of Applied Research and Technology 5

  
 
 

Using Object's Contour, Form and Depth to Embed Recognition 
Capability into Industrial Robots 
 
I. López-Juárez*1, M. Castelán1, F.J.Castro-Martínez1, M. Peña-Cabrera2, R.Osorio-Comparan2 

 
1Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional 
Robótica y Manufactura Avanzada 
Ramos Arizpe, Coahuila., México 
*ismael.lopez@cinvestav.edu.mx 
2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas 
Universidad Nacional Autónoma de México 
Mexico City, Mexico. 
 
 
ABSTRACT 
Robot vision systems can differentiate parts by pattern matching irrespective of part orientation and location. Some 
manufacturers offer 3D guidance systems using robust vision and laser systems so that a 3D programmed point can 
be repeated even if the part is moved varying its location, rotation and orientation within the working space. Despite 
these developments, current industrial robots are still unable to recognize objects in a robust manner; that is, to 
distinguish an object among equally shaped objects taking into account not only the object’s contour but also its form 
and depth information, which is precisely the major contribution of this research. Our hypothesis establishes that it is 
possible to integrate a robust invariant object recognition capability into industrial robots by using image features from 
the object’s contour (boundary object information), its form (i.e., type of curvature or topographical surface 
information) and depth information (from stereo disparity maps). These features can be concatenated in order to form 
an invariant vector descriptor which is the input to an artificial neural network (ANN) for learning and recognition 
purposes. In this paper we present the recognition results under different working conditions using a KUKA KR16 
industrial robot, which validated our approach. 
 
Keywords: Invariant object recognition, neural networks, shape from shading, stereo vision, robot vision. 

 
RESUMEN 
Los sistemas de visión para robots pueden diferenciar partes mediante el apareamiento de patrones sin 
considerar su orientación o localización. Algunos fabricantes ofrecen sistemas de guiado 3D utilizando sistemas 
robustos de visión y laser, de tal forma que un punto programado puede ser repetido aún si la parte se ha 
movido cambiando su orientación, localización o rotación dentro del espacio de trabajo. A pesar de estos 
desarrollos, los robots industriales actuales son todavía incapaces de reconocer objetos de manera robusta; 
esto es, distinguir un objeto de entre varios objetos similares tomando información no solo de su contorno, sino 
también su forma y profundidad, lo que se constituye la contribución principal de esta investigación. Nuestra 
hipótesis establece que es posible integrar la capacidad de reconocimiento invariante de objetos en robots 
industriales mediante el uso de características de contorno del objeto (información de la frontera del objeto), su 
forma (i.e., tipo de curvatura o información topográfica de la superficie) e información de profundidad (mediante 
mapas estéreo de disparidad). Estas características pueden ser concatenadas para formar un vector descriptivo 
que sea presentado a la entrada de una red neuronal artificial (RNA) para propósitos de aprendizaje y 
reconocimiento. En este artículo presentamos los resultados de reconocimiento para diferentes condiciones de 
trabajo empleando un robot industrial KUKA KR16, lo que valida nuestro enfoque. 
 

 
1. Introduction 
 
Industrial robots are not equipped with a built-in 
object recognition capability in its standard version, 
but as an option. Robot vision systems can 
differentiate parts by pattern matching irrespective 
of part orientation and location and even some 

 
 
manufacturers offer 3D guidance using robust 
vision and laser systems so that a 3D programmed 
point can be repeated even if the part is moved 
varying its rotation and orientation within the 
working space. Despite these developments, 
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current industrial robots are still unable to recognise 
objects in a robust manner; that is, to distinguish 
among equally shaped objects under different 
lighting conditions unless an alternative method is 
used. When the objects within the workspace have 
different shapes and the area is well illuminated, the 
recognition task is relatively simple; however, the 
task becomes complicated when objects are 
identical or similar in shape but with slightly different 
form. The form of a piece can be thought of a three-
dimensional feature that includes the shape and 
also its depth. In this work, we present an original 
approach to solve the problem of recognizing a 
specific object using three main algorithms: BOF 
(boundary object function), SFS (shape from 
shading) and to estimate the object’s height, the use 
of stereo vision algorithms. The information is 
concatenated into an input vector with an artificial 
neural network (ANN) which determines the object’s 
type and depth information in order to provide the 
information to the manipulator for selection and 
grasping purposes. 
 
In this article, after presenting related and 
original work in Section 2, the contour vector 
description (BOF), the SFS vector and the stereo 
disparity map (Depth) are explained in Sections 
3, 4 and 5, respectively. A description of the 
learning algorithm using the FuzzyARTMAP ANN 
is given in Section 6, whereas the employed 
testbed is described in Section 7, followed by 
Section 8 that describes the results considering 
the recognition rates of the algorithm and some 
grasping tasks using an industrial manipulator. 
Finally, conclusions and future work are 
described in Section 9. 
 
2. Related work 
 
Some authors have contributed with techniques for 
invariant pattern classification using classical 
methods such as invariant moments [1]; artificial 
intelligence techniques, as used by CemYüceer & 
Kemal Oflazer [2], which describe a hybrid pattern 
classification system based on a pattern pre-
processor and an ANN invariant to rotation, scaling 
and translation.  Stavros J. & Paulo Lisboa 
developed a method to reduce and control the 
number of weights of a third-order network using 
moment classifiers [3] and Shingchern D. You & G. 
Ford, 1994) proposed a network for invariant 
object recognition of objects in binary images using 

four subnetworks [4]. Montenegro used the Hough 
transform to invariantly recognize rectangular 
objects (chocolates) including simple defects [5]. 
This was achieved by using the polar properties of 
the Hough transform, which uses the Euclidian 
distance to classify the descriptive vector. This 
method showed to be robust with geometric 
figures, however for complex objects it would 
require more information coming from other 
techniques such as histogram information or 
information coming from images with different 
illumination sources and levels. Gonzalez et al. 
used a Fourier descriptor, which obtains image 
features through silhouettes from 3D objects [6]. 
Their method is based on the extraction of 
silhouettes from 3D images obtained by laser 
scanning, which increases recognition times. 
 
Another interesting method for 2D invariant 
object representation is the use of the 
compactness measure of a shape, sometimes 
called the shape factor, which is a numerical 
quantity representing the degree to which a 
shape is compact. Relevant work in this area 
within the theory of shape numbers was 
proposed by Bribiesca and Guzman [7]. 
 
Worthington studied topographical information 
from image intensity data in grey scale using the 
shape from shading (SFS) algorithm [8]. This 
information is used for object recognition. It is 
considered that the shape index information can 
be used for object recognition based on the 
surface curvature. Two attributes were used, one 
was based on low-level information using a 
curvature histogram, and the other was based on 
the structural arrangement of the shape index 
maximal patches and its attributes in the 
associated region. 
 
Lowe defines a descriptor vector named SIFT 
(Scale Invariant Feature Transform), which is an 
algorithm that detects distinctive image points and 
calculates its descriptor based on the orientation 
histograms of the encountered key points [9]. The 
extracted points are invariants to scale, rotation as 
well as source and illumination level changes. 
These points are located within a maximum and 
minimum of a Gaussian difference applied to the 
space scale. This algorithm is very efficient, but the 
processing time is relatively high and furthermore 
the working pieces have to have a rich texture. 
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M. Peña et al. [10] introduced a method that finds 
the centroid, orientation, edges of parts, among 
other characteristics for the object recognition 
system. This method consists primarily in 
determining the distance from the centroid to the 
object perimeter, making a sweep angle that 
generates a descriptive vector called Boundary 
Object Function (BOF), which is classified by an 
ANN. However, its scope was limited only to 2D 
invariant object recognition. The above mentioned 
methods are summarised in Table 1. 
 
2.1 Original work and main contribution 
 
Classic algorithms such as moment invariants are 
popular descriptors for image regions and boundary 
segments; however, computation of moments of a 
2D image involves a significant amount of 
multiplications and additions in a direct method. In 
many real-time industrial applications, the speed of 
computation is very important, the 2D moment 
computation is intensive and involves parallel 
processing, which can become the bottleneck of 
the system when moments are used as major 
features. In addition to this limitation, observing 
only the piece’s contour is not enough to recognize 
an object since objects with the same contour can 
still be confused. 
 
In order to cope with this limitation, in this paper a 
novel method that includes a parameter about the 
piece contour (BOF), the shape of the object’s 
curvature as its form (SFS) and the depth

information from the stereo disparity map (Depth) is 
presented as main contribution. 
 
The BOF algorithm determines the distance from 
the centroid to the object’s perimeter and the SFS 
calculates the curvature of the way that light is 
reflected on parts, whereas the depth information is 
useful to differentiate similar objects with different 
height. These features (contour, form and depth) 
are concatenated in order to form an invariant 
vector descriptor which is the input to an artificial 
neural network (ANN). 
 
3. Object's contour 
 
As mentioned earlier, the Boundary Object 
Function (BOF) method considers only the object’s 
contour to recognise different objects. It is very 
important to obtain as accurately as possible, 
metric properties such as area, perimeter, centroid 
point, and distance from the centroid to the points 
of the contour of the object. In this section, a 
description of the BOF method is presented. 
 
3.1 Metric properties  
 
The metric properties for the algorithm are based 
on the Euclidean distance between two points in 
the image plane. The first step is to find the object 
in the image performing a pixel-level scan from top 
to bottom (first criterion) and left to right (second 
criterion). For instance, if an object in the image 
plane is higher than the others, this object will be 

Technique Authors Year 

Moment invariants Hu 1962

Compactness measure of a shape Bribiesca and Guzman 1980

Moment classifiers and ANN Perantonis and Lisboa 1992

Preprocessing using translational, scale and rotational blocks CemYüceer and KemaOflazer 1993

Four subnetworks (Radon and rapid transform) You and Ford 1994

Shape from shading (topographical information) Worthington and Hancock 2001

Fourier descriptor Gonzalez, et al. 2004

Scale Invariant Feature Transform Lowe 2004

Boundary Object Function (BOF) Pena et al. 2005

Hough Transform Montenegro 2006

 
Table 1. Some techniques for invariant object recognition. 
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considered first. In the event that all objects are 
from the same height, then the second criterion 
applies and the selected object will be the one 
located more to the left. 
 
3.1.1 Perimeter 
 
The definition of perimeter is the set of points that 
make up the shape of the object, in discrete form 
and is the sum of all pixels that lie on the contour, 
which can be expressed as:  
 P =  ∑ ∑ pixels(i, j) ∈ contour୨୧    (1) 

 
where contour is formed by pixels from the 
object’s border. 
 
Equation (1) shows how to calculate the perimeter; 
the problem lies in finding which pixels in the image 
belong to the perimeter. For searching purposes, 
the system calculates the perimeter obtaining the 
number of points around a piece grouping X and Y 
points coordinates corresponding to the perimeter 
of the measured piece in clockwise direction. The 
perimeter calculation for every piece in the region 
of interest (ROI) is performed after the binarization. 
Search is always accomplished, as mentioned 
earlier, from top to bottom and left to right. Once a 
white pixel is found, all the perimeter is calculated 
with a search function as it is shown in Figure 1. 
 
The next definitions are useful to understand 
the algorithm: 
 
 

 A nearer pixel to the boundary is any pixel 
surrounded mostly by black pixels in 8-
connectivity. 
 

 A farther pixel to the boundary is any pixel that 
is not surrounded by black pixels in 8-
connectivity. 
 

 The highest and lowest coordinates are the 
ones that create a rectangle (boundary box). 

 
The search algorithm executes the following 
procedures once it has found a white pixel: 
 
1. Searches for the nearer pixel to the boundary 

that has not been already located. 
2. Assigns the label of actual pixel to the nearer 

pixel to the boundary recently found. 
3. Paints the last pixel as a visited pixel. 
4. If the new coordinates are higher than the last 

higher coordinates, the new values are 
assigned to the higher coordinates. 

5. If the new coordinates are lower than the last 
lower coordinates, the new values are assigned 
to the lower coordinates. 

6. Steps 1 to 5 are repeated until the procedure 
returns to the initial point, or no other nearer 
pixel to the boundary is found. 

 
This technique will surround any irregular shape 
very fast and will not process useless pixels of 
the image. 

 
 

 
 

Figure 1. Perimeter calculation of a workpiece. 
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3.1.1 Area 
 
The area of an object is defined as the space 
between a region, in other words, the sum of all 
pixels that form the object, which can be defined by 
Equation (2): 
 
  A =  ∑ ∑ pixels (i, j) ∈ form୨୧                    (2) 

 
where form is defined as all pixels (i,j) = 1 inside the 
ROI, in a binarized image. 
 
3.1.2 Centroid 
 
The center of mass of an arbitrary shape is a pair 
of coordinates (Xc, Yc) in which all its mass is 
considered concentrated and on which all the 
resultant forces are acting on. In other words it is 
the point where a single support can balance the 
object. Mathematically, in the discrete domain, the 
centroid is defined as: 
 Xc =  ଵA ∑ j୶,୷  Yc =  ଵA ∑ i୶,୷               (3) 

 

where A is obtained from Equation (2). 
 
3.2 Generation of the descriptive vector  
 
The generation of the descriptive vector called The 
Boundary Object Function (BOF) is based on the 
Euclidean distance between the object’s centroid 
and the contour [10]. If we assume that P1(X1, Y1) 
are the centroid coordinates (Xc , Yc) and P2(X2,

Y2) is a point on the perimeter, then this distance is 
determined by the following equation: 
 d(Pଵ, Pଶ) =  ඥ(Xଶ − Xଵ)ଶ + (Yଶ − Yଵ)ଶ  

       (4) 
 

The descriptive vector (BOF) in 2D contains the 
distance calculated in eq. (4) for the whole object’s 
contour. The vector is composed by 180 elements 
where each element represents the distance data 
collected every two degrees. The vector is 
normalized by dividing all the vector elements by 
the element with maximum value. Figure 2 shows 
an example where the object is a triangle. In 
general, the starting point for the vector generation 
is crucial, so the following rules apply: the first step 
is to find the longest line passing through the 
center of the piece, as shown in Figure 2(a), there 
are several lines. The longest line is taken and 
divided by two, taking the center of the object as 
reference. Thus, the longest middle part of the line 
is taken as shown in Figure 2(b) and this is taken 
as starting point for the BOF vector descriptor 
generation as shown in Figure 2(c). The object’s 
pattern representation is depicted in Figure 2(d). 
 
4. Object's form 
 
The use of shading is taught in art class as an 
important cue to convey 3D shape in a 2D image. 
Smooth objects, such as an apple, often present a 
highlight at points where a reception from the light 
source makes equal angles with reflection toward 

 
 

Figure 2. Example for the generation of the BOF vector. 
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the viewer. At the same time, smooth object get 
increasingly darker as the surface normal becomes 
perpendicular to rays of illumination. 
Planarsurfaces tend to have a homogeneous 
appearance in the image with intensity proportional 
to the angle between the normal to the plane and 
the rays of illumination.  In other words, the Shape 
From Shading algorithm (SFS) is the process of 
obtaining three-dimensional surface shape from 
the reflection of light in a greyscale image. It 
consists primarily of obtaining the orientation of the 
surface due to local variations in brightness that is 
reflected by the object, and the intensities of the 
greyscale image are taken as a topographic 
surface. 
 
In the 70's, Horn formulated the problem of Shape 
From Shading finding the solution of the equation 
of brightness or reflectance trying to find a single 
solution [11]. Today, the issue of Shape from 
Shading is known as an ill-posed problem, as 
mentioned by Brooks, causing ambiguity between 
what has a concave and convex surface, which is 
due to changes in lighting parameters [12]. To 
solve the problem, it is important to study how the 
image is formed, as mentioned by Zhang [13]. A 
simple model of the formation of an image is the 
Lambertian model, where the grey value in the 
pixels of the image depends on the direction of 
light and surface normal. So, if we assume a 
Lambertian reflection, we know that the direction of 
light and brightness can be described as a function 
of the object surface and the direction of light, and 
then the problem becomes a little simpler. 
 
The algorithm consists in finding the gradient of the 
surface to determine the normals. The gradient is 
perpendicular to the normals and appears in the 
reflectance cone whose center is given by the 
direction of light. A smoothing operation is 
performed so that the normal direction of the local 
regions is not very uneven. When this is 
performed, some normals still lie outside of the 
normal cone reflectance, so that it is necessary to 
rotate and place them within the cone. This is an 
iterative process to finally obtain the kind of local 
surface curvature. 
 
The procedure is as follows, first the light reflectance 
E in (i, j), is calculated using the expression: 
 E (i, j) =  n୧,୨୩ ∙ s     (5) 

where: S is the unit vector for the light direction, 
and the term ݊௜,௝௞ is the normal estimation in the Kth 
iteration. The reflectance equation of the image is 
defined by a cone of possible normal directions to 
the surface as shown in Figure 3 where the 
reflectance cone has an angle of cos-1(E(i,j)). 
 

 
If the normals satisfy the recovered reflectance 
equation of the image, then these normals must fall 
on their respective reflectance cones. 
 
4.1 Image's gradient 
 
The first step is to calculate the surface normals 
which are calculated using the gradient of the 
image (I), as shown in Equation (6). 
 ∇I =  ሾp qሿT =  ቂபIப୶ பIப୷ቃT

    (6) 

 
Where [p q] are used to obtain the gradient and 
are known as Sobel operators. 
 
4.2 Normals 
 
Since the normals are perpendicular to the 
tangents, the tangents can be found by the cross 
product, which is parallel to (-p, -q, 1) T. Then we 
can write for the normal expression: 
 n =  ଵඥ୮మା୯మାଵ (−p, −q)T    (7) 

 
Assuming that the z component of the normal to 
the surface is positive. 

 
 

Figure 3. Possible normal directions to the surface 
over the reflectance cone. 
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4.3 Smoothness and rotation 
 
Smoothing, in few words can be described as 
avoiding abrupt changes between normal and 
adjacent. The Sigmoidal Smoothness Constraint 
makes the restriction of smoothness or 
regularization, forcing the error of brightness to 
satisfy the matrix rotation θ, deterring sudden 
changes in direction of the normal through the 
surface. 
 
With the normal smoothed, then the next step is to 
rotate these normals so that they lie in the 
reflectance cone as shown in Figure 4. 
 

 
 

Figure 4. Normals rotation within 
 the reflectance cone. 

 
Where ݊௜,௝௞ are the smoothed normals,  ݊௜,௝ି௞ are the 
normals after the smoothness and before the 
rotation, and ݊௜,௝௞ାଵare the normals after a rotation of 
θ degrees. The smoothness and rotation of the 
normals involve several iterations represented by 
the letter k. 
 
4.4 Shape index 
 
Koenderink separated the shape index in different 
regions depending on the type of curvature, which 
is obtained through the eigenvalues of the Hessian 
matrix, which is represented by K1 and K2 as given 
by-the-following-Equation-[14].

φ =  ଶ஠ tanିଵ ୩మା୩భ୩మା୩భ     ;     kଶ   ≥   kଵ   (8) 

 
The result of the shape index φ has values 
between [-1, 1] which can be classified, according 
to Koenderink,  depending on its local topography, 
as shown in Table 2. 
 
Figure 5 shows the image from the surface local 
form depending on the value of the Shape Index, 
and Figure 6 shows an example of the SFS vector. 
 

 
 

Figure 5. Representation of local forms 
in the Shape Index classification. 

 

 
 

Figure 6. Example of SFS Vector descriptor. 
 
5. Histogram of disparity map (depth) 
 
With binocular vision, the robot vision system is 
able to interact in a three-dimensional world coping 
with volume and distance within the environment. 
Due to the separation between both cameras, two 
images are obtained with small differences 
between them; such differences are called disparity 
and form a so-called disparity map. The epipolar 
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Table 2. Classification of the Shape Index. 
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geometry describes the geometric relationships of 
images formed in two or more cameras focused on 
a point or pole. 
 
The most important elements for this geometric 
system as illustrated in Figure 7 are: the epipolar 
plane, consisting of the pole (P) and two optical 
centers (O and O’) from two chambers. The 
epipoles (e and e’) are the virtual images of the 
optical centers (O and O’). The baseline, which 
joins the two optical centers and epipolar lines (l 
and l'), formed by the intersection of the epipolar 
plane with both images (ILEFT and IRIGHT), 
connects the epipoles with the image of the 
observed points (p, p’). 
 

 
 

Figure 7. Elements of epipolar geometry. 
 
The epipolar line is crucial in stereoscopic vision, 
because one of the most difficult parts of the 
stereoscopic analysis is the one related to 
establishing the correspondence between two 
images, mating stereo, deciding which point in the 
right image corresponds to which on the left. The 
epipolar constraint allows you to narrow the search 
for stereoscopic, correspondence of two-
dimensional (whole image) to a search in a 
dimension on the epipolar line. 
 
One way to further simplify the calculations 
associated with stereoscopic algorithms is the use 
of rectified images; that is, to replace the images 
by their equivalent projections on a common plane 
parallel to the baseline. It projects the image, 
choosing a suitable system of coordinates, the 
rectified epipolar lines are parallel to the baseline 
and they are converted to single-line exploration 
and p’, located on the same line of exploration the 
left image and right image, with coordinates (u, v) 

and (u’, v’), the disparity is given as the difference 
d = u’- u. If B is the distance between the optical 
centers, also known as baseline, it can be shown 
that the depth of P is z = −B / d. 
 
5.1 Stereoscopic matching algorithms 
 
The stereoscopic matching algorithm reproduces 
the human stereopsis process so that a machine, 
for instance a robot, can perceive the depth of 
each point in the observed scene and thus is able 
to manipulate objects, avoid or recreate three-
dimensional models. For a pair of stereoscopic 
images, the main goal of these algorithms is to find 
for each pixel in an image its corresponding pixel 
in the other image (mating), in order to obtain a 
disparity map that contains the position difference 
for each pixel between two images which is 
proportional to the depth map. To determine the 
actual depth of the scene, it is necessary to take 
into account the geometry of the stereoscopic 
system to obtain a metric map. As mating a single 
pixel is almost impossible, each pixel is 
represented by a small region that contains it, a 
so-called window correlation, thereby realizing the 
correlation between the windows of one image and 
the other, using the colour of pixels within. Once 
the disparity map is obtained, then the histogram 
of this map is the region of interest. 
 
6. Learning and recognition 
 
It is the aim of this research to investigate ANN 
methods to embed intelligence into industrial 
robots for object recognition and learning in order 
to use these skills for grasping purposes.  The 
selection of the ANN for this purpose was based 
on previous results where the convergence time 
for some ANN architectures was evaluated during 
recognition tasks of simple geometrical parts. The 
assessed networks were Backpropagation, 
Perceptron and Fuzzy ARTMAP using the BOF 
vector. Results showed that the FuzzyARTMAP 
network outperformed the other networks with 
lower training/testing times (0.838ms/0.0722ms) 
compared with Perceptron (5.78ms/0.159 ms) and 
Backpropagation (367.577ms/0.217 ms) [15]. 
 
The FuzzyARTMAP network is a supervised 
network based on the Adaptive Resonance Theory 
(ART) and whose implementation using the BOF 
was previously described in [10]. In this paper, we 
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continue working in improving our method 
including not only the BOF vector, but also 
information about the surface from the object 
(SFS) and depth information from stereo vision 
that resulted in an improved performance as it is 
described later in the paper. 
 
In the Fuzzy ARTMAP (FAM) network there are 
two modules ARTa and ARTb and an inter-ART 
“map field” module that controls the learning of 
an associative map from ARTa recognition 
categories to ARTb categories [16]. This is 
illustrated in Figure 8. 
 

 
 

Figure 8. FuzzyARTMAP architecture. 
 
The map field module also controls the match 
tracking of ARTa vigilance parameter. A mismatch 
between map field and ARTa category activated by 
input Ia and ARTb category activated by input Ib 
increases ARTa vigilance by the minimum amount 
needed for the system to search for, and if 
necessary, learn a new ARTa category whose 
prediction matches the ARTb category. The search 
initiated by the inter-ART reset can shift attention 
to a novel cluster of features that can be 
incorporated through learning into a new ARTa 
recognition category, which can then be linked to a 
new ART prediction via associative learning at the 
map field. 
 
A vigilance parameter measures the difference 
allowed between the input data and stored 
patterns. Therefore, this parameter affects the 
selectivity or granularity of the network prediction. 
For learning, the FuzzyARTMAP has 4 important 
factors: vigilance in the input module (a), vigilance 
in the output module (b), vigilance in the map field 
(ab) and learning rate (). 

For the specific case of the work presented in this 
article, the input information is concatenated and 
presented as a sole input vector A, while vector B 
receives the correspondence associated to the 
respective component, during the training process. 
 
7. Robotics testbed 
 
The robotic testbed is shown in Figure 9. It was 
integrated basically by a KUKA KR16 industrial 
robot, a Bumblebee stereo camera with 3.8mm 
focal length, 12cm baseline and 640 x 480 pixel 
resolution. The lighting consisted of 4 reflectors 
with a dimmer control to set the appropriate light 
intensity and a PC as a cell controller. The cell 
controller hosts the vision and position control 
algorithms. The communication between the cell 
controller and the KUKA robot is established via 
the serial port and is primarily intended to move 
the robot arm to the desired position for grasping; 
that is, closer to the centroid of the workpiece. 
 

 
 

Figure 9. Robotic testbed. 
 
The experimental results were obtained using two 
sets of four 3D working pieces of different cross-
section: square, triangle, cross and star. One set 
had its top surface rounded, so that these were 
referred to as being of rounded type. The other set 
had a flat top surface and referred to as pyramidal 
type. The working pieces are shown in Figure 10. 
 
8. Experimental results 
 
The total working space was defined by the field of 
view from both cameras as shown in Figure 11. 
 
It was decided using the field of view from the right 
camera as working space for the whole set of 
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experiments reported in this paper. This working 
space was further divided in six regions where the 
working pieces were located during training/testing 
stages as indicated in Figure 12. 
 

 

 
 

Figure 10. Working pieces. 
 

 
 

Figure 11. Total working space. 
 

 
 

Figure 12. Effective working space. 

 
The object recognition experiments using the 
FuzzyARTMAP (FAM) neural network were carried 
out using the above working pieces. The network 
parameters were set for fast learning (β = 1), 
choice parameter  = 0.1, vigilance parameter (ρab 
= 0.95) and three epochs.  Four types of 
experiments were carried out. The first experiment 
considered only data from the contour of the piece 
(BOF), the second experiment took into account 
the reflectance of the light on the surface (SFS), 
the third experiment was performed using only 
depth information (Depth), and the fourth 
experiment used the concatenated vector from all  
three previous descriptors (BOF+SFS+Depth). An 
example of how an object was coded using the 
three descriptors is shown in Figure 13. Two 
graphs are presented; the first graph corresponds 
to the descriptive vector from the rounded square 
object and the other corresponds to the pyramidal 
square object. The BOF descriptive vector is 
formed by the 180 first elements (observe that both 
patterns are very similar since the object’s cross-
sectional contour is the same). Following, there are 
175 elements corresponding to the SFS values 
(every value corresponds to one of the seven 
shape index values repeated 25 times). The 
following 176 values corresponded to the depth 
information obtained from the disparity histogram 
that contained 16 values repeated 11 times each. 
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Figure 14. Overall recognition results. 
 
8.1 Recognition rates 
 
Several experiments were defined to test the 
invariant object recognition capability of the 
system. For these experiments, the 
FuzzyARTMAP network was trained with 3 
patterns for each working piece located in random 
areas within the workspace. The assessment 
during the testing phase was carried out during 
three different days and three different time 
intervals (9:00h, 13:00h and 18:00h). The objects 
were located in different orientations and locations 
within the defined working space using different 
size scale (by approaching the camera to the 
object) and using different slope value. These 
settings are summarized in Table 3. 
 

Days 
Time 

intervals 
Locations 

Scale 
levels      

Slope 
degree 

(10%,20%, 
30%, 40%) 

 (10º,15º, 
20º,25º) 

3 3 6 4 4 

 
Table 3. Experimental settings. 

 

 
The overall recognition results under the above 
conditions are illustrated in Figure 14. The values 
from the first row correspond to the recognition 
rate using only the BOF, SFS, and depth vector. A 
high recognition rate was observed using each 
individual vector. Using only the BOF vector, the 
system was able to recognize 99.8%. Using the 
SFS vector, the system recognised 98.21% of 
pieces, and using depth information, 97.62%. 
 
A second test was carried out by concatenating the 
BOF+SFS and the BOF+Depth. In both cases the 
recognition rate increased when compared with the 
use of the SFS or depth vector alone. However, 
the recognition rate was lower compared with the 
obtained results using the BOF vector only. This 
can be appreciated in the second row (also 
indicated by the dotted line). 
 
Finally, when testing the complete concatenated 
vector (BOF+SFS+Depth), the recognition rate 
increased to 100%. With the trained network, the 
robustness of the recognition system was tested at 
different scale factor and also using different 
inclination for the workspace. The obtained results 
are shown in Tables 4 and 5. From these results it 
can be stated that the network was able to 
recognize the whole set of workpieces up to an 
inclination of 5º. Increasing this value up to 15º, the 
system failed in few cases and above 15º the 
recognition rate decreased mainly because of an 
observed distortion in the BOF vector. 
 
When varying the scale by approaching the 
camera, the system recognized the whole set of 
workpieces up to a 20% magnification. 

 
 

Figure 13. Input vector example. 
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8.2 Embedding the recognition capability 
 
A further test was conducted involving the KUKA 
KR16 manipulator for grasping tasks with the aim 
of grasping the correct part between two similar 
shaped objects (Rounded-square and Pyramidal–
Square). The 2D coordinates from the centroid 
was provided from the controller cell computer to 
the robot controller which ultimately moved the 
robot using incremental arm motions. The object 
center was taken from the optical center of the 
right camera. The Z-direction was obtained from 
the depth information provided by the stereo vision 
camera, which provided the object’s highest point. 
An additional offset in Z-axis was added to this 
value in order to secure a correct grasping by the 
robot. The experiment resulted satisfactory with 
the robot being able to correctly grasp the 
indicated workpiece: rounded or pyramidal. 
 
9. Conclusions and future work 
 
The research presented in this article provides an 
alternative methodology to integrate a robust 
invariant object recognition capability into industrial 
robots using image features from the object’s 
contour (boundary object information), its form (i.e.,

 
type of curvature or topographical surface 
information) and depth information from a stereo 
camera. The features can be concatenated in order 
to form an invariant vector descriptor which is the 
input to an artificial neural network (ANN) for 
learning and recognition purposes. 
 
Experimental results were obtained using two sets 
of four 3D working pieces of different cross-section: 
square, triangle, cross and star. One set had its 
surface curvature rounded and the other had a flat 
surface curvature so that these objects were 
referred to as being of the pyramidal type. 
 
Using the BOF information and training the neural 
network with this vector resulted in the whole set of 
pieces being recognized irrespective from its 
location an orientation within the viewable area. 
When information was concatenated (BOF + SFS 
and BOF + Depth), the robustness of the vision 
system lowered since the recognition rate in both 
cases was lower than using the BOF vector alone 
(99.4% and 98.61% respectively). However, when 
using the complete concatenated vector 
(BOF+SFS+Depth), this resulted in 100% 
recognition rate. The recognition was also invariant 
to a scaling up to 20% and also invariant to a slope 

Slope (Degrees) 
Recognition rate (%) 

RSq PSq RT PT RC PC RSt PSt Average 

5⁰ 100 100 100 100 100 100 100 100 100 

10⁰ 100 91.6 100 100 100 100 100 100 98.95 

15⁰ 100 100 100 100 100 100 91.6 100 98.95 

20⁰ 100 100 100 91.6 75 100 83.3 100 93.73 

25⁰ 100 100 100 91.6 83.3 100 75 100 93.73 

 
Table 4. Recognition rate for the workpieces at different slope. 

 

Scale (%) 
Recognition rate (%) 

RSq PSq RT PT RC PC RSt PSt Average 

10 100 100 100 100 100 100 100 100 100 

20 100 100 100 100 100 100 100 100 100 

30 100 100 100 100 85.7 100 100 85.7 96.4 

40 100 100 100 100 85.7 100 85.7 100 96.4 

 
Table 5. Recognition rate for the workpieces at different scale. 
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change up to 50 for the whole set of working 
pieces. With higher inclination or scaling the 
recognition rate decreased. 
 
Initial results from the object recognition system 
embedded in an industrial robot during grasping 
tasks envisaged future work in this direction. A 
limitation that we foresee is the setting of the 
camera fixed on top. A camera configuration, such 
as the hand-in-eye configuration and an automated 
light positioning system would improve the 
recognition tasks. It was recognized that both 
aspects can be improved and possibly with these 
settings the overall recognition rate can also be 
further improved. 
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