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ABSTRACT 
Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied to 
many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in 
default of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with 
local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining 
more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE), as an EA-based 
search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a 
memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of 
real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to 
effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve 
the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two 
benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm 
can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed 
memetic algorithm is a good approach to mixed-integer optimization problems. 
 
Keywords: Evolutionary algorithm, memetic algorithm, mixed-integer hybrid differential evolution, Lagrange method. 
 

 
1. Introduction 
 
Evolutionary algorithms (EAs) are powerful search 
algorithms based on the mechanism of natural 
selection [1, 2]. Unlike conventional search 
approaches, they simultaneously consider many 
points in the search space so as to increase the 
chance of global convergence Therefore, EAs 
exhibit a good potential of global exploration. In the 
past decade, EAs have been successfully applied 
to many complex continuous optimization 
problems such as highly nonlinear, non-
differentiable and multi-modal optimization 
problems [1-6]. However, EAs are frequently 
incapable of finding a precise solution in default of 
local search mechanisms. 
 
In recent years, memetic algorithms (MAs) have 
been receiving increasing attention from the 
evolutionary computation community. MAs are 
inspired by Darwinian’s principles of natural 
evolution and Dawkins’ notion of a memes [7]. 
MAs are hybrid EAs that combine genetic 
operators with local search methods. The local 
search methods are used to perform the local 

 
 
refinement procedures [8]. Therefore, they can be 
regarded as the integration between population-
based EAs and local search methods. With global 
exploration and local exploitation in search space, 
MAs are capable of obtaining more high-quality 
solutions. MAs have shown to be promising for 
solving optimization problems in a wide range of 
applications [8-11]. 
 
In real world, many optimization problems 
frequently contain integer variables in addition to 
continuous variables. For example, the standard 
formats of steel thickness must be chosen as 
integers in mechanical design. This kind of 
optimization problems involved continuous and 
integer variables are generally called mixed-integer 
optimization problems. Mixed-Integer Hybrid 
Differential Evolution (MIHDE) [12] is a mixed-
integer EA-based search algorithm. A mixed 
coding is introduced in MIHDE to implement the 
evolutionary process of continuous and integer 
variables. In order to enhance the global 
exploration, the migration is devised to maintain 
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the population diversity in MIHDE. The MIHDE has 
been successfully applied to many complex mixed-
integer optimization problems [12-14]. 
 
In this paper, a memetic algoritm based on 
MIHDE, called Memetic MIHDE, is developed to 
deal with mixed-integer optimization problems. The 
Memetic MIHDE incorporates a local search 
method called Nelder-Mead simplex method [15] 
into MIHDE to enhance the local exploitation. The 
Nelder-Mead method is one of the most popular 
derivative-free nonlinear optimization methods. 
Instead of using the derivative information of the 
function to be minimized, through reflection, 
expansion, contraction and shrinkage search steps 
for a simplex, the Nelder-Mead method can 
maintain a non-degenerate simplex to find a local 
optimum. 
 
In addition, these mixed-integer optimization 
problems are often coupled with nonlinear 
constraints so that they are more intractable 
because the feasible solution space is greatly 
suppressed by the constraints. Several methods 
based on EAs have been developed to solve 
mixed-integer optimization problems [16–18]. 
However, these methods are not well posed for 
various mixed-integer problems due to lack of a 
good constraint-handling mechanism. Hence, in 
order to tackle mixed-integer constrained 
optimization problems effectively, it is worthwhile to 
develop an efficient evolutionary mixed-integer 
constrained optimization method. In this paper, we 
can combine the Memetic MIHDE algorithm with 
Lagrange method to construct an evolutionary 
Lagrange method to deal with mixed-integer 
constrained optimization problems. Finally, the 
proposed algorithm is implemented and tested on 
two benchmark mixed-integer optimization 
problems [19]. Experimental results show that the 
proposed algorithm can find better optimal 
solutions compared with the other search 
algorithms. This demonstrates that the proposed 
memetic algorithm is a good approach to mixed-
integer optimization problems. 
 
The remainder of this paper is organized as follows. 
Section 2 presents an overview of Memetic MIHDE 
algorithm. In Section 3, The formulation of 
evolutionary Lagrange method based on Memetic 
MIHDE is developed. Computational results for 
mixed-integer constrained optimization problems are 

provided in Section 4. Finally, conclusions are drawn 
in Section 5. 
 
2. Memetic MIHDE algorithm 
 
First, consider a mixed-integer optimization 
problem as follows: 
 

)(min yx,
yx,
f

 
x x xL U   
y y yL U       (1) 
 
where x represents an nC-dimensional vector of 
real-valued variables, y is an nI-dimensional vector 
of integer-valued variables, and )( LL y,x  and 

)( UU y,x  are the lower and upper bounds of the 

corresponding decision vectors. 
 
Table 1 shows the basic operations of conventional 
evolutionary algorithms and Memetic MIHDE. Each 
operation of Memetic MIHDE is discussed as follows: 
 

Evolutionary 
Algorithms 

Memetic MIHDE 

1. Initialization 
2. Mutation 
3. Crossover 
4. Evaluation and 

Selection 
5. Repeat step 2 to 4 

until stop criterion is 
satisfied 

1. Initialization 
2. Mutation 
3. Crossover 
4. Evaluation and 

Selection 
5. Migration if necessary 
6. Local Search 
7. Repeat step 2 to 6 until 

stop criterion is satisfied 

 
Table 1. Basic operations of evolutionary  

algorithmsand Memetic MIHDE. 
 

1) Initialization 
 

The Memetic MIHDE algorithm uses 
pN  decision 

vectors }){(}{ i
GGG

i y,xz  , 
pNi ,...,1  to denote a 

population of 
pN  individuals in the G-th generation. 

The decision vector (chromosome), 
i)( yx, , is 

represented as ),...,,...,,,...,,...,( 11 injiiinjii IC
yyyxxx . 

The decision variables (genes), x ji  and y ji , are 

directly coded as real-valued and integer-valued 
numbers. The initialization process generates 

pN  
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decision vectors 
i)( yx,  randomly, and should try to 

cover the entire search space uniformly as in the form: 
 

  p
LLUU

i
LL

i Ni ,,1 ,)}(){()()( 00  y,xy,xy,xy,x   
 

       
    (2) 

 
where    i i i i n nC I

 Diag   ,  ( , , ), , ,1 2   is a diagonal 

matrix, the diagonal elements ( , , ), , ,  i i i n nC I1 2  ,   
 

are random numbers in the range 0 1, , the other 

elements are zero, and the rounding operator 

 )}(),( LU
i

LU
i yybxxa    in (2) is defined 

as ])[INT,( ba  in which the operator ][INT b  is 

expressed as the nearest integer-valued vector to 
the real-valued vector b. 
 
2) Mutation 

 
The i-th mutant individual  iGG v,u  is obtained by 

the difference for two random individuals as 
expressed in the form: The i-th mutant individual 
 iGG v,u  is obtained by the difference for two 

random individuals as expressed in the form: 
 

  
)])([INT),(()(                

)()()()(
G
l

G
km

G
l

G
kmp

GG

l
GG

k
GG

mp
GG

i
GG

ρρ

ρ

yyxxy,x

y,xy,xy,xv,u



  

 
  (3) 

 
where random indices 

pNlk ,,1,   are mutually 

different. The operator )](INT[ G
l

G
km yyb    in (3) 

is to find the nearest integer vector to the real 
vector b. The mutation factor m  is a real random 

number between zero and one. This factor is used 
to control the search step among the direction of 
the differential variation 

l
GG

k
GG )()( y,xy,x  . 

 
3) Crossover 

 
In crossover operation, each gene of the i-th 
individual is reproduced from the mutant vector 

),,,,,,,()( 2121
G
in

G
i

G
i

G
in

G
i

G
ii

GG

IC
vvvuuu v,u  and the 

individual ),,,,,,,()( 2121
G
in

G
i

G
i

G
in

G
i

G
ii

GG

IC
yyyxxx y,x  as 

follows: 
 












pC
G
li

c
G
liG

li
Ninlu

x
u

,...,1,,...,1 otherwise;,

number randoma if,
1

    (4) 

 












pI
G
li

c
G
liG

li
Ninlv

y
v

,...,1,,...,1 otherwise;,

number randoma if,
1

  (5) 

 

where the crossover factor  c  0,1  is a constant 

and the value can be specified by the user. 
 
4) Evaluation and selection 

 
The operation includes two evaluation phases. The 
first phase is performed to produce the new 
population in the next generation as (6). The 
second phase is used to obtain the best individual 
as (7). 
 

)}),((),),(({argmin)( 1111
i

GG
i

GG
i

GG ffy   vuyx,x   

 for
pNi ,,1 
 

 
  (6) 

 

},,1  ),),(({argmin)( 1111
pi

GG
b

GG Nif   yxy,x  

 
  (7) 
 

where 
b

GG )( 11  y,x  is the best individual with the 

smallest objective function value. 
 
5)  Migration 

 
In order to increase the exploration of the search 
space, a migration operation is introduced to 
generate a diversified population. Based on the 
best individual ,,,,,()( 1

1
11

2
1

1
11   G

b
G
bn

G
b

G
bb

GG yxxx
C

y,x   

),, 11
2

 G
bn

G
b I

yy  , the j-th gene of the i-th individual can 

be diversified by the following equations: 
 
























pC
G
jb

U
j

G
jb

L
j

U
j

L
j

G
jbG

jb
L
j

G
jbG

ji

Ninjxxx

xx

xx
xxx

x

,...,1,,...,1;otherwise  ),(

number randoma  if),(

1
1

1

1
1

1
1

1





         

(8) 
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






















pI
G
jb

U
j

G
jb

L
j

U
j

L
j

G
jbG

jb
L
j

G
jbG

ji

Ninjyyy

yy

yy
yyy

y

,...,1,,...,1;otherwise  )],(INT[

number randoma  if)],(INT[

1
2

1

1
1

2
1

1





       
(9) 

 
where 1

 and 2
 are the random numbers in the 

range [0,1]. 
 
The migration operation in Memetic MIHDE is 
performed only if a measure for the population 
diversity is not satisfied, that is when most of 
individuals have clustered together, the migration 
has to be actuated to make some improvements. 
In this paper, we propose a measure called the 
population diversity degree   to check whether the 

migration operation should be performed. In order 
to define the measure, we first introduce the 
following gene diversity index for each real-valued 
gene x ji

G1  and for each integer-valued gene yki
G1 , 

 











 



otherwise  ,1

 ,,...,1,,...,1; if  ,0 21

11

biNinj
x

xx

dx pCG
jb

G
jb

G
ji

ji



   
  (10) 
 



 




otherwise  ,1

 ,,...,1,,...,1; if  ,0 11 biNinjyy
dy pI

G
jb

G
ji

ji
  

   
  (11) 
 
where dx ji  and dy ji  are the gene diversity indices 

and  2 0 1[ , ]  is a tolerance for real-valued gene 

provided by the user. According to (10) and (11), 
we assign the j-th gene diversity index for the i-th 
individual to zero if this gene clusters to the best 
gene. We now define the population diversity 
degree   as a ratio of total diversified genes in the 

population. From (10) and (11) we have the 
population diversity degree as 
 

 )1)((/
1 11






















  


 

pIC

N

bi
i

n

j
ji

n

j
ji Nnnddx

p IC

   

   
  (12) 

From equations (10), (11) and (12), the value of   

is in the range [0, 1]. Consequently, we can set a 
tolerance for population diversity,  1 0 1 , , to 

assess whether the migration should be actuated. 
If   is smaller than 1

, then Memetic MIHDE 

performs the migration to generate a new 
population to escape a local solution. Contrary, if 
  is not less than  1

, then Memetic MIHDE 

suspends the migration operation to keep a 
constant search direction to a target solution. 
 
6) Local search 

 
The local search procedure of Nelder-Mead 
method [15] is used after migration operation at 
each generation. The Nelder-Mead method is a 
nonlinear programming approach in continuous 
domain. In mixed-integer programming, a simplex 
is devised to search for the optimal solution with 
respect to continuous decision variables by fixing 
the values of integer decision variables of each 
candidate solution. Therefore, the local search 
procedure refines the candidate solution to 
approach a local optimum. As a result, The 
Memetic MIHDE algorithm can enhance the global 
exploration and local exploitation for the mixed-
integer optimization problems. 
 
3. Evolutionary Lagrange method based on 
Memetic MIHDE algorithm 
 
In order to solve mixed-integer constrained 
optimization problems, a Lagrange method based 
on memetic MIHDE is developed to handle the 
constraints. First, let us consider a mixed-integer 
constrained optimization problem as follows: 
 
 )(min yx,

yx,
f   

subject to  
ej mjh ,...,1,0)( yx,  

 
ij mjg ,...,1,0)( yx,      (13) 

 
where x represents an nC-dimensional vector of 
continuous variables, y is a nI-dimensional vector 
of integer variables, and )( yx,jh  and )( yx,jg  stand 

for the equality and inequality constraints 
respectively. To abbreviate these expressions, a 
compact notation )( yx,z   is used in the following 

discussions, and the problem is referred to as 
primal problem. 
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An augmented Lagrange function corresponding to 
the primal problem is defined by: 
 

  

 












i

e

m

k
kkkk

m

k
kkkka

g

hfL

1

22

1

22

)(                            

)()()(





z

zz,z,
 

 

  (14) 
 

where 
k  and 

k  are positive penalty parameters, 

the bracket operation is denoted as  0,max gg 


, 

and ),...,( 1 em
   and 0 ),...,( 1 im

  are the 

corresponding Lagrange multipliers. 
 
In nonlinear programming, the saddle point 
theorem [20] states that, if a point is a saddle point 
of the augmented Lagrange function associated 
with the primal problem, then the point is the 
solution of the primal problem. Accordingly, the 
saddle point theorem can be used to solve mixed-
integer constrained optimization problems. 
 
If )( ***  ,,z  is a saddle point of the augmented 

Lagrange function )(  ,z,aL , then )( ***  ,,z  

satisfies the following condition: 
 

)()()( ******  ,z,,,z,,z aaa LLL   (15) 
 
The saddle point can be obtained by minimizing 

)( **  ,z,aL  with the optimal Lagrange multipliers 

)( **  ,  as a fixed parameter vector. However, the 

difficulty of this minimization is that it requires the 
knowledge of )( **  ,  previously. In general, the 

optimal values of Lagrange multipliers are 
unknown a priori. The duality theorem can be 
employed to overcome this difficulty. 
 
According to the duality theorem, the primal 
problem (13) can be transformed into a dual 
problem as follows: 
 

max ( , )
( , ) 

 H        (16) 

 

where the dual function )(  ,H  is denoted as 
 

)(min)(  ,z,,
z

aLH      (17) 

and the set   {( , ) ( , ) }    H  exists,  and 0 . 

Based on (16) and (17), the duality theorem can be 
expressed by the following duality relationship 
statements: 
 
1) )( *** y,xz   is a minimizer of the primal 

problem (13). 
 
2) ( , )* *   with 0*  is a maximizer of the dual 

problem (16). 
 
3) )()( *** z, fH  . That is, the saddle point of the 

augmented Lagrange function (14) is the optimal 
solution of the primal problem (13). 
 
According to the duality relations, we can construct 
an evolutionary max-min algorithm to solve mixed-
integer constrained optimization problems. The 
evolutionary max-min algorithm includes two 
phases as stated in Table 2. In the first phase 
(step 2 in Table 2), the Memetic MIHDE is used to 
minimize the augmented Lagrange function with 
multipliers fixed. In the second phase (step 3 in 
Table 2), the Lagrange multipliers are updated to 
ascend the value of the dual function toward 
obtaining maximization of the dual problem. 
 

Step 1.  Set initial iteration index: 0l . 

Set initial multipliers: 0lk  for 

emk ,...,1 , 0lk  for 
imk ,...,1 . 

Set penalty parameters:  for 

emk ,...,1 , 0k  for 
imk ,...,1 . 

Step 2.  Use Memetic MIHDE to minimize 

)( ll
aL υ,νz, . 

Let 
b

lll
b )( y,xz   be a minimum solution 

to the function )( ll
aL υ,νz, . 

Step 3.  Update the multipliers as follows: 
l
k

l
bk

l
k h   )(1 z  



  l
k

l
bk

l
k g  )(1 z  

Step 4.  Update 
k  and 

k , if necessary.  

Step 5.  Stop if stopping criterion is satisfied. 
Otherwise, let 1 ll  and repeat Steps 
2 to 4. 

 
Table 2. Evolutionary max-min algorithm. 

 

0k
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As far as the evolutionary computation is 
concerned, the evolutionary max-min procedure 
may increase many function evaluations and affect 
the convergence rate. However, in order to find the 
exact solution, it is necessary and inevitable unless 
using other special approaches, e.g., sequential 
quadratic programming (SQP) [21], to continuously 
update the Lagrange multipliers. Unfortunately, 
SQP is not applicable for the non-differentiable 
mixed-integer constrained optimization problems. 
The update of the Lagrange multipliers is based on 
the exact or approximate minimum of the 
augmented Lagrange function with multipliers 
fixed. As presented by Arora et al. [21], an exact or 
approximate minimum is necessary in order to 
ensure proper shift of the Lagrange function 
towards the required solution. With a rough 
minimum, the shift of the Lagrange function may 
be far away from the required solution leading to 
obtain a nonexistent dual function so that the 
duality theorem shall be disobeyed. The saddle 
point is accordingly unable to be obtained using 
the rough shift. Therefore, in order to obtain an 
exact or approximate minimum, sufficient iterations 
for Memetic MIHDE minimization phase are 
necessary for the evolutionary max-min algorithm. 
 
In addition, constant penalty parameters are used 
in the max-min algorithm. These parameters are 
suited for solving linear constrained problems 
because the contours of )(  ,z,aL  do not change 

shape from generation to generation. However, if 
the constraints are highly nonlinear, the contours 
of )(  ,z,aL  still highly depend on the values of 

penalty parameters. This fact indicates that the 
evolutionary max-min algorithm in Table 2 may be 
sensitive to the setting values of penalty 
parameters. Small penalty parameters, for 
example, might lead to an infeasible solution. On 
the other hand, large penalty parameters might 
cause the penalty functions to be ill conditioned. 
In order to increase the possibility of global 
convergence, a self-adaptation scheme for the 
penalty parameters is embedded into the 
evolutionary max-min algorithm as shown in 
Table 3. The evolutionary max-min algorithm with 
self-adaptation scheme is called Memetic MIHDE 
MIHDE-Adaptive MaxMin (Memetic MIHDE-AMM) 
algorithm. It is extended from Powell's multiplier 
algorithm [22] towards improving the extent of the 
constraint violations. 

Step 1. Set initial iteration: 0l . 

Set initial multipliers: 0lk  for 
emk ,...,1 , 

0lk  for 
imk ,...,1 . 

Set penalty parameters: 0k  for 

emk ,...,1 , 0k  for 
imk ,...,1 . Set 

tolerance for the maximum constraint 
violation, 

K  (e.g. 3210K ). 

Step 2. Use Memetic MIHDE to solve )( ll
aL υ,νz, . 

Let 
b

lll
b )( y,xz   be a minimum solution to 

the function )( ll
aL υ,νz, . 

Step 3. Evaluate the maximum constraint 
violation as  

  kkk
k

k
k

K gh  


max,maxmaxˆ , 

and establish the following sets for the 
equality and inequality constraints whose 
violation is not improved by the factor 

1 : 

 eKkE mkhkI ,...,1,/: 1    

  iKkkkI mkgkI ,...,1,/: 1 


  

Step 4. If 
KK  ˆ , let 

kk  2 , 
2

1 / l
k

l
k   for 

all 
EIk , and 

kk  2 , 
2

1 / l
k

l
k   for 

all 
IIk . Go to Step 7. 

Otherwise, go to Step 5. 
Step 5. Update the multipliers as follows: 

l
k

l
bk

l
k h   )(1 z  



  l
k

l
bk

l
k g  )(1 z  

Step 6. If 
1/ˆ  KK  , let 

KK  ˆ  and go to Step 7. 

Otherwise, let 
kk  2 , 

2
11 /   l

k
l
k

 

for all 
EIk , 

kk  2 ,  
2

11 /   l
k

l
k

 

for all 
IIk , and 

KK  ˆ . Go to Step 7. 

Step 7. Stop if stopping criterion is satisfied. 
Otherwise, let 1 ll  and repeat Steps 2 
to 6. 

    
Table 3. Evolutionary max-min algorithm with 

adaptive penalty parameters. 
 
In Memetic MIHDE-AMM algorithm, a scalar factor 

1  is used to enforce an improvement for the 

constraint violations. The other scalar factor 
2  is 

used to increase the values of penalty parameters. 
For implementation, we used 41   and 102   as 

suggested in Powell’s algorithm [22]. Owing to using 
the self-adaptation scheme, the initial penalty 
parameter values do not affect the final search 
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result except for the convergence rate. This implies 
that the algorithm is insensitive to the penalty 
parameters. Steps 3, 4 and 6 in Table 3 are used 
to improve the constraint violation and update the 
penalty parameters. In step 4, if the maximum 
constraint violation does not improve (i.e. 

KK  ˆ ), 

for those unimproved constraints (i.e. 
IE IIk  ) 

the associated penalty parameters can be 
increased by the factor 

2  and the associated 

multipliers can be decreased by the same factor. In 
step 5, if the maximum constraint violation 
improves (i.e. 

KK  ˆ ), the penalty parameters 

keep unchanged and the multipliers are updated. 
In step 6, if the maximum constraint violation does 
not be improved by the factor 

1 , for those 

unimproved constraints the associated penalty 
parameters can be increased by the factor 

2  and 

the associated multipliers can be decreased by the 
same factor. And then the new maximum 
constraint violation 

K̂  replaces the previous 

maximum constraint violation 
K . Because the 

penalty parameters are automatically updated, the 
maximum constraint violation 

K̂  will keep 

descending until all of the constraints are satisfied 
so that finally the Memetic MIHDE-AMM can 
converge to the saddle point of the augmented 
Lagrange function. 
 
4. Experimental examples 
 
Two typical mixed-integer optimization problem 
presented by Sandgren [19] are used to test the 
Memetic MIHDE and Memetic MIHDE-AMM 
algorithm. For implementation, the setting 
parameters used in Memetic MIHDE are listed as 
follows: population size NP  5 , crossover factor 

c  05. , and two tolerances  1 2 01  . . In order to 

illustrate their performance of global search, the 
other three algorithms, IDCNLP, SA and MVEP 
[18, 23, 24], are chosen for comparison. 
 
Problem 1: 
 
The mechanical optimization problem is an optimal 
design problem of compound gear train as shown 
in Figure 1. It is desired to produce a gear ratio as 
possible to 1/6.931. For each gear, the number of 
teeth must be between 12 and 60. The design 

variables are the numbers of teeth, which must 
be integers. 
 

) , , ,()T , , ,( 4321f yyyyTTT abd y  

 
 
 
 
 
 
 
 

 
Figure 1. Gear train design. 

 
The optimization problem is formulated as: 
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










yy

yy

TT

TT
f

fa

bdy
y

 (18) 

 
subject to ,6012  iy  4,,1i . 

 
Computational results are shown in Table 4. The 
objective value obtained by Memetic MIHDE is 
lowest. This indicates that the optimal solution 
obtained by Memetic MIHDE is better than those 
obtained by IDCNLP, SA and MVEP. Therefore, 
the Memetic MIHDE algorithm is a good approach 
to global optimization. 
 

Item IDCNLP SA MVEP 
Memetic 
MIHDE 

1y  14 30 30 19 

2y  29 15 15 16 

3y  47 52 52 43 

4y  59 60 60 49 
)(yf 4.5×10-6 2.36×10-9 2.36×10-9 2.70×10-12 

 
Table 4. Computational results with  

different solvingalgorithms. 
 
Problem 2: 
 
The mechanical optimization problem is an optimal 
design problem of pressure vessel as shown in 
Figure 2. The design variables are the dimensions 
required for the specifications of the vessel, i.e. 

),,,()( 2121 yyxxyx, . 
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Figure 2. Pressure vessel design. 

 
The objective function is the combined costs of 
material, forming and welding of the pressure 
vessel. The constraints are set in accordance with 
the respective ASME codes. The mixed-integer 
constrained optimization problem is expressed as: 
 

1
2

12
2

1

2
12211

)0625.0(84.19)0625.0(1661.3                     

)0625.0(7781.1)0625.0(6224.0)(min

xyxy

xyxxyf



yx,
yx,

   
  (19) 
subject to 00625.00193.0)( 111  yxg yx,  
             00625.000954.0)( 212  yxg yx,  

03
41728750)( 3

12
2
13  xxxg yx,  

0240)( 24  xg yx,  
10 0 100 01. . x  
10 0 240 02. . x  
10 321 y  
10 322 y  

 
Computational results are shown in Table 5. The 
objective value obtained by Memetic MIHDE-AMM 
is lowest and all constraints are satisfied ( 0ig ). 

This demonstrates that the optimal solution 
obtained by Memetic MIHDE-AMM is better than 
those obtained by IDCNLP, SA and MVEP. 
Therefore, the proposed Memetic MIHDE-AMM 
algorithm is appropriate for solving mixed-integer 
constrained optimization problems. 
 
5.  Conclusions 
 
In this paper, a memetic algorithm, Memetic MIHDE, is 
developed to solve mixed-integer optimization 
problems. Combined Memetic MIHDE algorithm with 
Lagrange method, an evolutionary Lagrange method, 

Memetic MIHDE-AMM algorithm, can be implemented 
to deal with mixed-integer constrained optimization 
problems. Finally, the proposed method is applied to 
two typical mixed-integer optimization problems. 
Computational results show the proposed method is 
superior to the other three solving algorithms in 
searching global solution. This demonstrates that the 
proposed evolutionary Lagrange method based on 
Memetic MIHDE algorithm can effectively solve mixed-
integer constrained optimization problems. 
Therefore, it implies that the proposed memetic 
algorithm is a good approach to mixed-integer 
optimization problems. 
 
 

Item IDCNLP SA MVEP 
Memetic 
MIHDE-

AMM 

1x  48.3807 58.2900 51.1958 38.8571 

2x  111.7449 43.6930 90.7821 221.4116 

1y  18 18 16 12 

2y  10 10 10 10 

1g  -0.1913 -0.0250 -0.0119 -0.0001 

2g  -0.1634 -0.0689 -0.1366 -0.2543 

3g  -75.8750 -6.5496 -13584.5631 -1.9921 

4g  -128.2551 -196.3070 -149.2179 -18.5884 

f  8048.6190 7197.7 7108.6160 6521.9778 

 
Table 5. Computational results with different 

 solving algorithms. 
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