

Vol. 11, April 2013 242

Mixed-Integer Constrained Optimization Based on Memetic Algorithm

Y. C. Lin

Department of Electrical Engineering
WuFeng University
Chiayi County, Taiwan, R.O.C.
Chien-lin@wfu.edu.tw

ABSTRACT
Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied to
many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in
default of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with
local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining
more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE), as an EA-based
search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a
memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of
real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to
effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve
the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two
benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm
can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed
memetic algorithm is a good approach to mixed-integer optimization problems.

Keywords: Evolutionary algorithm, memetic algorithm, mixed-integer hybrid differential evolution, Lagrange method.

1. Introduction

Evolutionary algorithms (EAs) are powerful search
algorithms based on the mechanism of natural
selection [1, 2]. Unlike conventional search
approaches, they simultaneously consider many
points in the search space so as to increase the
chance of global convergence Therefore, EAs
exhibit a good potential of global exploration. In the
past decade, EAs have been successfully applied
to many complex continuous optimization
problems such as highly nonlinear, non-
differentiable and multi-modal optimization
problems [1-6]. However, EAs are frequently
incapable of finding a precise solution in default of
local search mechanisms.

In recent years, memetic algorithms (MAs) have
been receiving increasing attention from the
evolutionary computation community. MAs are
inspired by Darwinian’s principles of natural
evolution and Dawkins’ notion of a memes [7].
MAs are hybrid EAs that combine genetic
operators with local search methods. The local
search methods are used to perform the local

refinement procedures [8]. Therefore, they can be
regarded as the integration between population-
based EAs and local search methods. With global
exploration and local exploitation in search space,
MAs are capable of obtaining more high-quality
solutions. MAs have shown to be promising for
solving optimization problems in a wide range of
applications [8-11].

In real world, many optimization problems
frequently contain integer variables in addition to
continuous variables. For example, the standard
formats of steel thickness must be chosen as
integers in mechanical design. This kind of
optimization problems involved continuous and
integer variables are generally called mixed-integer
optimization problems. Mixed-Integer Hybrid
Differential Evolution (MIHDE) [12] is a mixed-
integer EA-based search algorithm. A mixed
coding is introduced in MIHDE to implement the
evolutionary process of continuous and integer
variables. In order to enhance the global
exploration, the migration is devised to maintain

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Journal of Applied Research and Technology 243

the population diversity in MIHDE. The MIHDE has
been successfully applied to many complex mixed-
integer optimization problems [12-14].

In this paper, a memetic algoritm based on
MIHDE, called Memetic MIHDE, is developed to
deal with mixed-integer optimization problems. The
Memetic MIHDE incorporates a local search
method called Nelder-Mead simplex method [15]
into MIHDE to enhance the local exploitation. The
Nelder-Mead method is one of the most popular
derivative-free nonlinear optimization methods.
Instead of using the derivative information of the
function to be minimized, through reflection,
expansion, contraction and shrinkage search steps
for a simplex, the Nelder-Mead method can
maintain a non-degenerate simplex to find a local
optimum.

In addition, these mixed-integer optimization
problems are often coupled with nonlinear
constraints so that they are more intractable
because the feasible solution space is greatly
suppressed by the constraints. Several methods
based on EAs have been developed to solve
mixed-integer optimization problems [16–18].
However, these methods are not well posed for
various mixed-integer problems due to lack of a
good constraint-handling mechanism. Hence, in
order to tackle mixed-integer constrained
optimization problems effectively, it is worthwhile to
develop an efficient evolutionary mixed-integer
constrained optimization method. In this paper, we
can combine the Memetic MIHDE algorithm with
Lagrange method to construct an evolutionary
Lagrange method to deal with mixed-integer
constrained optimization problems. Finally, the
proposed algorithm is implemented and tested on
two benchmark mixed-integer optimization
problems [19]. Experimental results show that the
proposed algorithm can find better optimal
solutions compared with the other search
algorithms. This demonstrates that the proposed
memetic algorithm is a good approach to mixed-
integer optimization problems.

The remainder of this paper is organized as follows.
Section 2 presents an overview of Memetic MIHDE
algorithm. In Section 3, The formulation of
evolutionary Lagrange method based on Memetic
MIHDE is developed. Computational results for
mixed-integer constrained optimization problems are

provided in Section 4. Finally, conclusions are drawn
in Section 5.

2. Memetic MIHDE algorithm

First, consider a mixed-integer optimization
problem as follows:

)(min yx,
yx,
f

x x xL U 
y y yL U  (1)

where x represents an nC-dimensional vector of
real-valued variables, y is an nI-dimensional vector
of integer-valued variables, and)(LL y,x and

)(UU y,x are the lower and upper bounds of the

corresponding decision vectors.

Table 1 shows the basic operations of conventional
evolutionary algorithms and Memetic MIHDE. Each
operation of Memetic MIHDE is discussed as follows:

Evolutionary
Algorithms

Memetic MIHDE

1. Initialization
2. Mutation
3. Crossover
4. Evaluation and

Selection
5. Repeat step 2 to 4

until stop criterion is
satisfied

1. Initialization
2. Mutation
3. Crossover
4. Evaluation and

Selection
5. Migration if necessary
6. Local Search
7. Repeat step 2 to 6 until

stop criterion is satisfied

Table 1. Basic operations of evolutionary

algorithmsand Memetic MIHDE.

1) Initialization

The Memetic MIHDE algorithm uses
pN decision

vectors }){(}{ i
GGG

i y,xz  ,
pNi ,...,1 to denote a

population of
pN individuals in the G-th generation.

The decision vector (chromosome),
i)(yx, , is

represented as),...,,...,,,...,,...,(11 injiiinjii IC
yyyxxx .

The decision variables (genes), x ji and y ji , are

directly coded as real-valued and integer-valued
numbers. The initialization process generates

pN

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Vol. 11, April 2013 244

decision vectors
i)(yx, randomly, and should try to

cover the entire search space uniformly as in the form:

  p
LLUU

i
LL

i Ni ,,1 ,)}(){()()(00  y,xy,xy,xy,x 

 (2)

where    i i i i n nC I

 Diag , (, ,), , ,1 2  is a diagonal

matrix, the diagonal elements (, ,), , ,  i i i n nC I1 2 ,  

are random numbers in the range 0 1, , the other

elements are zero, and the rounding operator

 )}(),(LU
i

LU
i yybxxa   in (2) is defined

as])[INT,(ba in which the operator][INT b is

expressed as the nearest integer-valued vector to
the real-valued vector b.

2) Mutation

The i-th mutant individual  iGG v,u is obtained by

the difference for two random individuals as
expressed in the form: The i-th mutant individual
 iGG v,u is obtained by the difference for two

random individuals as expressed in the form:

  
)])([INT),(()(

)()()()(
G
l

G
km

G
l

G
kmp

GG

l
GG

k
GG

mp
GG

i
GG

ρρ

ρ

yyxxy,x

y,xy,xy,xv,u





 (3)

where random indices

pNlk ,,1,  are mutually

different. The operator)](INT[G
l

G
km yyb   in (3)

is to find the nearest integer vector to the real
vector b. The mutation factor m is a real random

number between zero and one. This factor is used
to control the search step among the direction of
the differential variation

l
GG

k
GG)()(y,xy,x  .

3) Crossover

In crossover operation, each gene of the i-th
individual is reproduced from the mutant vector

),,,,,,,()(2121
G
in

G
i

G
i

G
in

G
i

G
ii

GG

IC
vvvuuu v,u and the

individual),,,,,,,()(2121
G
in

G
i

G
i

G
in

G
i

G
ii

GG

IC
yyyxxx y,x as

follows:












pC
G
li

c
G
liG

li
Ninlu

x
u

,...,1,,...,1 otherwise;,

number randoma if,
1

 (4)












pI
G
li

c
G
liG

li
Ninlv

y
v

,...,1,,...,1 otherwise;,

number randoma if,
1

 (5)

where the crossover factor  c  0,1 is a constant

and the value can be specified by the user.

4) Evaluation and selection

The operation includes two evaluation phases. The
first phase is performed to produce the new
population in the next generation as (6). The
second phase is used to obtain the best individual
as (7).

)}),((),),(({argmin)(1111
i

GG
i

GG
i

GG ffy   vuyx,x

 for
pNi ,,1 

 (6)

},,1),),(({argmin)(1111
pi

GG
b

GG Nif   yxy,x

 (7)

where
b

GG)(11  y,x is the best individual with the

smallest objective function value.

5) Migration

In order to increase the exploration of the search
space, a migration operation is introduced to
generate a diversified population. Based on the
best individual ,,,,,()(1

1
11

2
1

1
11   G

b
G
bn

G
b

G
bb

GG yxxx
C

y,x

),, 11
2

 G
bn

G
b I

yy  , the j-th gene of the i-th individual can

be diversified by the following equations:
























pC
G
jb

U
j

G
jb

L
j

U
j

L
j

G
jbG

jb
L
j

G
jbG

ji

Ninjxxx

xx

xx
xxx

x

,...,1,,...,1;otherwise),(

number randoma if),(

1
1

1

1
1

1
1

1





(8)

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Journal of Applied Research and Technology 245
























pI
G
jb

U
j

G
jb

L
j

U
j

L
j

G
jbG

jb
L
j

G
jbG

ji

Ninjyyy

yy

yy
yyy

y

,...,1,,...,1;otherwise)],(INT[

number randoma if)],(INT[

1
2

1

1
1

2
1

1





(9)

where 1

 and 2
 are the random numbers in the

range [0,1].

The migration operation in Memetic MIHDE is
performed only if a measure for the population
diversity is not satisfied, that is when most of
individuals have clustered together, the migration
has to be actuated to make some improvements.
In this paper, we propose a measure called the
population diversity degree  to check whether the

migration operation should be performed. In order
to define the measure, we first introduce the
following gene diversity index for each real-valued
gene x ji

G1 and for each integer-valued gene yki
G1 ,











 



otherwise ,1

 ,,...,1,,...,1; if ,0 21

11

biNinj
x

xx

dx pCG
jb

G
jb

G
ji

ji



 (10)



 




otherwise ,1

 ,,...,1,,...,1; if ,0 11 biNinjyy
dy pI

G
jb

G
ji

ji

 (11)

where dx ji and dy ji are the gene diversity indices

and  2 0 1[,] is a tolerance for real-valued gene

provided by the user. According to (10) and (11),
we assign the j-th gene diversity index for the i-th
individual to zero if this gene clusters to the best
gene. We now define the population diversity
degree  as a ratio of total diversified genes in the

population. From (10) and (11) we have the
population diversity degree as

 )1)((/
1 11






















  


 

pIC

N

bi
i

n

j
ji

n

j
ji Nnnddx

p IC



 (12)

From equations (10), (11) and (12), the value of 

is in the range [0, 1]. Consequently, we can set a
tolerance for population diversity,  1 0 1 , , to

assess whether the migration should be actuated.
If  is smaller than 1

, then Memetic MIHDE

performs the migration to generate a new
population to escape a local solution. Contrary, if
 is not less than  1

, then Memetic MIHDE

suspends the migration operation to keep a
constant search direction to a target solution.

6) Local search

The local search procedure of Nelder-Mead
method [15] is used after migration operation at
each generation. The Nelder-Mead method is a
nonlinear programming approach in continuous
domain. In mixed-integer programming, a simplex
is devised to search for the optimal solution with
respect to continuous decision variables by fixing
the values of integer decision variables of each
candidate solution. Therefore, the local search
procedure refines the candidate solution to
approach a local optimum. As a result, The
Memetic MIHDE algorithm can enhance the global
exploration and local exploitation for the mixed-
integer optimization problems.

3. Evolutionary Lagrange method based on
Memetic MIHDE algorithm

In order to solve mixed-integer constrained
optimization problems, a Lagrange method based
on memetic MIHDE is developed to handle the
constraints. First, let us consider a mixed-integer
constrained optimization problem as follows:

)(min yx,

yx,
f

subject to
ej mjh ,...,1,0)(yx,

ij mjg ,...,1,0)(yx, (13)

where x represents an nC-dimensional vector of
continuous variables, y is a nI-dimensional vector
of integer variables, and)(yx,jh and)(yx,jg stand

for the equality and inequality constraints
respectively. To abbreviate these expressions, a
compact notation)(yx,z  is used in the following

discussions, and the problem is referred to as
primal problem.

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Vol. 11, April 2013 246

An augmented Lagrange function corresponding to
the primal problem is defined by:

  

 












i

e

m

k
kkkk

m

k
kkkka

g

hfL

1

22

1

22

)(

)()()(





z

zz,z,

 (14)

where
k and

k are positive penalty parameters,

the bracket operation is denoted as  0,max gg 


,

and),...,(1 em
  and 0),...,(1 im

 are the

corresponding Lagrange multipliers.

In nonlinear programming, the saddle point
theorem [20] states that, if a point is a saddle point
of the augmented Lagrange function associated
with the primal problem, then the point is the
solution of the primal problem. Accordingly, the
saddle point theorem can be used to solve mixed-
integer constrained optimization problems.

If)(***  ,,z is a saddle point of the augmented

Lagrange function)( ,z,aL , then)(***  ,,z

satisfies the following condition:

)()()(******  ,z,,,z,,z aaa LLL  (15)

The saddle point can be obtained by minimizing

)(**  ,z,aL with the optimal Lagrange multipliers

)(**  , as a fixed parameter vector. However, the

difficulty of this minimization is that it requires the
knowledge of)(**  , previously. In general, the

optimal values of Lagrange multipliers are
unknown a priori. The duality theorem can be
employed to overcome this difficulty.

According to the duality theorem, the primal
problem (13) can be transformed into a dual
problem as follows:

max (,)
(,) 

 H (16)

where the dual function)( ,H is denoted as

)(min)( ,z,,
z

aLH  (17)

and the set   {(,) (,) }    H exists, and 0 .

Based on (16) and (17), the duality theorem can be
expressed by the following duality relationship
statements:

1))(*** y,xz  is a minimizer of the primal

problem (13).

2) (,)* *  with 0* is a maximizer of the dual

problem (16).

3))()(*** z, fH  . That is, the saddle point of the

augmented Lagrange function (14) is the optimal
solution of the primal problem (13).

According to the duality relations, we can construct
an evolutionary max-min algorithm to solve mixed-
integer constrained optimization problems. The
evolutionary max-min algorithm includes two
phases as stated in Table 2. In the first phase
(step 2 in Table 2), the Memetic MIHDE is used to
minimize the augmented Lagrange function with
multipliers fixed. In the second phase (step 3 in
Table 2), the Lagrange multipliers are updated to
ascend the value of the dual function toward
obtaining maximization of the dual problem.

Step 1. Set initial iteration index: 0l .

Set initial multipliers: 0lk for

emk ,...,1 , 0lk for
imk ,...,1 .

Set penalty parameters: for

emk ,...,1 , 0k for
imk ,...,1 .

Step 2. Use Memetic MIHDE to minimize

)(ll
aL υ,νz, .

Let
b

lll
b)(y,xz  be a minimum solution

to the function)(ll
aL υ,νz, .

Step 3. Update the multipliers as follows:
l
k

l
bk

l
k h  )(1 z



  l
k

l
bk

l
k g )(1 z

Step 4. Update
k and

k , if necessary.

Step 5. Stop if stopping criterion is satisfied.
Otherwise, let 1 ll and repeat Steps
2 to 4.

Table 2. Evolutionary max-min algorithm.

0k

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Journal of Applied Research and Technology 247

As far as the evolutionary computation is
concerned, the evolutionary max-min procedure
may increase many function evaluations and affect
the convergence rate. However, in order to find the
exact solution, it is necessary and inevitable unless
using other special approaches, e.g., sequential
quadratic programming (SQP) [21], to continuously
update the Lagrange multipliers. Unfortunately,
SQP is not applicable for the non-differentiable
mixed-integer constrained optimization problems.
The update of the Lagrange multipliers is based on
the exact or approximate minimum of the
augmented Lagrange function with multipliers
fixed. As presented by Arora et al. [21], an exact or
approximate minimum is necessary in order to
ensure proper shift of the Lagrange function
towards the required solution. With a rough
minimum, the shift of the Lagrange function may
be far away from the required solution leading to
obtain a nonexistent dual function so that the
duality theorem shall be disobeyed. The saddle
point is accordingly unable to be obtained using
the rough shift. Therefore, in order to obtain an
exact or approximate minimum, sufficient iterations
for Memetic MIHDE minimization phase are
necessary for the evolutionary max-min algorithm.

In addition, constant penalty parameters are used
in the max-min algorithm. These parameters are
suited for solving linear constrained problems
because the contours of)( ,z,aL do not change

shape from generation to generation. However, if
the constraints are highly nonlinear, the contours
of)( ,z,aL still highly depend on the values of

penalty parameters. This fact indicates that the
evolutionary max-min algorithm in Table 2 may be
sensitive to the setting values of penalty
parameters. Small penalty parameters, for
example, might lead to an infeasible solution. On
the other hand, large penalty parameters might
cause the penalty functions to be ill conditioned.
In order to increase the possibility of global
convergence, a self-adaptation scheme for the
penalty parameters is embedded into the
evolutionary max-min algorithm as shown in
Table 3. The evolutionary max-min algorithm with
self-adaptation scheme is called Memetic MIHDE
MIHDE-Adaptive MaxMin (Memetic MIHDE-AMM)
algorithm. It is extended from Powell's multiplier
algorithm [22] towards improving the extent of the
constraint violations.

Step 1. Set initial iteration: 0l .

Set initial multipliers: 0lk for
emk ,...,1 ,

0lk for
imk ,...,1 .

Set penalty parameters: 0k for

emk ,...,1 , 0k for
imk ,...,1 . Set

tolerance for the maximum constraint
violation,

K (e.g. 3210K).

Step 2. Use Memetic MIHDE to solve)(ll
aL υ,νz, .

Let
b

lll
b)(y,xz  be a minimum solution to

the function)(ll
aL υ,νz, .

Step 3. Evaluate the maximum constraint
violation as

  kkk
k

k
k

K gh  


max,maxmaxˆ ,

and establish the following sets for the
equality and inequality constraints whose
violation is not improved by the factor

1 :

 eKkE mkhkI ,...,1,/: 1  

  iKkkkI mkgkI ,...,1,/: 1 




Step 4. If
KK  ˆ , let

kk  2 ,
2

1 / l
k

l
k  for

all
EIk , and

kk  2 ,
2

1 / l
k

l
k  for

all
IIk . Go to Step 7.

Otherwise, go to Step 5.
Step 5. Update the multipliers as follows:

l
k

l
bk

l
k h  )(1 z



  l
k

l
bk

l
k g )(1 z

Step 6. If
1/ˆ  KK  , let

KK  ˆ and go to Step 7.

Otherwise, let
kk  2 ,

2
11 /   l

k
l
k

for all
EIk ,

kk  2 ,
2

11 /   l
k

l
k

for all
IIk , and

KK  ˆ . Go to Step 7.

Step 7. Stop if stopping criterion is satisfied.
Otherwise, let 1 ll and repeat Steps 2
to 6.

Table 3. Evolutionary max-min algorithm with

adaptive penalty parameters.

In Memetic MIHDE-AMM algorithm, a scalar factor

1 is used to enforce an improvement for the

constraint violations. The other scalar factor
2 is

used to increase the values of penalty parameters.
For implementation, we used 41  and 102  as

suggested in Powell’s algorithm [22]. Owing to using
the self-adaptation scheme, the initial penalty
parameter values do not affect the final search

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Vol. 11, April 2013 248

result except for the convergence rate. This implies
that the algorithm is insensitive to the penalty
parameters. Steps 3, 4 and 6 in Table 3 are used
to improve the constraint violation and update the
penalty parameters. In step 4, if the maximum
constraint violation does not improve (i.e.

KK  ˆ),

for those unimproved constraints (i.e.
IE IIk )

the associated penalty parameters can be
increased by the factor

2 and the associated

multipliers can be decreased by the same factor. In
step 5, if the maximum constraint violation
improves (i.e.

KK  ˆ), the penalty parameters

keep unchanged and the multipliers are updated.
In step 6, if the maximum constraint violation does
not be improved by the factor

1 , for those

unimproved constraints the associated penalty
parameters can be increased by the factor

2 and

the associated multipliers can be decreased by the
same factor. And then the new maximum
constraint violation

K̂ replaces the previous

maximum constraint violation
K . Because the

penalty parameters are automatically updated, the
maximum constraint violation

K̂ will keep

descending until all of the constraints are satisfied
so that finally the Memetic MIHDE-AMM can
converge to the saddle point of the augmented
Lagrange function.

4. Experimental examples

Two typical mixed-integer optimization problem
presented by Sandgren [19] are used to test the
Memetic MIHDE and Memetic MIHDE-AMM
algorithm. For implementation, the setting
parameters used in Memetic MIHDE are listed as
follows: population size NP  5 , crossover factor

c  05. , and two tolerances  1 2 01  . . In order to

illustrate their performance of global search, the
other three algorithms, IDCNLP, SA and MVEP
[18, 23, 24], are chosen for comparison.

Problem 1:

The mechanical optimization problem is an optimal
design problem of compound gear train as shown
in Figure 1. It is desired to produce a gear ratio as
possible to 1/6.931. For each gear, the number of
teeth must be between 12 and 60. The design

variables are the numbers of teeth, which must
be integers.

) , , ,()T , , ,(4321f yyyyTTT abd y

Figure 1. Gear train design.

The optimization problem is formulated as:

2

43

21

2

931.6

1

931.6

1
)(min 





















yy

yy

TT

TT
f

fa

bdy
y

 (18)

subject to ,6012  iy 4,,1i .

Computational results are shown in Table 4. The
objective value obtained by Memetic MIHDE is
lowest. This indicates that the optimal solution
obtained by Memetic MIHDE is better than those
obtained by IDCNLP, SA and MVEP. Therefore,
the Memetic MIHDE algorithm is a good approach
to global optimization.

Item IDCNLP SA MVEP
Memetic
MIHDE

1y 14 30 30 19

2y 29 15 15 16

3y 47 52 52 43

4y 59 60 60 49
)(yf 4.5×10-6 2.36×10-9 2.36×10-9 2.70×10-12

Table 4. Computational results with

different solvingalgorithms.

Problem 2:

The mechanical optimization problem is an optimal
design problem of pressure vessel as shown in
Figure 2. The design variables are the dimensions
required for the specifications of the vessel, i.e.

),,,()(2121 yyxxyx, .

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Journal of Applied Research and Technology 249

Figure 2. Pressure vessel design.

The objective function is the combined costs of
material, forming and welding of the pressure
vessel. The constraints are set in accordance with
the respective ASME codes. The mixed-integer
constrained optimization problem is expressed as:

1
2

12
2

1

2
12211

)0625.0(84.19)0625.0(1661.3

)0625.0(7781.1)0625.0(6224.0)(min

xyxy

xyxxyf



yx,
yx,

 (19)
subject to 00625.00193.0)(111  yxg yx,
 00625.000954.0)(212  yxg yx,

03
41728750)(3

12
2
13  xxxg yx,

0240)(24  xg yx,
10 0 100 01. . x
10 0 240 02. . x
10 321 y
10 322 y

Computational results are shown in Table 5. The
objective value obtained by Memetic MIHDE-AMM
is lowest and all constraints are satisfied (0ig).

This demonstrates that the optimal solution
obtained by Memetic MIHDE-AMM is better than
those obtained by IDCNLP, SA and MVEP.
Therefore, the proposed Memetic MIHDE-AMM
algorithm is appropriate for solving mixed-integer
constrained optimization problems.

5. Conclusions

In this paper, a memetic algorithm, Memetic MIHDE, is
developed to solve mixed-integer optimization
problems. Combined Memetic MIHDE algorithm with
Lagrange method, an evolutionary Lagrange method,

Memetic MIHDE-AMM algorithm, can be implemented
to deal with mixed-integer constrained optimization
problems. Finally, the proposed method is applied to
two typical mixed-integer optimization problems.
Computational results show the proposed method is
superior to the other three solving algorithms in
searching global solution. This demonstrates that the
proposed evolutionary Lagrange method based on
Memetic MIHDE algorithm can effectively solve mixed-
integer constrained optimization problems.
Therefore, it implies that the proposed memetic
algorithm is a good approach to mixed-integer
optimization problems.

Item IDCNLP SA MVEP
Memetic
MIHDE-

AMM

1x 48.3807 58.2900 51.1958 38.8571

2x 111.7449 43.6930 90.7821 221.4116

1y 18 18 16 12

2y 10 10 10 10

1g -0.1913 -0.0250 -0.0119 -0.0001

2g -0.1634 -0.0689 -0.1366 -0.2543

3g -75.8750 -6.5496 -13584.5631 -1.9921

4g -128.2551 -196.3070 -149.2179 -18.5884

f 8048.6190 7197.7 7108.6160 6521.9778

Table 5. Computational results with different

 solving algorithms.

References

[1] Z. Michalewicz, “Genetic Algorithm + Data Structure =
Evolution Programs”, Springer-Verlag, 1994.

[2] T. Back, D. Fogel and Z. Michalewicz, “Handbook of
Evolutionary Computation”, New York: Oxford Univ.
Press, 1997.

[3] A. Afkar, M. Mahmoodi-Kaleibar and A. Paykani,
“Geometry optimization of double wishbone suspension
system via genetic algorithm for handling improvement”,
Journal of Vibroengineering, vol. 14, pp. 827–837, 2012.

[4] M. J. Richard, M. Bouazara, L. Khadir and G. Q. Cai,
“Structural optimization algorithm for vehicle
suspensions”, Trans. Can. Soc. Mech. Eng., vol. 35, pp.
1–17, 2011.

[5] F. Yaman and A. E. Yılmaz, “Impacts of genetic
algorithm parameters on the solution performance for the

Mixed‐Integer Constrained Optimization Based on Memetic Algorithm, Y. C. Lin, / 242‐250

Vol. 11, April 2013 250

uniform circular antenna array pattern synthesis
problem”, Journal of Applied Research and Technology,
vol. 8, no. 3, pp. 378–394, 2010.

[6] A. Vargas-Martínez and L. E. Garza-Castanon,
“Combining artificial intelligence and advanced techniques
in fault-tolerant control”, Journal of Applied Research and
Technology, vol. 9, no. 2, pp. 202–226, 2011.

[7] R. Dawkins, “The Selfish Gene”, Oxford Univ.
Press, 1976.

[8] W. E. Hart, N. Krasnogor and J. E. Smith, “Recent
Advances in Memetic Algorithms”, Springer-Verlag, 2005.

[9] A. Quintero and S. Pierre, “A memetic algorithm for
assigning cells to switches in cellular mobile networks”,
IEEE Commun. Lett., vol. 6, no. 11, pp. 484–486, 2002.

[10] H. Ishibuchi, T. Yoshida and T. Murata, “Balance
between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop
scheduling”, IEEE Trans. Evol. Comput., vol. 7, no. 2, pp.
204–223, 2003.

[11] M. Tang and X. Yao, “A memetic algorithm for VLSI
floorplanning”, IEEE Trans. Syst., ManCybern. B,
Cybern. , vol. 37, no. 1, pp. 62–69, 2007.

[12] Y. C. Lin, K. S. Hwang and F. S. Wang, “A mixed-
coding scheme of evolutionary algorithms to solve mixed-
integer nonlinear programming problems”, Computers
and Mathematics with Applications, vol. 47, pp. 1295-
1307, 2004.

[13] Y. C. Lin, Y. C. Lin and K. L. Su, “Production
planning based on evolutionary mixed-integer nonlinear
programming”, ICIC Express Letters, vol. 4, no. 5(B), pp.
1881-1886, 2010.

[14] Y. C. Lin, Y. C. Lin, K. L. Su and W. C. Chang,
“Identification of control systems using evolutionary
neural networks”, ICIC Express Letters, vol. 5, no. 4(B),
pp. 1307-1312, 2011.

[15] J. A. Nelder and R. Mead, “A simplex method for
function minimization”, Computer J., vol. 7, no. 4, pp.
308-313, 1965.

[16] T. Yokota, M. Gen and Y. X. Li, “Genetic algorithm
for non-linear mixed integer programming problems and
its applications”, Computers & Industrial Engineering J.,
vol. 30, pp. 905-917, 1996.

[17] B. K. S. Cheung, A. Langevin and H. Delmaire,
“Coupling genetic algorithm with a grid search method to
solve mixed integer nonlinear programming problems”,
Comput. Math. Applic., vol. 34, pp. 13-23, 1997.

[18] Y. J. Cao and Q. H. Wu, “Mechanical design
optimization by mixed-variable evolutionary
programming”, in Proc. IEEE Int. Conf. Evolutionary
Computation, Indianapolis, 1997, pp. 443-446.

[19] E. Sandgren, “Nonlinear integer and discrete
programming in mechanical design”, ASME J.
Mechanical Design, vol. 112, pp. 223-229, 1990.

[20] D. A. Wismer and R. Chattergy, “Introduction to
Nonlinear Optimization”, Elsevier North-Holland, 1978.

[21] J. S. Arora, A. I. Chahande and J. K. Paeng,
“Multiplier methods for engineering optimization”, Int. J.
Numerical Methods in Engineering, vol.32, pp.1485-
1525, 1991.

[22] M. J. D. Powell, “Algorithms for nonlinear constraints
that use Lagrangian functions”, Math. Programming, vol.
14, pp. 224-248, 1978.

[23] J. F. Fu, R. G. Fenton and W. L. Cleghorn, “A mixed
integer-discrete-continuous programming method and its
application to engineering design optimization”, Engineering
Optimization, vol.17, no. 3, pp.236-280, 1991.

[24] C. Zhang and H. P. Wang, “Mixed-discrete nonlinear
optimization with simulated annealing”, Engineering
Optimization, vol. 21, pp.277-291, 1993.

