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Abstract: A mathematical optimization model is proposed for strategic decision-making in sup-
ply chain management (SCM). The proposed model simultaneously optimizes investments to 
comply with government regulations and investments in technology to improve efficiency across 
three performance dimensions: ordering, just-in-time (JIT), and operating efficiency. Real com-
pany data is used to test the model. This data comes from a German company. The behavior of 
the proposed model is analyzed by solving four scenarios under different investment strategies. 
Results reveal counterintuitive findings, for example, JIT efficiency does not necessarily increase 
when technology investment increases; in comparison compliance with government regulations 
can improve companies’ operational efficiencies. These results demonstrate the sensitivity of 
companies’ operations to the allocation of technology investment and highlight the importance 
of simultaneously optimizing investments in government regulations compliance, and in the 
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1. Introduction

In supply chain management (SCM), the development 
and application of new technologies play a critical role 
in enhancing supply chain (SC) efficiency and reliabili-
ty. Technology enables SC managers to make decisions 
across different time horizons–strategic decisions (i.e., 
facility locations), operational decisions (i.e., inventory 
management) and tactical decisions (i.e., fleet assign-
ment)–to maximize benefits and minimize costs. 

The effects of investing in compliance with government 
regulation and in technology in SCM are an important 
area of research, because companies must comply with 
government regulations while maximizing operational 
efficiency. 

For example, manufacturers invest in technology, 
such as green technology, to minimize their environmen-
tal impact, often constrained by government regulations 
that aim to encourage sustainability (Ma et al., 2021; Liu 
et. al., 2021; Li et. al., 2022). 

Thus, companies must consider the impacts of invest-
ing in compliance with government regulations and in 
technology in SCM because these factors affect opera-
tional efficiency, long-term competitiveness, and extend 
the return on investment capital. Despite the importance 
of these factors, there is a gap in the SCM literature 
regarding optimization models that simultaneously op-
timize investments in technology and investments in 
government regulation compliance in SC systems. 

Therefore, balancing investments in compliance with 
government regulations and investments in technology 
is critical for SC companies to improve their operations 
and competitiveness (Charoenwong et al., 2024; Khoury 
et al., 2024; Ibiyeye, et al., 2024). This paper addresses 
this optimization problem by proposing a new model that 
simultaneously optimizes both investment variables, pro-
viding a new approach to decision-making in SCM.

In SC, investments in technology aim to improve 
decision-making, reduce operational times, minimize 
costs, and increase SC responsiveness. However, these 
advantages are limited by compliance with government 
regulations, which impose requirements related to prod-
uct traceability, safety standards, and other factors that 
directly affect SC operations (Ezeigweneme et al. 2024). 
Failure to abide to these regulations leads to potential dis-
ruptions due to government inverventions and potential 
fines and penalties, which could affect the effectiveness 
of the entire SC and reduce its overall efficiency (Brehm 
& Hamilton, 1996; Shimshack & Ward, 2008; Gray & Shad-
begian, 2021). Thus, companies must strategically invest 
in new technologies to ensure optimal performance (i.e., 
maximize efficiency and competitiveness) while assuring 
compliance with government regulations to avoid pen-
alties and disruptions (Gray & Shadbegian, 2021). One 
example is the integration of data-driven marketing and 
blockchain technology to enhance transparency and help 
meet sustainability standards (Li et. al., 2022; Tuladhar 
et al., 2024; Wang et al., 2022); another example is the 
Food Safety Modernization Act (FSMA) 204 which is a reg-
ulation that requires companies to trace their products 
through SCs promoting the implementation of new tech-
nologies (Selvaraj, 2025). Hence, it is possible to conclude 
that governments influence supply chain decisions by 
issuing regulations to ensure sustainability while some-
times offering subsidies to achieve this goal; therefore, 
governments play a crucial role in SCM and in compa-
nies technology investments (Liu et al., 2021; Dubey et 
al., 2023; Nadirsyah & Mulyany, 2024). Therefore, studying 
the optimization of investments in compliance with gov-
ernment regulations and in technology is important for 
ensuring SC sustainability.

This paper addresses these gaps by proposing a new 
mathematical model that simultaneously optimizes both: 
the investments to comply with government regulations 

implementation of new technology. The optimization model informs the decision-making pro-
cess that companies follow when investing in new technology while ensuring compliance with 
government regulations. Therefore, the model offers practical insights and utility for both private 
companies and government policymakers.

Keywords: Supply chain management, supply chain optimization, technology 
investment, technology adoption, government regulations, regulatory compliance.
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and the investments in technology, providing new in-
formation and guidance to related decision-making in 
SCM. The proposed model is the main contribution of 
the paper to the theory of SCM and builds upon the one 
developed by Monsreal et al. (2019), which also optimizes 
investments in compliance with government regulations 
and in technology, measured in monetary terms and re-
ferred to as investment levels. However, Monsreal et al. 
(2019) model optimizes only one variable at a time, which 
does not address some scenarios where multiple factors 
evolve simultaneously in SCs. As a result, that previous 
model can lead to suboptimal solutions when dealing 
with parallel dynamics arising from the interaction of 
multiple variables. To overcome this limitation, the op-
timization model proposed in this paper simultaneously 
optimizes investments in compliance with government 
regulations and in technology, considering the effects of 
both factors. Hence, the proposed optimization model is 
closer to the reality of a multifactorial decision-making 
process, than the previous model, allowing firms to make 
better decisions and apply more reliable SCM strategies.

This paper is organized as follows: Section 2 presents a 
literature review of gaps, technology investment models, 
and the role of government regulations in SCM. Section 3 
introduces a mathematical optimization model that cal-
culates the optimal levels of investment in compliance 
with government regulations and in technology in SCM. 
Section 4 presents a case study on end-to-end SC visi-
bility using Auto-ID technologies, followed by an analysis 
of the results. Finally, the conclusions and directions for 
future research are provided.

2. Literature Review

2.1. Gap in Optimization of Technology 
and Regulatory Investments
Few studies have optimized technology investment de-
cisions in SCM, as most rely on non-optimal approaches 
such as cost-benefit analysis, net present value (NPV), 
or feasibility studies. As explained in Section 1, this pa-
per fills that gap by developing an optimization model 
that simultaneously calculates optimal investments in 
technology and in compliance with government regula-
tions. Monsreal et al. (2019) emphasize the significance 
of these two variables through an international survey 
that examines investment decisions and economic de-
velopment. This paper extends Monsreal et al. (2019) by 
incorporating optimization techniques to support strate-
gic decision-making.

2.2. Technology Investment Decision Models in SCM
In SCM, technology investment decisions have tradition-
ally relied on basic valuation methods. However, some 
studies have incorporated more advanced techniques 
such as Monte Carlo simulations (Doerr et al., 2006), real 
options analysis (You et al., 2012; Zandi & Tavana, 2011), 
and stochastic models (Kauffman et al., 2015). Despite 
these advances, the integration of regulatory compliance 
as a variable remains limited.

Some studies focus solely on financial optimization. 
For example, Perold (1984) and Konno and Yamazaki 
(1991) propose optimization methods for portfolio man-
agement; however, they are limited to financial markets 
and do not incorporate supply chain dimensions or regu-
latory constraints.

2.3. Strategic Technology Adoption in SCM
Technology adoption is widely recognized as a key driver 
of supply chain efficiency. IT systems enhance network 
visibility (Ghiassi & Spera, 2003), collaboration (Rai et al., 
2007), and business efficiency (Gunasekaran & Ngai, 2004). 
However, adoption challenges persist due to cost-sharing 
concerns (Gaukler et al., 2007), unclear ROI (Heese, 2007), 
and slow diffusion (Atkin et al., 2017). Traceability tech-
nologies offer benefits for efficiency and compliance (Li 
et al., 2023), though interconnectivity issues complicate 
adoption.

Recent innovations include RFID (Sarac et al., 2010; 
Raza, 2022), Industry 4.0 (Hofmann & Rüsch, 2017; Kocate-
pe et al., 2020), smart manufacturing (Chiang et al., 2024; 
Lee et al., 2024; Huang et al., 2024), and supply planning 
in smart factories (Won & Park, 2020; Soori et al., 2023). 
Blaettchen et al. (2024) propose an optimization model 
to identify early adopters of traceability technologies, 
though they do not address regulatory impacts.

2.4. Role of Government Regulations in SCM
Compliance with government regulations plays a critical 
role in shaping SCM strategies. Regulatory environments 
influence cost structures, technology adoption, and mar-
ket dynamics (Menon & Lee, 2000). Economic instruments 
like carbon pricing and subsidies encourage sustainable 
practices (Jia et al., 2021; Liu et al., 2021; Ma et al., 2021).

Some models integrate compliance considerations. 
Hua et al. (2016) propose a two-tier regulatory invest-
ment model. García-Alcaraz et al. (2020) demonstrate 
the role of ICT in improving SC performance under reg-
ulatory constraints. Tuladhar et al. (2024) and Bradley et 
al. (2025) underscore the importance of IT investment 
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and compliance costs. Nevertheless, few existing models 
simultaneously optimize investments in technology and 
regulatory compliance by considering both as decision 
variables.

2.5. Environmental Sustainability and Regulation
Many recent models optimize regulatory compliance and 
technology investment with a focus on sustainability. 
For example, Benjaafar et al. (2012) incorporate carbon 
emissions into procurement, production, and invento-
ry decisions, showing that emissions can be minimized 
through supply chain collaboration without increasing 
costs. Wang et al. (2017) apply game theory to analyze 
how supply chain enterprises respond to government 
policies, demonstrating that centralized systems improve 
profits and social welfare. Chalmardi and Camacho-Valle-
jo (2018) design a mixed-integer linear programming 
(MILP) model that incorporates financial incentives to 
promote the adoption of cleaner technologies, con-
cluding that non-production-based incentives are more 
effective in reducing environmental impacts. Ma et al. 
(2021) propose an optimization model for investments 
in green technologies under cooperative strategies and 
regulatory constraints, highlighting the trade-offs be-
tween profits and stringent regulation. Similarly, Peng 
et al. (2022), Sun et al. (2023), and Cai and Jiang (2023) 
evaluate the effects of carbon pricing, cap-and-trade sys-
tems, and government subsidies on investment decisions 
and supply chain performance. Although technological 
investment and compliance with government regulations 
have been researched in SCM, no existing paper address-
es their simultaneous optimization. Only a few models 
simultaneously optimize both variables within a general 
supply chain management context.

2.6. Research Gap and Contribution
From the literature review, two key points emerge: first, 
Monsreal et al. (2019) is the only study that proposes a 
mathematical model that optimizes both factors, but not 
simultaneously; second, there is a need for optimization 
models that jointly optimize technology investments 
and regulatory compliance simultaneously. This paper 
addresses this gap by developing a mathematical op-
timization model that simultaneously considers both 
variables within SCM.

3. Mathematical Optimization Model

The mathematical optimization model proposed in this 
paper builds upon the factors identified as relevant in 

Monsreal et al. (2019). More specifically, the two decision 
variables: technology level and government regulation 
level, are measured in monetary units. Such monetary 
measures are referred to as as “investment levels”. The 
model then optimizes R, I, and J (order efficiency, JIT 
efficiency, and operating efficiency, respectively) given 
a mix of technology and government regulation levels. 
The relevance of the variables considered in the proposed 
model is based on an international survey conducted by 
Monsreal et al. (2019). This survey collected data on end-
to-end visibility of the supply chain, which involves the 
use of Auto-ID (Monsreal et al., 2019). 

The findings of the survey identified four main fac-
tors such as quality, cost, technology adoption or use, 
and government regulations. Quality refers to function-
ality and performance; cost refers to all costs, including 
holding/inventory cost; technology adoption or use re-
fers to the use of emerging technologies so that specific 
components of the supply chain can be optimized, and 
government regulations which refers to regulations, laws 
and other relationships established by local, state and 
federal governments. 

As in Monsreal et al. (2019), this research contributes by 
explaining and specifying the connection between these 
four variables to increase the understanding of the effect 
of government regulation on technology adoption. How-
ever, the present study extends this work by proposing a 
new model that simultaneously optimizes the two target 
factors of technology adoption and government regula-
tion in terms of investment levels. The other two major 
variables, quality and cost, are variables to assess the 
appropriate amount of such investment in government 
regulation and technology. Thus, the decision variables 
of the model are technology adoption (T≥0) and compli-
ance with government regulations (G>0), both measured 
in monetary terms: T, measured as investments in adopt-
ing new technology, and G, measured as investments in 
complying with government regulations. 

The model’s input data parameters are presented in 
Table 1. These parameters include structural and oper-
ational characteristics of the SC such as fixed order cost 
per order cycle (O), annual demand (D), annual inventory 
holding cost per unit (H), and operating cost per unit (C). 
The model also defines lower (M) and upper (N) bounds 
for the ordering efficiency coefficient (R), lower (L) and 
upper (U) bounds for the JIT efficiency coefficient (I), and 
lower (A) and upper (E) bounds for the operating efficien-
cy coefficient (J). Additionally, exponential sensitivity 
factors (β1-β6) are included to model how investments in 
technology adoption and in compliance with government 
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regulations affect each of these SC efficiency coeffi-
cients–R, I and J. The model’s parameters are calibrated 
using empirical data and benchmark values reported in 
the literature.

The model’s decision variables T and G, along with 
the input data parameters, determine the modeĺ s effi-
ciency coefficients R, I, and J, which are calculated by the 
model. Each efficiency coefficient is bounded between 0 
and 1: the ordering efficiency coefficient (0≤R≤1), the JIT 
efficiency coefficient (0≤I≤1), and the operating efficiency 
coefficient (0≤J≤1). These coefficients capture how in-
vestments in technology adoption enhance performance, 
and how investments in compliance with government 

regulations may constrain SC performance. R, I, and J 
are used to calculate the optimal total cost (TC) and the 
optimal order quantity (Q*) under both cost-oriented and 
quality-oriented optimization objectives. The model’s ef-
ficiency coefficients are defined as follows:

•	 Ordering efficiency coefficient (R): the degree to which 
the fixed ordering cost per order cycle decreases with 
investments in T and increases with investments in G.

•	 JIT efficiency coefficient (I): the degree to which deliv-
ery-to-consumption or production synchronization 
(i.e., time from delivery to consumption or produc-
tion) improves with investments in T and worsens 
with investments in G.

•	 Operating efficiency coefficient (J): the degree to 
which unit operating costs decrease with invest-
ments in T and increase with investments in G.

The model’s assumptions are:
•	 The fixed ordering cost is set at the beginning of each 

periodic order cycle and remains constant through-
out the cycle.

•	 Total demand level is known and constant over the 
planning horizon.

•	 Investments in T increase R, I, and J by improving 
ordering processes, JIT performance, and operating 
conditions within the SC.

•	 Investments in G decrease R, I, and J by introducing 
operational constraints and additional compliance 
requirements in the SC.

Eq. 1 calculates the total cost function (TC), which 
integrates operational cost components–ordering, 
inventory holding, and operating costs–along with 
investments related to T and G. Eq. 1 is adapted from the 
SC RFID Investment Evaluation Model (Hua et al., 2016) 
and extends their approach by allowing the optimization 
of cost and quality performances under different 
technology-investment and government regulation-
compliance scenarios. In this equation, the efficiency 
coefficients R and J are cost-oriented and directly affect 
the first and third terms, while the efficiency coefficient I 
is quality-oriented and influences the second term.

(1)

Eq. 2 calculates the optimal order quantity (Q*) as a 
function of R, I and J. This equation links strategic in-
vestments in T and G to tactical and operational planning 
decisions. This equation considers the dynamic effects 
of investments in T and in G on SC efficiency, which is an 

Table 1. Input parameters.

Symbol Description Range

O
Fixed ordering cost per 

order cycle [$]
O ≥ 0

D Annual demand [shipments] D ≥ 0

β1
Technology exponential 

parameter for R
β1 ≥ 0

β2
Government exponential 

parameter for R
β2 ≥ 0

β3
Technology exponential 

parameter for I
β3 ≥ 0

β4
Government exponential 

parameter for I
β4 ≥ 0

β5
Technology exponential 

parameter for J
β5 ≥ 0

β6
Government exponential 

parameter for J
β6 ≥ 0

H
Annual inventory holding 

cost per unit [$]
H ≥ 0

C Operating cost per unit [$] C ≥ 0

M
Lowest ordering efficiency 

coefficient (R) level
0 ≤ M < 1

N
Highest ordering efficiency 

coefficient (R) level
0 < N ≤ 1 or 

M < N ≤ 1

L
Lowest JIT efficiency 

coefficient (I) level
0 ≤ L < 1

U
Highest JIT efficiency 

coefficient (I) level
0 < U ≤ 1 or 

L < U ≤ 1

A
Lowest operating efficiency 

coefficient (J) level
0 ≤ A < 1

E
Highest operating efficiency 

coefficient (J) level
0 < E ≤ 1 or 

A < E ≤ 1
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advantage over the traditional Economic Order Quantity 
(EOQ) model, which assumes static cost parameters.

(2)

Eqs. 3, 4, and 5 calculate the model’s efficiency coef-
ficients R, I, and J based on the approach proposed by 
Azadeh et al. (2009). However, in this paper, R, I, and J are 
formulated as functions of T and G, allowing the proposed 
model to capture the impact of investing in T and the 
effects of investing in G on SC performance.

(3)

(4)

(5)

Eqs. 6, 7, 8 and 9 describe the technology-adoption and 
government-regulation cost-oriented optimization model, 
which simultaneously minimizes TC by determining the 
optimal investment levels in T and G. Eq. 6 is the cost-
oriented total-cost function (TCc) defined as a function 
of ordering cost, operating cost, and investment 
expenditures. Eq. 7 expresses TCc as a function of T and 
G, Eqs. 8 and 9 define R and J as functions of T and G.

(6)

(7)

(8)

(9)

Eq. 10 analyzes how changes in T and G affect TCc (Eq. 
6). We derive the TCC function with respect to T and G 
as , knowing that TCc, R and J are 
functions of T and G (Eqs. 6 to 9) and applying the chain 
rule. Hence, Eq. 10 expresses the derivative of TCc with 
respect to R and J. This derivative captures how changes 
in R and J affect the total cost associated with operational 
performance, considering that R and J are functions of T 
and G (Eqs. 8 and 9). 

(10)

Eq. 11 presents the derivative of the TCc function (dTCc), 
which considers the effects of R and J.

(11)

To analyze how changes in T and G affect R, we substitute 
Eq. 3 into Eq. 8, yielding Eq. 12, which expresses the 
derivative of the efficiency coefficient R (dR) based on 
exponential response to T and G.

(12)

By setting Eq. 11 equal to zero–applying the first-order 
condition for optimization–Eq. 13 expresses how much R 
must change to minimize TCc given the values of O, D, C, 
and Q, as well as the derivative of the model’s efficiency 
coefficient J (dJ).

(13)

Eq. 14 results from substituting Eq. 12 into Eq. 13. It 
expresses dR as a function of T and G, linking these 
decision variables with dJ to estimate the marginal-
cost trade-offs between enhancing efficiency through 
investments in T and in G.

(14)

Eq. 15 results from substituting Eq. 2 in Eq. 14. This 
equation calculates the optimal ordering efficiency (R*) 
as a function of T and G. Therefore, Eq. 15 incorporates 
the effects of investments in T and in G to estimate R*.

(15)

Eq. 16 calculates the optimal technology-adoption level 
(T*) as a function of R* and G.

(16)
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Eq. 17 calculates the optimal government-regulation level 
(G*) as a function of R* and T.

(17)

Eqs. 16 and 17 close the optimization loop by linking 
the model’s decision variables T and G to the model’s 
efficiency coefficients R, I and J.

Eqs. 18 to 20 define the technology-adoption and 
government-regulation quality-oriented optimization 
model. Eq. 18 expresses the quality-oriented total-cost 
function (TCQ), defined as a function of inventory holding 
cost. Equation 19 expresses TCQ as a function of T and 
G, and Eq. 20 defines I as a function of T and G.  These 
equations show how investments in T impact the quality 
performance of SC.

(18)

(19)

(20)

Eq. 21 analyzes how changes in T and G affect TCQ. This 
equation is the derivative of Eq. 18 with respect to T 
and G as , knowing that TCQ and I 
are functions of T and G (Eqs. 18 to 20) and applying the 
chain rule. Hence, Eq. 21 expresses the derivative of TCQ 
with respect to I. This equation captures how changes in I 
affect the total cost associated with quality performance, 
considering that I is function of T and G (Eqs. 19 and 20). 

(21)

By setting Eq. 21 equal to zero–applying the first-order 
condition for optimization–Eq. 22 expresses how much I 
must change to minimize TCQ given the values of H and Q.

(22)

Eq. 23 results from substituting Eqs. 4 and 20 into Eq. 
22. This equation defines the derivative of the model’s 
efficiency coefficient I (dI) as a function of T and G. This 
equation links changes in T and G to the first-order opti-
mization condition for minimizing TCQ.

(23)

Then, Eq. 24 is obtained by setting Eq. 23 equal to Eq. 22. 
This equation links the marginal effect of T and G on the 
efficiency coefficient I to the quality-related total-cost 
minimization condition.

(24)

Eq. 25 results from substituting Eq. 2 into Eq. 24. It shows 
the substitution of Q* into Eq. 24. This equation expresses 
the optimal JIT efficiency coefficient (I*) as a function of 
T and G, linking strategic investment decisions in T to 
quality-related cost performance.

(25)

Eq. 26 calculates the optimal operating-efficiency 
coefficient (J*) by substituting the optimal values of T* 
and G*–derived from Eqs. 16 and 17–into the model’s 
operating efficiency coefficient function (Eq. 5). This 
function links J* to strategic investment decisions in T and 
in G completing the quality-oriented optimization model.

(26)

In summary, the optimal equations of the simultaneous 
Technology-Adoption and Government-Regulation qua- 
lity-oriented optimization model are Eqs. 15, 16, 17, 25, 
and 26.

4. Results

4.1 Case Study
This paper uses the same data collected from a German con-
tainer consignee company, as used in Monsreal et al. (2019), 
to test the proposed simultaneous optimization model.

Four scenarios are designed to test the currently pro-
posed optimization model.

•	 Scenario 1: both investments in technology adop-
tion (T, measured as investments in technology), 
and investments in compliance with government 
regulations (G, measured as compliance costs) are 
increased. Figures 1, 2 and 3 represent this scenario.

•	 Scenario 2: total investment is maintained constant 
at 11%, while the shares between investments in 
technology adoption (T, measured as technology 
investments) and investments in compliance with 
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government regulations (G, measured as compliance 
costs) varies. Figures 4, 5 and 6 represent this scenario.

•	 Scenario 3 analyzes the impact of increasing in-
vestments in technology adoption (T, measured as 
technology investments) while maintaining con-
stant investments in compliance with government 
regulations (G, measured as compliance costs) at a 
minimum. Figures 7, 8 and 9 represent this scenario.

•	 Scenario 4 analyzes the impact of increasing invest-
ments in compliance with government regulations 
(G, measured as compliance costs) while maintaining 
constant investments in technology adoption (T, mea-
sured as technology investments) at their minimum 
level. Figures 10, 11 and 12 represent this scenario.

Table 2 shows the specific scenarios with their 
corresponding values.

Table 2. Design of the experiment.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

G (%) T (%) G (%) T (%) G (%) T (%) G (%) T (%)

1 1 10 1 1 1 1 1

2 2 9 2 1 2 2 1

3 3 8 3 1 3 3 1

4 4 7 4 1 4 4 1

5 5 6 5 1 5 5 1

6 6 5 6 1 6 6 1

7 7 4 7 1 7 7 1

8 8 3 8 1 8 8 1

9 9 2 9 1 9 9 1

10 10 1 10 1 10 10 1

For this purpose, the initial values for the model’s decision 
variables (T and G), efficiency coefficients (R, T and J), and 
exponential sensitivity factors (β1-β6) are the same as 
those used by Monsreal et al. (2019) and are reproduced 
in Table 3 for reference. Similarly, an investment threshold 
of 10% of total operating cost, for both investments in T 
and G optimization, is used, considering a total annual 
operating cost of approximately USD 4 million (Monsreal 
et al., 2019). This 10% threshold serves as the reference 
for the design of the experiment.

Input values for efficiency coefficients (R, T and J), and 
exponential sensitivity factors (β1-β6) are based on Mon-
sreal et al. (2019).

The higher the values of R, T and J are, the greater the 
benefits obtained from investing in technology adoption (T).

4.2 Results
Figures 1 to 12 present the results obtained from the four 
scenarios. These figures illustrate the behavior of R, T and 
J under each scenario. 

Scenario 1 (Figures 1 to 3) analyzes the effects of joint-
ly increasing investments in T and G from 1% to 10% of 
total operating cost. Figure 1 shows that R initially in-
creases as investments in T and G rise, but R plateaus 
at 8% level, suggesting diminishing marginal returns. Be-
yond this percentage of the total operating cost, further 
investments in T and G do not produce additional gains 
in R, likely due to saturation effects in automation or co-
ordination processes.

Table 3. Model variables, coefficients, 
and exponential parameters

Variable Description Value Units

O
Fixed ordering cost 

per order cycle
75.5 USD

D Annual demand 11,200.00 Trips

H Annual inventory cost per unit 81.48 USD

C Operating cost per unit 257.99 USD

M
Lowest ordering efficiency 

coefficient (R) level
0.3 -

N
Highest ordering efficiency 

coefficient (R) level
1 -

L
Lowest JIT efficiency 

coefficient (I) level
0.2 -

U
Highest JIT efficiency 

coefficient (I) level
1 -

A
Lowest operating efficiency 

coefficient (J) level
0.5 -

E
Highest operating efficiency 

coefficient (J) level
1 -

β1
Technology exponential 

parameter for R
0.00002 -

β2
Government exponential 

parameter for R
-0.00002 -

β3
Technology exponential 

parameter for I
0.00001 -

β4
Government exponential 

parameter for I
-0.00001 -

β5
Technology exponential 

parameter for J
0.00002 -

β6
Government exponential 

parameter for J
-0.00002 -
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Figure 2 shows that I decrease as investments in T 
and G increase simultaneously. This decline is likely 
due to disruptions in synchronization between delivery 
and production, such as rigid compliance protocols or 
misalignment between the implementation of new tech-
nologies and operational execution.

Figure 3 shows that J also decreases when investments 
in T and G increase. This indicates that investments in T 
and G may raise unit operating costs instead of reducing 
them.

Figures 1 to 3 indicate that increasing investments in 
T and G does not always improve SC performance–un-
less these investments are optimally balanced. On one 
hand, R improves initially but plateaus around 8%, offer-
ing no additional gains beyond that level. On the other 
hand, I and J decline as investments increase. Scenario 
1 suggests that increasing investment costs can lead to 
inefficiencies and trade-offs, rather than performance 
improvements.

Scenario 2 (Figures 4 to 6) analyzes the effects of vary-
ing the investment mix between T and G while keeping 
total investment constant at 11%. Figure 4 shows that R 
reaches its highest value when T is at 1% and G at 10% 
of the total operating cost. As investment in T increases 
and investment in G decreases, R declines. This result 
suggests that ordering processes benefit more from in-
vesting in G than from investing in T.

Figure 5 shows that the best performance of I occurs 
when T is low and G is high–specifically, when T is at 1% 
and G at 10% of the total operating cost. This result high-
lights that, with total investment fixed at 11%, investing in 
G improves delivery-to-production synchronization more 
effectively than investing in T.

Figure 6 shows that operating efficiency (J) improves 
as investment in T increases and investment in G decreas-
es. The best result for J occurs when T is at 10% and G at 
1% of the total operating cost. This result suggests that 
J depends more directly on T and is negatively impacted 
by G.

Figures 4 to 6 show that setting the optimal balance 
between investments in T and G–while keeping the total 
investment constant at 11%–produces different results 
across R, I and J. The performance of R and I improves as 
investment in G increases and investment in T decreases, 
reaching their peaks when G is high and T is low. This re-
sult suggests that investment in G drives improvements in 
R and I. In contrast, J improves as investment in T increas-
es, reaching its highest level when T is high and G is low. 
Scenario 2 highlights that performance improvements 

Figure 1. Ordering Efficiency (R) Scenario 1.

Figure 2. JIT Efficiency Scenario 1.

Figure 3. Operating Efficiency Scenario 1.

Figure 4. Ordering Efficiency Scenario 2.

Figure 5. JIT Efficiency Scenario 2.
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depend not just on how much is invested overall, but on 
how much investment is distributed between T and G.

Scenario 3 (Figures 7 to 9) studies the effects of 
increasing investment in T while keeping constant invest-
ment in G at a minimum. Figure 7 shows that R increases 
as T increases, indicating that ordering functions are 
highly related to technological improvements even in 
the absence of government regulation constraints. This 
result suggests that upgrades in T–such as automation, 
digital ordering systems, or real-time communication 
platforms–directly enhance order processing and coor-
dination across the SC. 

Figure 8 shows that I decreases as investments in T 
increase. This result suggests that investing in T may lead 
to desynchronization between supply and production 
when investments are not optimally balanced with in-
vestments in G. A possible interpretation of this is that the 
adaptation to new technologies may outpace internal op-
erations, causing inefficiencies in timing or coordination. 
Without government regulation constraints, adoption of 
new technologies might disrupt rather than streamline 
JIT alignment.

Figure 9 shows that J increases as investments in T 
increase. This result is expected, as technologies tend to 
minimize unit production costs, optimize resource use, 
and enhance overall process efficiency. Even when in-
vestments in G are minimal, these benefits accumulate, 
demonstrating the importance of investing in T.

Figures 7 to 9 show that increasing investments in T, 
while keeping investments in G at a minimum, leads to 
different results across R, I, and J. On the one hand, R 
and J improve constantly as investments in T increase. 
These efficiency coefficients show clear improvements 
from investing in T. On the other hand, I decreases as 
investments in T increase. This result suggests a probable 
misalignment between T and production-delivery syn-
chronization. Scenario 3 reveals that investing in T alone 
can improve certain aspects of SC performance but may 
also introduce trade-offs if it is not optimally balanced 
with G.

Scenario 4 (Figures 10 to 12) studies the impact of 
increasing investments in G while keeping constant in-
vestments in T at a minimum. Figure 10 shows that R 
improves as G increases. This result suggests that some 
government regulations streamline ordering processes 
and enhance their efficiency, despite the additional in-
vestments in G.

Figure 11 shows that I decreases as G increases. This 
decline could likely reflect the challenges that govern-
ment regulations impose on synchronizing delivery and 

Figure 6. Operating Efficiency Scenario 2.

Figure 7. Ordering Efficiency Scenario 3.

Figure 8. JIT Efficiency Scenario 3.

Figure 9. Operating Efficiency Scenario 3.

Figure 10. Ordering Efficiency Scenario 4.
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production schedules, causing operations to become less 
flexible or slower.

Figure 12 shows that J also declines as investments 
in G increase. This result indicates that increasing in-
vestments in G raises unit operating costs, negatively 
impacting J.

Figures 10 to 12 show the effects of increasing invest-
ments in G while keeping constant investments in T at a 
minimum. R improves as investments in G increase, and 
this result suggests that certain government regulations 
can streamline ordering processes despite added invest-
ment costs. However, both I and J decline with higher 
investments in G, reflecting challenges in delivery-pro-
duction synchronization and increased unit operating 
costs. Scenario 4 highlights that while compliance with 
government regulations may benefit some of the SC func-
tions, it can also introduce inefficiencies and trade-offs in 
others when investments in T are low.

4.3 Discussion on Scenario Use and Interpretation
Investments in technology adoption are a variable that 
can be controlled by private companies through their 
operations and strategic management decisions, while 
government regulations are designed, enacted, and 
issued by public authorities, and they often require in-
vestments in compliance with government regulations 
from companies. Therefore, the way to use and interpret 
these results depends on the purpose and user profile.

From the perspective of companies, Scenario 1 facili-
tates the identification of the optimal allocation between 
investing in technology adoption and compliance with 
government regulations, assuming both contribute 
equally to the total investment level. 

Scenario 2 offers a supplementary progression of 
investment contributions between technology and gov-
ernment regulation compliance. The results from this 
scenario guide companies toward the right balance be-
tween these two investment types. 

Scenario 3 provides a baseline to understand the im-
pact of overall increases in technological investment. 
Thus, this scenario enables companies to evaluate which 
types of operational efficiencies are most influenced by 
investing in technology adoption. These scenarios help 
companies strategically target areas that maximize re-
turns on technological investments by isolating their 
effects. 

From a governmental or policymaking point of view, 
Scenario 4 mimics the Scenario 3 baseline approach 
but keeps technology investment steady while increas-
ing government regulation compliance investment. This 

scenario evaluates the broader impact of regulatory 
policies on industry performance by assessing how dif-
ferent levels of regulatory stringency affect companies’ 
operational efficiency. Governments can use the results 
of this scenario to design more effective and less disrup-
tive regulations. As with companies, a government could 
benefit from the results obtained in Scenario 1 when it 
seeks to understand the overall effects of aggregated 
investments.

The main contribution of the proposed model is its 
capacity to simultaneously optimize investments in tech-
nology and compliance with government regulations. By 
doing so, this two-decision-variable optimization model 
is different from the single-decision-variable model pub-
lished by Monsreal et al. (2019). 

The results of the four scenarios reveal counterintuitive 
outcomes—such as perceived benefits from government 
regulations and negative impacts from technology in-
vestments. The comparison of the results suggests that 
certain types of efficiency may be more (or less) sensi-
tive to specific types of investments. For example, on 
the one hand, the efficiency associated with just-in-time 
(JIT) logistics may not respond strongly to technology in-
vestment because its benefits are time-based, and such 
improvements may not be fully captured in costs. The be-
havior of JIT efficiency remains consistent across the four 
scenarios, supporting this analysis. On the other hand, 
ordering efficiency improves under government regula-
tion–possibly due to a decrease in demand (interpreted 

Figure 11. JIT Efficiency Scenario 4.

Figure 12. Operating Efficiency Scenario 4.
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in this model as sales), which lowers the order cost per 
cycle and thus increases efficiency.

Operating efficiency improves under technology 
investment and weakens under stricter regulatory sce-
narios (Scenarios 2, 3, and 4), as well as under increasing 
total investments. This analysis suggests that operating 
efficiency is very sensitive to the balance and scale of 
technology and compliance with government regulation 
investments.

Conclusions

This paper proposes a mathematical optimization model 
that simultaneously optimizes investments in technolo-
gy and compliance with government regulations in SCM. 
This paper tackles a critical gap in the SCM literature 
and provides a more comprehensive and realistic deci-
sion-making tool for both private firms and policymakers.

Through a real case study and the analysis of four sce-
narios, the proposed optimization model demonstrates 
that operational efficiencies—such as ordering, JIT, and 
general operating efficiency—respond differently to 
variations in technology adoption and compliance with 
government regulation investments. The results reveal 
counterintuitive effects, including negative impacts due 
to the potential inefficiencies from excessive technology 
investments, and positive impacts of moderate regula-
tions. These results emphasize the importance of finding 
the optimal equilibrium between both variables rather 
than optimizing them independently.

The proposed optimization model provides strategic 
insights for companies aiming to enhance competitiveness 
while ensuring compliance with government regulations. 
Similarly, it offers governments and/or policymakers 
a framework for designing policies that promote the 
adoption of new technologies without compromising op-
erational performance.

One future line of research would be to compare and 
empirically validate the results obtained in this paper by 
using data from other industries and countries, which 
would further strengthen the model’s applicability and 
generalizability.

Our results are constrained to the specific case study 
and therefore to the data used for the presented analysis. 
Therefore, future research could extend this model by in-
corporating uncertainty, multi-echelon supply chains, or 
dynamic regulatory environments. 

A third proposed line of research is to add oth-
er decision variables to the proposed model, such as 

sustainability initiatives, risk mitigation strategies, or 
digital transformation investments. 

Finally, a future study could be conducted to explore 
a dynamic extension of the model, where investment de-
cisions evolve over time.
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