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Abstract: A mathematical optimization model is proposed for strategic decision-making in sup-
ply chain management (SCM). The proposed model simultaneously optimizes investments to
comply with government regulations and investments in technology to improve efficiency across
three performance dimensions: ordering, just-in-time (JIT), and operating efficiency. Real com-
pany data is used to test the model. This data comes from a German company. The behavior of
the proposed model is analyzed by solving four scenarios under different investment strategies.
Results reveal counterintuitive findings, for example, JIT efficiency does not necessarily increase
when technology investment increases; in comparison compliance with government regulations
can improve companies’ operational efficiencies. These results demonstrate the sensitivity of
companies’ operations to the allocation of technology investment and highlight the importance
of simultaneously optimizing investments in government regulations compliance, and in the
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implementation of new technology. The optimization model informs the decision-making pro-
cess that companies follow when investing in new technology while ensuring compliance with
government regulations. Therefore, the model offers practical insights and utility for both private

companies and government policymakers.

Keywords: Supply chain management, supply chain optimization, technology
investment, technology adoption, government regulations, regulatory compliance.

1. Introduction

In supply chain management (SCM), the development
and application of new technologies play a critical role
in enhancing supply chain (SC) efficiency and reliabili-
ty. Technology enables SC managers to make decisions
across different time horizons-strategic decisions (i.e.,
facility locations), operational decisions (i.e., inventory
management) and tactical decisions (i.e., fleet assign-
ment)-to maximize benefits and minimize costs.

The effects of investingin compliance with government
regulation and in technology in SCM are an important
area of research, because companies must comply with
government regulations while maximizing operational
efficiency.

For example, manufacturers invest in technology,
such as green technology, to minimize their environmen-
tal impact, often constrained by government regulations
that aim to encourage sustainability (Ma et al., 2021; Liu
et. al.,, 2021; Li et. al., 2022).

Thus, companies must consider the impacts of invest-
ing in compliance with government regulations and in
technology in SCM because these factors affect opera-
tional efficiency, long-term competitiveness, and extend
the return on investment capital. Despite the importance
of these factors, there is a gap in the SCM literature
regarding optimization models that simultaneously op-
timize investments in technology and investments in
government regulation compliance in SC systems.

Therefore, balancing investments in compliance with
government regulations and investments in technology
is critical for SC companies to improve their operations
and competitiveness (Charoenwong et al., 2024; Khoury
et al., 2024; Ibiyeye, et al., 2024). This paper addresses
this optimization problem by proposing a new model that
simultaneously optimizes both investment variables, pro-
viding a new approach to decision-making in SCM.

In SC, investments in technology aim to improve
decision-making, reduce operational times, minimize
costs, and increase SC responsiveness. However, these
advantages are limited by compliance with government
regulations, which impose requirements related to prod-
uct traceability, safety standards, and other factors that
directly affect SC operations (Ezeigweneme et al. 2024).
Failure to abide to these regulations leads to potential dis-
ruptions due to government inverventions and potential
fines and penalties, which could affect the effectiveness
of the entire SC and reduce its overall efficiency (Brehm
& Hamilton, 1996; Shimshack & Ward, 2008; Gray & Shad-
begian, 2021). Thus, companies must strategically invest
in new technologies to ensure optimal performance (i.e.,
maximize efficiency and competitiveness) while assuring
compliance with government regulations to avoid pen-
alties and disruptions (Gray & Shadbegian, 2021). One
example is the integration of data-driven marketing and
blockchain technology to enhance transparency and help
meet sustainability standards (Li et. al., 2022; Tuladhar
et al., 2024; Wang et al., 2022); another example is the
Food Safety Modernization Act (FSMA) 204 which is a reg-
ulation that requires companies to trace their products
through SCs promoting the implementation of new tech-
nologies (Selvaraj, 2025). Hence, it is possible to conclude
that governments influence supply chain decisions by
issuing regulations to ensure sustainability while some-
times offering subsidies to achieve this goal; therefore,
governments play a crucial role in SCM and in compa-
nies technology investments (Liu et al., 2021; Dubey et
al., 2023; Nadirsyah & Mulyany, 2024). Therefore, studying
the optimization of investments in compliance with gov-
ernment regulations and in technology is important for
ensuring SC sustainability.

This paper addresses these gaps by proposing a new
mathematical model that simultaneously optimizes both:
the investments to comply with government regulations
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and the investments in technology, providing new in-
formation and guidance to related decision-making in
SCM. The proposed model is the main contribution of
the paper to the theory of SCM and builds upon the one
developed by Monsreal et al. (2019), which also optimizes
investments in compliance with government regulations
and in technology, measured in monetary terms and re-
ferred to as investment levels. However, Monsreal et al.
(2019) model optimizes only one variable at a time, which
does not address some scenarios where multiple factors
evolve simultaneously in SCs. As a result, that previous
model can lead to suboptimal solutions when dealing
with parallel dynamics arising from the interaction of
multiple variables. To overcome this limitation, the op-
timization model proposed in this paper simultaneously
optimizes investments in compliance with government
regulations and in technology, considering the effects of
both factors. Hence, the proposed optimization model is
closer to the reality of a multifactorial decision-making
process, than the previous model, allowing firms to make
better decisions and apply more reliable SCM strategies.

This paperis organized as follows: Section 2 presents a
literature review of gaps, technology investment models,
and the role of government regulations in SCM. Section 3
introduces a mathematical optimization model that cal-
culates the optimal levels of investment in compliance
with government regulations and in technology in SCM.
Section 4 presents a case study on end-to-end SC visi-
bility using Auto-ID technologies, followed by an analysis
of the results. Finally, the conclusions and directions for
future research are provided.

2. Literature Review

2.1. Gap in Optimization of Technology

and Regulatory Investments

Few studies have optimized technology investment de-
cisions in SCM, as most rely on non-optimal approaches
such as cost-benefit analysis, net present value (NPV),
or feasibility studies. As explained in Section 1, this pa-
per fills that gap by developing an optimization model
that simultaneously calculates optimal investments in
technology and in compliance with government regula-
tions. Monsreal et al. (2019) emphasize the significance
of these two variables through an international survey
that examines investment decisions and economic de-
velopment. This paper extends Monsreal et al. (2019) by
incorporating optimization techniques to support strate-
gic decision-making.

2.2. Technology Investment Decision Models in SCM
In SCM, technology investment decisions have tradition-
ally relied on basic valuation methods. However, some
studies have incorporated more advanced techniques
such as Monte Carlo simulations (Doerr et al., 2006), real
options analysis (You et al., 2012; Zandi & Tavana, 2011),
and stochastic models (Kauffman et al., 2015). Despite
these advances, the integration of regulatory compliance
as a variable remains limited.

Some studies focus solely on financial optimization.
For example, Perold (1984) and Konno and Yamazaki
(1991) propose optimization methods for portfolio man-
agement; however, they are limited to financial markets
and do not incorporate supply chain dimensions or regu-
latory constraints.

2.3. Strategic Technology Adoption in SCM
Technology adoption is widely recognized as a key driver
of supply chain efficiency. IT systems enhance network
visibility (Ghiassi & Spera, 2003), collaboration (Rai et al.,
2007),and business efficiency (Gunasekaran &Ngai, 2004).
However, adoption challenges persist due to cost-sharing
concerns (Gaukler et al., 2007), unclear ROI (Heese, 2007),
and slow diffusion (Atkin et al., 2017). Traceability tech-
nologies offer benefits for efficiency and compliance (Li
et al., 2023), though interconnectivity issues complicate
adoption.

Recent innovations include RFID (Sarac et al., 2010;
Raza, 2022), Industry 4.0 (Hofmann & Riisch, 2017; Kocate-
pe et al., 2020), smart manufacturing (Chiang et al., 2024;
Lee et al., 2024; Huang et al., 2024), and supply planning
in smart factories (Won & Park, 2020; Soori et al., 2023).
Blaettchen et al. (2024) propose an optimization model
to identify early adopters of traceability technologies,
though they do not address regulatory impacts.

2.4. Role of Government Regulations in SCM
Compliance with government regulations plays a critical
role in shaping SCM strategies. Regulatory environments
influence cost structures, technology adoption, and mar-
ket dynamics (Menon & Lee, 2000). Economic instruments
like carbon pricing and subsidies encourage sustainable
practices (Jia et al., 2021; Liu et al., 2021; Ma et al., 2021).
Some models integrate compliance considerations.
Hua et al. (2016) propose a two-tier regulatory invest-
ment model. Garcia-Alcaraz et al. (2020) demonstrate
the role of ICT in improving SC performance under reg-
ulatory constraints. Tuladhar et al. (2024) and Bradley et
al. (2025) underscore the importance of IT investment
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and compliance costs. Nevertheless, few existing models
simultaneously optimize investments in technology and
regulatory compliance by considering both as decision
variables.

2.5. Environmental Sustainability and Regulation
Many recent models optimize regulatory compliance and
technology investment with a focus on sustainability.
For example, Benjaafar et al. (2012) incorporate carbon
emissions into procurement, production, and invento-
ry decisions, showing that emissions can be minimized
through supply chain collaboration without increasing
costs. Wang et al. (2017) apply game theory to analyze
how supply chain enterprises respond to government
policies, demonstrating that centralized systems improve
profits and social welfare. Chalmardi and Camacho-Valle-
jo (2018) design a mixed-integer linear programming
(MILP) model that incorporates financial incentives to
promote the adoption of cleaner technologies, con-
cluding that non-production-based incentives are more
effective in reducing environmental impacts. Ma et al.
(2021) propose an optimization model for investments
in green technologies under cooperative strategies and
regulatory constraints, highlighting the trade-offs be-
tween profits and stringent regulation. Similarly, Peng
et al. (2022), Sun et al. (2023), and Cai and Jiang (2023)
evaluate the effects of carbon pricing, cap-and-trade sys-
tems, and government subsidies on investment decisions
and supply chain performance. Although technological
investment and compliance with government regulations
have been researched in SCM, no existing paper address-
es their simultaneous optimization. Only a few models
simultaneously optimize both variables within a general
supply chain management context.

2.6. Research Gap and Contribution

From the literature review, two key points emerge: first,
Monsreal et al. (2019) is the only study that proposes a
mathematical model that optimizes both factors, but not
simultaneously; second, there is a need for optimization
models that jointly optimize technology investments
and regulatory compliance simultaneously. This paper
addresses this gap by developing a mathematical op-
timization model that simultaneously considers both
variables within SCM.

3. Mathematical Optimization Model

The mathematical optimization model proposed in this
paper builds upon the factors identified as relevant in

Monsreal et al. (2019). More specifically, the two decision
variables: technology level and government regulation
level, are measured in monetary units. Such monetary
measures are referred to as as “investment levels”. The
model then optimizes R, I, and J (order efficiency, JIT
efficiency, and operating efficiency, respectively) given
a mix of technology and government regulation levels.
The relevance of the variables considered in the proposed
model is based on an international survey conducted by
Monsreal et al. (2019). This survey collected data on end-
to-end visibility of the supply chain, which involves the
use of Auto-ID (Monsreal et al., 2019).

The findings of the survey identified four main fac-
tors such as quality, cost, technology adoption or use,
and government regulations. Quality refers to function-
ality and performance; cost refers to all costs, including
holding/inventory cost; technology adoption or use re-
fers to the use of emerging technologies so that specific
components of the supply chain can be optimized, and
government regulations which refers to regulations, laws
and other relationships established by local, state and
federal governments.

AsinMonsreal etal. (2019), this research contributes by
explaining and specifying the connection between these
four variables to increase the understanding of the effect
of government regulation on technology adoption. How-
ever, the present study extends this work by proposing a
new model that simultaneously optimizes the two target
factors of technology adoption and government regula-
tion in terms of investment levels. The other two major
variables, quality and cost, are variables to assess the
appropriate amount of such investment in government
regulation and technology. Thus, the decision variables
of the model are technology adoption (T=0) and compli-
ance with government regulations (G>0), both measured
in monetary terms: T, measured as investments in adopt-
ing new technology, and G, measured as investments in
complying with government regulations.

The model’s input data parameters are presented in
Table 1. These parameters include structural and oper-
ational characteristics of the SC such as fixed order cost
per order cycle (0), annual demand (D), annual inventory
holding cost per unit (H), and operating cost per unit (C).
The model also defines lower (M) and upper (N) bounds
for the ordering efficiency coefficient (R), lower (L) and
upper (U) bounds for the JIT efficiency coefficient (I), and
lower (A) and upper (E) bounds for the operating efficien-
cy coefficient (J). Additionally, exponential sensitivity
factors (31-p6) are included to model how investments in
technology adoption and in compliance with government
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Table 1. Input parameters.

Symbol Description Range
Fi -
0 ixed ordering cost per 020
order cycle [$]
D Annual demand [shipments] D=0
Technology exponential
B, gy exp B, 20
parameter for R
Government exponential
B, ° B,20
parameter for R
Technology exponential
B, gy exp B,20
parameter for |
Government exponential
B, P B,=0
parameter for |
Technology exponential
B, gy exp B 20
parameter for J
Government exponential
B, g Be20
parameter for J
H Annual inventory holding H>0
cost per unit [$]
C Operating cost per unit [$] C=0
M Lowest o.rQerlng efficiency 0<M<1
coefficient (R) level
N Highest ordering efficiency 0O<N=s1lor
coefficient (R) level M<N=<1
L Lowesi.: J.IT efficiency 0<L<1
coefficient (1) level
U Highest JIT efficiency 0O<Us1lor
coefficient (1) level L<U=<1
A Lowest ope{ratmg efficiency 0<A<1
coefficient (J) level
E Highest operating efficiency O<Es<lor
coefficient (J) level A<E=<1

regulations affect each of these SC efficiency coeffi-
cients-R, | and J. The model’s parameters are calibrated
using empirical data and benchmark values reported in
the literature.

The model’s decision variables T and G, along with
the input data parameters, determine the model’s effi-
ciency coefficients R, I, and J, which are calculated by the
model. Each efficiency coefficient is bounded between 0
and 1: the ordering efficiency coefficient (0<R<1), the JIT
efficiency coefficient (0<l<1), and the operating efficiency
coefficient (0<J<l). These coefficients capture how in-
vestmentsin technology adoption enhance performance,
and how investments in compliance with government

regulations may constrain SC performance. R, I, and J
are used to calculate the optimal total cost (TC) and the
optimal order quantity (Q*) under both cost-oriented and
quality-oriented optimization objectives. The model’s ef-
ficiency coefficients are defined as follows:

+ Orderingefficiency coefficient (R): the degreetowhich
the fixed ordering cost per order cycle decreases with
investmentsin T and increases with investments in G.

« JIT efficiency coefficient (I): the degree to which deliv-
ery-to-consumption or production synchronization
(i.e., time from delivery to consumption or produc-
tion) improves with investments in T and worsens
with investments in G.

+ Operating efficiency coefficient (J): the degree to
which unit operating costs decrease with invest-
ments in T and increase with investments in G.

The model’s assumptions are:

+ The fixed ordering cost is set at the beginning of each
periodic order cycle and remains constant through-
out the cycle.

« Total demand level is known and constant over the
planning horizon.

+ Investments in T increase R, |, and J by improving
ordering processes, JIT performance, and operating
conditions within the SC.

+ Investments in G decrease R, I, and J by introducing
operational constraints and additional compliance
requirements in the SC.

Eq. 1 calculates the total cost function (TC), which
integrates operational cost components-ordering,
inventory holding, and operating costs-along with
investments related to T and G. Eq. 1 is adapted from the
SC RFID Investment Evaluation Model (Hua et al., 2016)
and extends their approach by allowing the optimization
of cost and quality performances under different
technology-investment and government regulation-
compliance scenarios. In this equation, the efficiency
coefficients R and J are cost-oriented and directly affect
the first and third terms, while the efficiency coefficient |
is quality-oriented and influences the second term.

TC =982 9 4 jCD+T+G (1)

Eg. 2 calculates the optimal order quantity (Q*) as a
function of R, | and J. This equation links strategic in-
vestmentsin T and G to tactical and operational planning
decisions. This equation considers the dynamic effects
of investments in T and in G on SC efficiency, which is an
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advantage over the traditional Economic Order Quantity
(EOQ) model, which assumes static cost parameters.

Q" =/ (2)

Egs. 3, 4, and 5 calculate the model’s efficiency coef-
ficients R, |, and J based on the approach proposed by
Azadeh et al. (2009). However, in this paper, R, I, and J are
formulated as functions of T and G, allowing the proposed
model to capture the impact of investing in T and the
effects of investing in G on SC performance.

R=(N M)+ (M- N)e*T+ (N - M)eme (3)
I=(U-L)+(L-U)eAT + (U_ L)ea%c (4)
J= (B~ A)+ (A= E)e* + (B~ A)enc (5)

Egs. 6, 7, 8 and 9 describe the technology-adoption and
government-regulation cost-oriented optimizationmodel,
which simultaneously minimizes TC by determining the
optimal investment levels in T and G. Eq. 6 is the cost-
oriented total-cost function (TC ) defined as a function
of ordering cost, operating cost, and investment
expenditures. Eq. 7 expresses TC_as a function of T and
G, Egs. 8 and 9 define R and J as functions of T and G.

TC.= 9L + JCD+T+G (6)
TC. = f(T,G) (7)
R=r(T,G) (8)

J = j(T,G) (9)

Eqg. 10 analyzes how changes in T and G affect TCc (Eq.
6). We derive the TCC function with respect to T and G
as dTC¢ = dT + 2£da, knowing that TCc, R and J are
functions of T and G (Egs. 6 to 9) and applying the chain
rule. Hence, Eq. 10 expresses the derivative of TCc with
respect to R and J. This derivative captures how changes
in Rand J affect the total cost associated with operational
performance, considering that R and J are functions of T
and G (Eqs. 8 and 9).

5)D i) )
+1+ 222 14 ¥ep+1+2op+1 (10)

Eqg. 11 presents the derivative of the TCc function (dTCc),
which considers the effects of R and J.

dTC. =4+ 92 (9% + 5&) + CD(& + 9%) (11)

To analyze how changesin T and G affect R, we substitute
Eg. 3 into Eq. 8, yielding Eq. 12, which expresses the
derivative of the efficiency coefficient R (dR) based on
exponential response to T and G.

_ N-MeRS (12)

dR = By (M — N)ehT 2

By setting Eq. 11 equal to zero-applying the first-order
condition for optimization-Eq. 13 expresses how much R
must change to minimize TCc given the values of O, D, C,
and Q, as well as the derivative of the model’s efficiency
coefficient J (dJ).

dR:7(4+gng)Q (13)

Eq. 14 results from substituting Eq. 12 into Eq. 13. It
expresses dR as a function of T and G, linking these
decision variables with dJ to estimate the marginal-
cost trade-offs between enhancing efficiency through
investments in T and in G.

(N*M)eﬁ%” _ _( 4+CDdJ) (14)

/31 (M - N)eﬁlT - B,G? OD

Eg. 15 results from substituting Eq. 2 in Eq. 14. This
equation calculates the optimal ordering efficiency (R*)
as a function of T and G. Therefore, Eq. 15 incorporates
the effects of investments in T and in G to estimate R*.

() |

N-M |eP2G
—Bi(M—N)ehr T — L

R* — BaG ODHI

7o 2 (15)
4+CD (&(A-myg_%)

Eqg. 16 calculates the optimal technology-adoption level
(T*) as a function of R* and G.

R*-N+M-[N-M 5132%
.
Tr=— 7

B
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Eq. 17 calculates the optimal government-regulation level
(G*) as a function of R* and T.

G = (TGN ) g, (17)

Egs. 16 and 17 close the optimization loop by linking
the model’s decision variables T and G to the model’s
efficiency coefficients R, I and J.

Egs. 18 to 20 define the technology-adoption and
government-regulation quality-oriented optimization
model. Eq. 18 expresses the quality-oriented total-cost
function (TCQ), defined as a function of inventory holding
cost. Equation 19 expresses TCQ as a function of T and
G, and Eq. 20 defines | as a function of T and G. These
equations show how investments in T impact the quality
performance of SC.

TCo=2 +T+G (18)
TCq =g(T,G) (19)
I=4(T,G) (20)

Eqg. 21 analyzes how changes in T and G affect TCy- This
equation is the derivative of Eq. 18 with respect to T
and G as dTCq = 95dT + 45dG, knowing that TC, and |
are functions of T and G (Egs. 18 to 20) and applying the
chain rule. Hence, Eq. 21 expresses the derivative of TC,
with respect to I. This equation captures how changesin |
affect the total cost associated with quality performance,
considering that | is function of T and G (Egs. 19 and 20).

dTCq =2+ &2dI (21)

By setting Eq. 21 equal to zero-applying the first-order
condition for optimization-Eq. 22 expresses how much |
must change to minimize TC, given the values of Hand Q.

d = — (22)

Eqg. 23 results from substituting Egs. 4 and 20 into Eq.
22. This equation defines the derivative of the model’s
efficiency coefficient | (dl) as a function of T and G. This
equation links changes in T and G to the first-order opti-
mization condition for minimizing TCy

U-L Eﬂ‘l%
dI:ﬂii(L—U)EmT— % (23)

Then, Eq. 24 is obtained by setting Eq. 23 equal to Eq. 22.
This equation links the marginal effect of T and G on the
efficiency coefficient | to the quality-related total-cost
minimization condition.

_L)eFE
B3(L — U)efT — % +5g =0 (24)

Eq. 25 results from substituting Eq. 2 into Eq. 24. It shows
the substitution of Q* into Eq. 24. This equation expresses
the optimal JIT efficiency coefficient (I*) as a function of
T and G, linking strategic investment decisions in T to
quality-related cost performance.

I'= . NG (ogD)
H? (ﬂz(L—U)eHST—w’;)—g?c> (25)

4

Eq. 26 calculates the optimal operating-efficiency
coefficient (J*) by substituting the optimal values of T*
and G*-derived from Eqgs. 16 and 17-into the model’s
operating efficiency coefficient function (Eq. 5). This
function links J* to strategic investment decisionsin T and
in G completing the quality-oriented optimization model.

J = (B-A)+ (A-E)eHT + (E—A)e%ﬁ (26)

In summary, the optimal equations of the simultaneous
Technology-Adoption and Government-Regulation qua-
lity-oriented optimization model are Eqgs. 15, 16, 17, 25,
and 26.

4, Results

4.1 Case Study

This paper uses the same data collected from a German con-

tainer consignee company, as used in Monsreal et al. (2019),

to test the proposed simultaneous optimization model.
Four scenarios are designed to test the currently pro-

posed optimization model.

+ Scenario 1: both investments in technology adop-
tion (T, measured as investments in technology),
and investments in compliance with government
regulations (G, measured as compliance costs) are
increased. Figures 1, 2 and 3 represent this scenario.

» Scenario 2: total investment is maintained constant
at 11%, while the shares between investments in
technology adoption (T, measured as technology
investments) and investments in compliance with
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government regulations (G, measured as compliance
costs) varies. Figures 4,5 and 6 represent this scenario.
« Scenario 3 analyzes the impact of increasing in-
vestments in technology adoption (T, measured as
technology investments) while maintaining con-
stant investments in compliance with government
regulations (G, measured as compliance costs) at a
minimum. Figures 7, 8 and 9 represent this scenario.
« Scenario 4 analyzes the impact of increasing invest-
ments in compliance with government regulations
(G, measured as compliance costs) while maintaining
constantinvestments in technology adoption (T, mea-
sured as technology investments) at their minimum
level. Figures 10, 11 and 12 represent this scenario.

Table 2 shows the specific scenarios with their
corresponding values.

4.2 Results

Figures 1 to 12 present the results obtained from the four
scenarios. These figures illustrate the behavior of R, T and
J under each scenario.

Scenario 1 (Figures 1 to 3) analyzes the effects of joint-
ly increasing investments in T and G from 1% to 10% of
total operating cost. Figure 1 shows that R initially in-
creases as investments in T and G rise, but R plateaus
at 8% level, suggesting diminishing marginal returns. Be-
yond this percentage of the total operating cost, further
investments in T and G do not produce additional gains
in R, likely due to saturation effects in automation or co-
ordination processes.

Table 3. Model variables, coefficients,
and exponential parameters

Variable Description Value Units
. ) Fixed ordering cost
Table 2. Design of the experiment. 0 per order cycle 75.5 usD
Scenario 1 Scenario 2 Scenario 3 Scenario 4 D Annual demand 11,200.00 Trips
G(%) T(%) G(%) T(%) G((%) T(%) G(%) T(%) H Annual inventory cost per unit 81.48 usD
1 1 10 1 1 1 1 1 Operating cost per unit 257.99 usD
2 2 9 2 1 2 2 1 M Lowest ordering efficiency 0.3 i
3 3 8 3 1 3 3 1 coefficient (R) level ’
4 4 7 4 1 4 4 1 N Highest qrcflering efficiency 1 i
s s 6 s 1 s s 1 coefficient (R) level
L Lowest JIT efficiency 0.2
6 6 > 6 ! 6 6 ! coefficient (/) level '
! ! 4 ! = ! ! ! U Highest JIT efficiency 3 i
8 8 3 8 1 8 8 1 coefficient (/) level
9 9 2 9 1 9 9 1 A Lowest operating efficiency 05
10 10 1 10 1 10 10 1 coefficient (J) level ’
E Highest operating efficiency 1 i
coefficient (J) level
For this purpose, the initial values for the model’s decision A o -
variables (T and G), efficiency coefficients (R, Tand J), and Bl Tec nologytexion;ntlal 0.00002 -
. el . ram rtor
exponential sensitivity factors (B1-B6) are the same as parameter fo :
those used by Monsreal et al. (2019) and are reproduced B2 Governmenttex$on;nt|al 20.00002 -
in Table 3 for reference. Similarly, an investment threshold parameter for
of 10% of total operating cost, for both investments in T B3 Technology exponential 0.00001 i
and G optimization, is used, considering a total annual parameter for /
operating cost of approximately USD 4 million (Monsreal B4 Government exponential -0.00001 B
et al., 2019). This 10% threshold serves as the reference parameter for /
for the design of the experiment. Technology exponential
g B5 0.00002 -
Input values for efficiency coefficients (R, T and J), and parameter for J '
exponential sensitivity factors (31-36) are based on Mon- i
p y (B1-Be) 86 Government exponential 0.00002 i

sreal et al. (2019).
The higher the values of R, T and J are, the greater the
benefits obtained from investing in technology adoption (T).

parameter for J
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Figure 2 shows that | decrease as investments in T
and G increase simultaneously. This decline is likely
due to disruptions in synchronization between delivery
and production, such as rigid compliance protocols or
misalignment between the implementation of new tech-
nologies and operational execution.

Figure 3showsthat J also decreases wheninvestments
in T and G increase. This indicates that investments in T
and G may raise unit operating costs instead of reducing
them.

Figures 1 to 3 indicate that increasing investments in
T and G does not always improve SC performance-un-
less these investments are optimally balanced. On one
hand, R improves initially but plateaus around 8%, offer-
ing no additional gains beyond that level. On the other
hand, | and J decline as investments increase. Scenario
1 suggests that increasing investment costs can lead to
inefficiencies and trade-offs, rather than performance
improvements.

Scenario 2 (Figures 4 to 6) analyzes the effects of vary-
ing the investment mix between T and G while keeping
total investment constant at 11%. Figure 4 shows that R
reaches its highest value when T is at 1% and G at 10%
of the total operating cost. As investment in T increases
and investment in G decreases, R declines. This result
suggests that ordering processes benefit more from in-
vesting in G than from investing in T.

Figure 5 shows that the best performance of | occurs
when T is low and G is high-specifically, when T is at 1%
and G at 10% of the total operating cost. This result high-
lights that, with total investment fixed at 11%, investingin
G improves delivery-to-production synchronization more
effectively than investing in T.

Figure 6 shows that operating efficiency (J) improves
asinvestmentin T increases and investment in G decreas-
es. The best result for J occurs when T is at 10% and G at
1% of the total operating cost. This result suggests that
J depends more directly on T and is negatively impacted
by G.

Figures 4 to 6 show that setting the optimal balance
between investments in T and G-while keeping the total
investment constant at 11%-produces different results
across R, I and J. The performance of R and | improves as
investment in G increases and investment in T decreases,
reaching their peaks when G is high and T is low. This re-
sult suggests thatinvestmentin G drives improvementsin
Rand I. In contrast, Jimproves as investmentin T increas-
es, reaching its highest level when T is high and G is low.
Scenario 2 highlights that performance improvements
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depend not just on how much is invested overall, but on
how much investment is distributed between T and G.

Scenario 3 (Figures 7 to 9) studies the effects of
increasing investment in T while keeping constant invest-
ment in G at a minimum. Figure 7 shows that R increases
as T increases, indicating that ordering functions are
highly related to technological improvements even in
the absence of government regulation constraints. This
result suggests that upgrades in T-such as automation,
digital ordering systems, or real-time communication
platforms-directly enhance order processing and coor-
dination across the SC.

Figure 8 shows that | decreases as investments in T
increase. This result suggests that investing in T may lead
to desynchronization between supply and production
when investments are not optimally balanced with in-
vestmentsin G. A possible interpretation of this is that the
adaptation to new technologies may outpace internal op-
erations, causing inefficiencies in timing or coordination.
Without government regulation constraints, adoption of
new technologies might disrupt rather than streamline
JIT alignment.

Figure 9 shows that J increases as investments in T
increase. This result is expected, as technologies tend to
minimize unit production costs, optimize resource use,
and enhance overall process efficiency. Even when in-
vestments in G are minimal, these benefits accumulate,
demonstrating the importance of investing in T.

Figures 7 to 9 show that increasing investments in T,
while keeping investments in G at a minimum, leads to
different results across R, I, and J. On the one hand, R
and J improve constantly as investments in T increase.
These efficiency coefficients show clear improvements
from investing in T. On the other hand, | decreases as
investmentsin T increase. This result suggests a probable
misalignment between T and production-delivery syn-
chronization. Scenario 3 reveals that investing in T alone
can improve certain aspects of SC performance but may
also introduce trade-offs if it is not optimally balanced
with G.

Scenario 4 (Figures 10 to 12) studies the impact of
increasing investments in G while keeping constant in-
vestments in T at a minimum. Figure 10 shows that R
improves as G increases. This result suggests that some
government regulations streamline ordering processes
and enhance their efficiency, despite the additional in-
vestments in G.

Figure 11 shows that | decreases as G increases. This
decline could likely reflect the challenges that govern-
ment regulations impose on synchronizing delivery and
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production schedules, causing operations to become less
flexible or slower.

Figure 12 shows that J also declines as investments
in G increase. This result indicates that increasing in-
vestments in G raises unit operating costs, negatively
impacting J.

Figures 10 to 12 show the effects of increasing invest-
ments in G while keeping constant investments in T at a
minimum. R improves as investments in G increase, and
this result suggests that certain government regulations
can streamline ordering processes despite added invest-
ment costs. However, both | and J decline with higher
investments in G, reflecting challenges in delivery-pro-
duction synchronization and increased unit operating
costs. Scenario 4 highlights that while compliance with
government regulations may benefit some of the SC func-
tions, it can also introduce inefficiencies and trade-offs in
others when investments in T are low.

4.3 Discussion on Scenario Use and Interpretation

Investments in technology adoption are a variable that
can be controlled by private companies through their
operations and strategic management decisions, while
government regulations are designed, enacted, and
issued by public authorities, and they often require in-
vestments in compliance with government regulations
from companies. Therefore, the way to use and interpret
these results depends on the purpose and user profile.

From the perspective of companies, Scenario 1 facili-
tates the identification of the optimal allocation between
investing in technology adoption and compliance with
government regulations, assuming both contribute
equally to the total investment level.

Scenario 2 offers a supplementary progression of
investment contributions between technology and gov-
ernment regulation compliance. The results from this
scenario guide companies toward the right balance be-
tween these two investment types.

Scenario 3 provides a baseline to understand the im-
pact of overall increases in technological investment.
Thus, this scenario enables companies to evaluate which
types of operational efficiencies are most influenced by
investing in technology adoption. These scenarios help
companies strategically target areas that maximize re-
turns on technological investments by isolating their
effects.

From a governmental or policymaking point of view,
Scenario 4 mimics the Scenario 3 baseline approach
but keeps technology investment steady while increas-
ing government regulation compliance investment. This
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scenario evaluates the broader impact of regulatory
policies on industry performance by assessing how dif-
ferent levels of regulatory stringency affect companies’
operational efficiency. Governments can use the results
of this scenario to design more effective and less disrup-
tive regulations. As with companies, a government could
benefit from the results obtained in Scenario 1 when it
seeks to understand the overall effects of aggregated
investments.

The main contribution of the proposed model is its
capacity to simultaneously optimize investments in tech-
nology and compliance with government regulations. By
doing so, this two-decision-variable optimization model
is different from the single-decision-variable model pub-
lished by Monsreal et al. (2019).

Theresults of the four scenarios reveal counterintuitive
outcomes—such as perceived benefits from government
regulations and negative impacts from technology in-
vestments. The comparison of the results suggests that
certain types of efficiency may be more (or less) sensi-
tive to specific types of investments. For example, on
the one hand, the efficiency associated with just-in-time
(JIT) logistics may not respond strongly to technology in-
vestment because its benefits are time-based, and such
improvements may not be fully captured in costs. The be-
havior of JIT efficiency remains consistent across the four
scenarios, supporting this analysis. On the other hand,
ordering efficiency improves under government regula-
tion-possibly due to a decrease in demand (interpreted
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in this model as sales), which lowers the order cost per
cycle and thus increases efficiency.

Operating efficiency improves under technology
investment and weakens under stricter regulatory sce-
narios (Scenarios 2, 3, and 4), as well as under increasing
total investments. This analysis suggests that operating
efficiency is very sensitive to the balance and scale of
technology and compliance with government regulation
investments.

Conclusions

This paper proposes a mathematical optimization model
that simultaneously optimizes investments in technolo-
gy and compliance with government regulations in SCM.
This paper tackles a critical gap in the SCM literature
and provides a more comprehensive and realistic deci-
sion-making tool for both private firms and policymakers.

Through a real case study and the analysis of four sce-
narios, the proposed optimization model demonstrates
that operational efficiencies—such as ordering, JIT, and
general operating efficiency—respond differently to
variations in technology adoption and compliance with
government regulation investments. The results reveal
counterintuitive effects, including negative impacts due
to the potential inefficiencies from excessive technology
investments, and positive impacts of moderate regula-
tions. These results emphasize the importance of finding
the optimal equilibrium between both variables rather
than optimizing them independently.

The proposed optimization model provides strategic
insightsforcompaniesaimingtoenhancecompetitiveness
while ensuring compliance with government regulations.
Similarly, it offers governments and/or policymakers
a framework for designing policies that promote the
adoption of new technologies without compromising op-
erational performance.

One future line of research would be to compare and
empirically validate the results obtained in this paper by
using data from other industries and countries, which
would further strengthen the model’s applicability and
generalizability.

Our results are constrained to the specific case study
and therefore to the data used for the presented analysis.
Therefore, future research could extend this model by in-
corporating uncertainty, multi-echelon supply chains, or
dynamic regulatory environments.

A third proposed line of research is to add oth-
er decision variables to the proposed model, such as

sustainability initiatives, risk mitigation strategies, or
digital transformation investments.

Finally, a future study could be conducted to explore
a dynamic extension of the model, where investment de-
cisions evolve over time.
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