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ABSTRACT 
In this paper, we propose a hybrid maximum likelihood (ML) decoding scheme for multiple-input multiple-output 
(MIMO) systems. After partitioning the searching tree into several stages, the proposed scheme adopts the 
combination of depth- and breadth-first search methods in an organized way. Taking the number of stages, the size of 
signal constellation, and the number of antennas as the parameter of the scheme, we provide extensive simulation 
results for various MIMO communication conditions.  Numerical results indicate that, when the depth- and breadth-first 
search methods are employed appropriately, the proposed scheme exhibits substantially lower computational 
complexity than conventional ML decoders while maintaining the ML bit error performance. 
 
Keywords: Hybrid decoding, multiple input multiple output (MIMO), maximum likelihood detection, tree partitioning. 
 

 
1. Introduction 
 
It is well known that a significant gain in the 
spectral efficiency can be secured if we utilize the 
multiple-input multiple-output (MIMO) system when 
compared to the use of a single-input single-output 
system. The MIMO system is one of the promising 
techniques for next-generation communication 
systems because of its increased capacity without 
requiring consumption of excess frequency 
spectrum [1]. In particular, the spectral efficiency of 
the MIMO systems stems from the spatial 
multiplexing and increases as the number of 
antennas employed increases. Due to the 
increased interference among the transmit 
antennas or mobility of the devices [2], on the 
other hand, a more challenging decoding task at 
the receiver side is an unavoidable expense in 
making use of the advantages of MIMO systems 
comprehensively. 
 
The problem of designing computationally efficient 
MIMO decoders has been addressed in many 
studies. Among the representative examples of 
computationally efficient decoders are such 
suboptimal decoders as the zero-forcing, nulling 
and cancelling, and nulling and cancelling with 
optimal ordering schemes [3]. With the bit error 

 
 
rate (BER) not equal to the ML performance, the 
suboptimal decoders are not appropriate in some 
situations to fully utilize the advantages inherent 
in the MIMO systems despite their low 
computational complexity. 
 
Theoretically, a maximum likelihood (ML) decoder 
achieves the optimal BER performance for MIMO 
systems. The conventional full-search ML decoder 
inspecting all the lattice points in a tree requires a 
computational complexity that grows excessively 
fast as the number of antennas or the size of 
signal constellation increases. To alleviate the 
computational complexity of the conventional full-
search ML decoder while maintaining the optimal 
BER performance, the sphere decoder (SD) has 
been proposed and analyzed in [4]. By searching 
over only the lattice points lying inside a 
hypersphere centered at the received signal point, 
SD reduces the search space and consequently 
the required computational complexity. Specifically, 
it is reported that, when the signal-to-noise ratio 
(SNR) is high and the number of antennas is small, 
the computational complexity of SD is comparable 
to that of suboptimal decoders. However, the 
computational complexity of SD increases 
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significantly as the number of antennas increases 
or the SNR becomes low [5]. The breadth-first 
signal decoder (BSIDE), searching the closest 
lattice point based on a breadth-first search 
method, is proposed and shown to exhibit a lower 
computational complexity than SD and the optimal 
BER performance [6]. Nonetheless, it seems that 
BSIDE does not provide sufficient complexity 
reduction when the size of signal constellation is 
large. Recently, several low complexity decoding 
schemes were proposed employing a partial ML 
decoder with the successive interference 
cancellation detector [7] and with the chase 
detector [8]. However, the schemes in [7] and [8] 
cannot provide the optimal detection performance. 
 
In this paper, we propose a novel ML decoding 
scheme, called the partition-based hybrid decoding 
(PHD), which first partitions the tree into several 
stages, and then applies depth- or breadth-first 
search method appropriately in each of the stages 
to find the ML solution. By determining a set of 
candidate nodes leading to the ML solution at the 
end of each of the stages (except for the last 
stage) and inspecting the more-likely candidates 
first, PHD can reduce the computational complexity 
substantially. The computational gain of PHD is 
shown to be more significant when the SNR is 
lower and when the number of antennas is larger.  
 
The rest of this paper is organized as follows. The 
MIMO system model assumed in this paper is 
described in Section 2 and details of PHD are 
presented in Section 3. The computational 
complexity and BER performance of BSIDE, PHD, 
and SD are explored and compared in Section 4. 
Finally, Section 5 summarizes this paper. 
 
2. System model 
 
Let us consider a MIMO system with tN  transmit and 

rN  receive antennas as shown in Figure 1. At the 

transmitter side, the input data stream is divided into 

tN  substreams, each of which is then transmitted 

through a dedicated transmit antenna over a flat 
Rayleigh fading channel. The channel is assumed to 
be constant over one transmission   period but may 
change from one transmission to another. 
 

 
 

Figure 1. An example of a MIMO system with tN  

Transmit and rN  receive antennas. 

 
Then, the baseband complex received signal 

      1 2, , ,
r

T

Nr r r r  can be formulated as 

 

   ,r Hs n      (1) 

 

where H  is the r tN N  complex channel transfer 

matrix,       1 2, , ,
t

T

Ns s s s  is an 1tN   complex 

transmitted signal vector, and       1 2, , ,
t

T

Nn n n n  

is an complex noise vector. Here, the superscript 
T  signifies the transpose of a matrix. The 
elements 

{ }i jh  of the complex channel transfer 

matrix H  are independent and identically 
distributed (i.i.d) complex Gaussian random 
variables with mean zero and variance one: we 
assume that all the complex channel transfer 
coefficients 

{ }i jh  have perfectly been estimated 

before the beginning of the decoding procedure at 
the receiver. The additive noise components { }in  

are i.i.d complex Gaussian random variables with 
mean zero and variance  2 2  per dimension. We 
assume that the complex transmitted signals { }is  

are drawn from the constellation of an L2-
quadrature amplitude modulation (QAM), where L  
is a power of 2.  
   
To simplify the description of PHD, let us now 
convert the complex matrix and vectors in Eq. 1 
into real expressions. For convenience, let 

 2 tM N  and  2 .rN N  From Eq. 1 we then have 
 

  r Hs n      (2) 
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where            
  1 2[ ]

T
T T T

Nr r r rr r  denotes 

the received signal vector, 
 

   
   

  
 
    

 

 

H H
H

H H
    (3) 

 
denotes the real representation of the channel 

transfer matrix  ,H  

           
  1 2[ ]

T
T T T

Ms s s ss s  is the 

transmitted signal vector in the real domain, and 

           
  1 2[ ]

T
T T T

Nn n n nn n  is the noise 

vector. Here,  { }  and  { }  designate the real and 

imaginary parts, respectively. Since  is  is drawn 

from an L2-QAM constellation, we have  ,M
Ls S  

where it is assumed that 
 

           
 

( 1) ( 3) ( 3) ( 1)

2 2 2 2L

L L L L
S  (4) 

 

Performing the QR  decomposition on the channel 

transfer matrix H  when  ,N M  we can rewrite Eq. 2 
as [9] 
 

 
 
 
 
    

  1 2[ ]
0N M M

Q

R
r Q Q s n    (5) 

 

where  1 2[ ]Q Q Q  is an N N  unitary matrix, 

 [ ]i jR r  is an M M  upper triangular matrix, and 

 0N M M  is an all-zero matrix of size  ( ) .N M M  

Multiplying  1 2[ ]T TQ Q Q  from the left on both 

sides of Eq. 5, we obtain 
 

 
 
 
 
    

   
     

    0' 'N M M

y Rs w

y w
    (6) 

 

where  1 [ ],T
iy Q r y   1 ,Tw Q n  and 

  2 2' ' .T Ty w Q r Q n  It is noteworthy that only ,y  

but not ',y  is dependent (or contains information) 

on the transmitted signal .s  

Let us now consider the ML decoding of a 
transmitted signal vector .s  Given a received 

vector r  and the channel transfer matrix ,H  the 

distance between r  and Hs  is calculated as 

 

      

  

  

2

2 2

1 2

2 2

2

T T

T T

T

r Hs r Hs QQ r Hs

Q r Rs Q r

y Rs Q r

  (7) 

 
since  ,TQQ I  where   denotes the Euclidean 

norm. As we have observed in Eq. 6, 


22

2 'TQ r y  is not dependent on ,s  and 

therefore, the ML solution ŝ  is obtained 

eventually as   
 

 
   

22ˆ argmin argmin .
M M
L Ls S s S

s r Hs y Rs   (8) 

 
If  ,N M  on the other hand, the channel transfer 
matrix is first partitioned into  1 2[ ],H H H  where 

1H  and 2H  are of sizes N N  and  ( ),N M N  

respectively. Performing QR  decomposition on 

1,H  we have [9]   

 
  2[ ]r QR H s n     (9) 

 
from Eq. 2, where Q  is an N N  unitary matrix 

and R  is an N N  upper triangular matrix. If we 
multiply TQ  from the left on both sides of Eq. 9, we 

obtain   21 2 ',Ty R Q H ns s  where  ,Ty Q r   

   1 21 [ ] ,T
Ns s ss       1 22 [ ] ,T

N N Ms s ss  and 

' .Tn Q n  In order to find the ML solution ˆ,s  we 

first fix 2s  and search over 1s  to minimize 

 
2

21 2
Ty R Q Hs s  and then the procedure is 

repeated for every choice of 2 .M N
LSs  The ML 

solution ŝ  can thus be found as   

 

 
   

2 1

2

21 2
ˆ arg min min

M N N
L L

T

S Ss s
s y R Q Hs s

            
(10) 
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In this paper, we assume that N M  for simplicity: 
however, all the results in this paper can be readily 
extended to the situation N M  also. 
 
3. Proposed decoding scheme 
 
3.1 Preliminaries 
 

Using that the matrix R  is upper triangular, the tree 
structure is assumed to find the ML solution ŝ  in 

PHD as in other well-known decoding schemes [10]. 
Considering an r tN N  MIMO system with L2-QAM, 

an L-ary tree with M  ( 2 )tN  layers starting from a 

root is created. The ith node in the kth layer of the 
tree is denoted by the vector 

      ( ) ( ) ( ) ( )
1[ ]i i i i T

k k k k M kk s s ss  for    1 2k M  and 
     11 2 M ki L  with 

(1)
1Ms  denoting the root (the only 

node in layer 1M ) of the tree. Since the elements 

 
( ){ }i M
j k j ks  of ( )i

ks  are drawn from ,LS  a transmitted 

vector s  can be represented by a node ( )
1
is  in the 

first layer of the tree. Figure 2 shows an example of 
the tree when  4M  and  2L  with   1 1

2 2 2{ }.S  
 

Defining the (node) metric of a node ( )i
ks  as   

 

 
 
 

     

    
2

( ) ( )( )
M M

i i
j j l l kk

j k l j

y r ss               (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

it is clear from Eq. 8 that the goal of the tree 
searching in an ML decoding scheme is to find a 
vector in the first layer whose node metric is the 

smallest among  ( )
11{ ( )} .

Mi L
is  In the context of the 

tree searching in this paper, other such 
commonly-used traditional terminology as the 
child node, descendant node, predecessor node, 
and subtree will be adopted with the usual 
definitions as in [11]. 
 
3.2 The proposed decoding scheme 
 
The proposed decoding scheme, PHD, first 
partitions the tree into several stages of 
layers. For a tree with M  layers, we can in 
general partition the tree into T  stages with 
stage i  containing iM  layers, where 

   1 2 ,i T     {1 2 },T M     {1 2 },iM M  and 




1

.
T

i
i

M M  Clearly, the lth stage is composed 

of layers 





1

1

,
l

j
j

M M  




  
1

1

1, ,
l

j
j

M M  and 



 
1

1
l

j
j

M M  in the tree. In the example of 

Figure 2 for instance, the first, second, and 
third stages are the collections {layer 4},  

{layer 3 layer 2},  and {layer 1},  respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. An example of the tree  with  4,M   2,L  and   1 1
2 2 2

{ }.S  The tree is partitioned 

 into 3 stages (i.e., 3).T when   1,I    0.4, 8,f N  and the noise is absent. 
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In each of the stages, a depth- or breadth-first 
search method can be employed appropriately, and 
the search is restricted to the subtrees rooted from 
the nodes survived in the previous stage. Here, the 

root 
(1)

1Ms  of the whole tree is assumed to be the 

only node survived prior to the first stage.  
 
3.2.1 Step 1: Determining candidates for the ML 
solution in the first (T-1) stages  
 
In each of the ( 1)T  stages in Step 1, a set of 

nodes to be used as the roots of the subtrees in the 
next stage is determined at the bottom layer of the 
stage by applying a depth-first or a breadth-first 
search method. The nodes survived are those with 
metrics smaller than or equal to the threshold 

 
 22 ,DFED y Rs  the metric of the solution 


s  of 

the decision feedback equalizer (DFE). The merit of 
employing the DFE metric 2

DFED  as the threshold is 

that the DFE requires less computational 
complexity than other well-known algorithms 
utilizing QR  decomposition. By using 2 ,DFED  it is in 

addition guaranteed that the ML solution is not 
discarded during the search in Step 1 since 

    
2 22 2ˆ ,ML DFED y Rs y Rs D  where the ML 

metric 2
MLD  signifies the metric of the ML solution 

ˆ.s  Here, 2
MLD  measures the metric between the ML 

solution in the first layer and the root of a tree, or 
equivalently, the square of the distance between 
the transformed received signal  1

Ty Q r  and the 

closest lattice point among those constructed by 
the matrix R  and signal constellation .M

LS  

 
At the end of the lth stage, a set   
 

  
 
  

     ( ) ( ) ( ) 2( ( )) ( )i i i
l DFEk k k Ds s s            (12) 

 
of lN  pairs of nodes and their node metrics at the 

bottom layer (that is, the layer with 



  
1

1
l

j
j

k M M ) of the stage is determined by 

employing appropriately a depth- or breadth-first 
search method for     1 2 1.l T  Here, the 
numbers { }lN  of survived nodes are such that 





 


    

1

1

1 2 1 1.

T

j
j

M

T TL N N N  In the ( 1)stl  

stage, the search continues over the lN  subtrees 

rooted from the lN  nodes in  .l  
 
When a depth-first search method is employed in 
a stage of Step 1, the scheme traverses toward a 
lower layer by adding only one child node with 
node metric smaller than or equal to the threshold 
at a time until it reaches the bottom layer of the 
stage or until all the child nodes of a node are 
explored and found to have metrics larger than or 
equal to the threshold. Then a backtrack occurs 
and the search returns to the predecessor node in 
the lowest layer having at least one unexplored 
child node, at which the depth-first search method 
inspects an unexplored child node with metric 
smaller than or equal to the threshold. The 
procedure continues until the depth-first search 
method reaches back the root of the (sub)tree 
with no node left unexplored.  
 
On the other hand, when a breadth-first search 
method is adopted in a stage of Step 1, the scheme 
first computes all the node metrics in the top layer 
and then discards nodes with the node metrics 
larger than the threshold. The node metrics in the 
layer immediately below are then computed only for 
the nodes stemmed from the survived nodes. Such 
a procedure continues until all the nodes with node 
metric smaller than or equal to the threshold are 
found in the bottom layer of the stage. 
 
3.2.2 Step 2: Finding the node with the shortest 
node metric in the first layer  
 

In the last stage, setting the threshold to 2
DFED  at 

the beginning, the 1TN  subtrees stemmed from the 

1TN  nodes in  1T  are searched by employing one 

of such various ML decoders based on the depth- 
or breadth-first search methods as the BSIDE, list 
sphere decoder (LSD), and SD.  
 
As the node in the first layer with the shortest metric 
will be declared the ML solution, it is desired to find 
the node preferably without searching all the 
subtrees stemmed from the nodes survived in 
stage ( 1).T  To that end, PHD will search the 1TN  

subtrees in the ascending order of the node 
  



 

 

Partition‐Based Hybrid Decoding (PHD): A Class of ML Decoding Schemes for MIMO Signals Based on Tree Partitioning and Combined Depth‐ and Breadth‐First Search, J. I. Park et al./213‐224

Vol. 11, April 2013 218 

metric of the 1TN  nodes in  1T  by re-arranging 

the nodes in  1T  as   

 



     

      1

[ ] [ ] [ ]
1 1

[1] [2] [ ]

{( ( ))

( ) ( ) ( )},T

i i i
T Tk k k

N
k k k

s s s

s s s
                                 

          (13) 
 

where 



     1

1
1 1.

T

j Tj
k M M M  At the same 

time, to maximize the probability of finding the ML 
solution as soon as possible, PHD replaces the 
threshold with the metric of a node in the first layer 
whenever the metric is found to be smaller than the 
threshold.  
 
Specifically, starting from the subtree rooted from 

the first node [1],ks  we search for the node with the 

smallest metric in the first layer. When the search 

over the subtree rooted from [ 1]n
ks  is completed, if 

the metric  [ ]( )n
ks  of [ ]n

ks  is compared to be larger 

than the threshold (which might have been 
changed from the starting value 2

DFED  in the 

meantime), the node of which the metric became 
the threshold is declared the ML solution and the 
search is terminated. This is based on the fact that 
all the descendant nodes of 


1[ ]{ }NTj

j nks  will have node 

metrics larger than the shortest node metric found 
by that moment. The procedure of inspecting more-
likely subtree (stemmed from a node with smaller 
metric) first and appropriately updating the 
threshold maximizes the probability of finding the 
ML solution as soon as possible, and consequently, 
reduces the computational complexity by 
preventing us from unnecessarily searching 
hopeless subtrees.  
 
In contrast to conventional decoding schemes, in 
which only one search method is employed for the 
search over the entire tree, PHD enables us to 
employ various search methods adaptively in each 
of the stages of the partitioned tree when such 
parameters in the decoding environment as the 
SNR, number of antennas, and size of signal 
constellation change. By employing appropriate 
search methods in the right stages, PHD can 
maximally exploit the advantages of several search 
methods and accordingly reduce the computational  
 

complexity. In addition, as a natural advantage of 
the tree partitioning, PHD searches more-likely 
candidate subtrees first and terminates the 
searching process as soon as the ML solution is 
found, resulting in further reduction of the 
computational complexity. 
 
4. Performance evaluation 
 
4.1 Analysis of computational complexity 
 
The number of multiplications (NOMs) is a useful 
index accepted widely in illustrating the 
computational complexity of a decoding scheme 
[12], In this paper also, the computational 
complexity of PHD is investigated and compared 
with those of other ML decoding schemes in terms 
of the number of multiplications.  
 
At the beginning of PHD, the QR  decomposition of 

H  is performed and  1 ,Ty Q r  

,s  and  

 
22

DFED y Rs  are computed. The number of 

multiplications required for the QR  decomposition 

is approximately  2 3 3NM M  [13]. Computing ,y  
2 ,DFED  and 


s  require NM  multiplications, 

 ( 3) 2M M  multiplications, and M  divisions, 

respectively [6]. Assuming that a division requires 
the same amount of computational complexity as a 
multiplication, the total number of multiplications 
required for these computations is thus   
 


   

3 ( 5)
( 1)

3 2

M M M
NM M              (14) 

 
Note that Eq. 14 is the number of multiplications 
required independent of the SNR and size of 
signal constellation.  
 
The computational complexity of PHD can be 
decided by adding the number Eq. 14 to the total 
number of multiplications in the T  stages. The 
number of multiplications in a stage will of course 
depend on the decoding scheme employed and the 
number of nodes with metric smaller than or equal 
to the threshold in the stage. Now, the number of 
nodes with metric smaller than or equal to the 
threshold is a random variable since it is a function  
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of the channel transfer matrix H  and received 
vector ,r  both of which are clearly random 
variables depending on the SNR. Taking in addition 
into account that the exact path of a decoding scheme 
over the tree is unpredictable, it is obvious that the 
number of multiplications (of any decoder) will differ 
from transmission to transmission. Consequently, it is 
impossible to acquire an exact closed-form expression 
for the number of multiplications of a decoding scheme 
in general. In this paper, therefore, the number of 
multiplications of various decoding schemes are 
obtained and compared by means of averaging over a 
large number of repetitions via computer simulations. 
 
4.2 Simulation results and discussions 
 
We now evaluate and compare the computational 
complexities of BSIDE, PHD, and SD in terms of 
the average number of multiplications over 106 
iterations via computer simulations. For 
simulations, we consider Rayleigh fading channels 
with additive white Gaussian noise [14], [15]. The 
BER performance characteristics of BSIDE, PHD, 
and SD will also be shown when appropriate to 
confirm that they all have the ML performance. 
Additional interesting characteristics of PHD will be 
discussed in terms of the relationship between the  
configurations of stages and NOMs in several 
MIMO transmission scenarios.  
 
In all the simulations herein, the SNR is defined as  


2 2

{ } / { }E Hs E n  where { }E  denotes the 

expectation. In specifying the structure (configuration) of 
PHD, we will use the notation PHD 1[{ ( )} ]T

j j jA M  to 

denote that search method jA  is employed in the thj  

stage composed of jM  layers for    1 2 .j T  In 

representing search methods { },jA  the symbols ‘BF’, 

‘BS’, ‘LS’, and ‘SD’ will stand for the breadth-first 
search, BSIDE, LSD, and SD, respectively. It is 
noteworthy that among these four search methods, 
‘BS’ and ‘SD’ can be used only in Step 2 of PHD, ‘BF’ 
can be used only in Step 1 of PHD, and ‘LS’ can be 
used both in Steps 1 and 2. Consequently, there may 
exist six possible combinations of search methods in 
Steps 1 and 2 of PHD. In the simulations, we set the 
initial searching radius of LSD and SD to DFED  and 

assume the computational complexity of a square 
root is the same as that of a multiplication.  
 

4.2.1 On the numbers of stages 
 
Figure 3 shows the average number of multiplications 
of PHD as a function of the number T  of stages 
when various search methods are adopted in PHD 
and   4.t rN N  It is interesting to observe, when 

the search methods are all the same in the first 
( 1)T  stages, that (1) the computational 

complexity of PHD depends mainly on the search 
method and the number of layers in the last stage 
and (2) the changes in the number of stages and 
layers in the first ( 1)T  stages barely influence the 

computational complexity. For example, the 
computational complexities of PHD[LS(6),SD(2)] 
and PHD[LS(2),LS(3),SD(3)] are almost the same 
as that of PHD[LS(2),LS(2),LS(2),SD(2)] and 
PHD[LS(2),LS(1),LS(1),LS(1),SD(3)], respectively. 
Although we have shown the results for only a 
limited number of combinations for the search 
methods, we have confirmed that other 
combinations also result in the same tendency.  
 
From this observation, we can infer that, in 
designing or choosing the configuration of PHD, a 
number of contiguous stages with the same search 
method in Step 1 may be merged into one stage 
with the common search method without affecting 
the overall computational complexity. In other 
words, unless two or more search methods are 
employed in Step 1, partitioning a tree into two 
stages should be a reasonable choice. 
 
4.2.2 On the numbers of layers in stages 
 
In Figure 4, for all possible (=six) combinations of 
search methods in the two stages, we have 
shown the dependence of the computational 
complexity of PHD on the numbers 1M  and 

 2 18M M  of layers in the two stages when 

  4,t rN N   4,L  and  2.T  Clearly, the 

computational complexity of PHD depends on the 
specific configuration and varies as the search 
methods and numbers of layers in the two stages 
change: yet, the difference in the numbers of 
multiplications among the various configurations 
of PHD decreases rapidly as the SNR increases. 
Similar observations have been made for other 
values of L  also, which are not included in this 
paper for a space reason.  
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Although different choices of the numbers of layers 
in the two stages will result in different level of 
computational complexity,   1 2 2M M M  is not 

an unreasonable choice in the investigation of the 
computational complexity of PHD in terms of the 
average number of multiplications. Intuitively, a 
larger 1M  would result in more nodes survived in 

the first stage, more trees to search in the second 
stage, and consequently, higher complexity; 
similarly, a larger 2M  would incur ‘longer’ trees in 

the second stage and consequently higher 
complexity. From now on, taking this observation 
into account, let us focus on PHD which partitions 
the tree into two stages with equal number of 
layers. It should be mentioned, however, that 
values of 1M  other than  2M  might be more 

beneficial depending on specific applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.3 Complexity comparisons of various decoding 
schemes 
 
Figure 5(a) shows the BER performance of BSIDE, 
LSD, PHD, and SD with two transmit and two 
receive antennas when the modulation order L  
varies. It is clearly confirmed that BSIDE, LSD, 
PHD, and SD all possess the ML BER performance. 
The average numbers of multiplications of BSIDE, 
LSD, PHD, and SD in three modulation schemes (4-
, 16-, and 64-QAM) are shown in Figures 5(b)-(d). In 
these figures, it is clearly observed that PHD 
generally outperforms LSD and SD in most cases, 
and also outperforms BSIDE when the value of L  is 
large. Furthermore, it is observed that the gain in 
the computational complexity of PHD over those of 
other schemes is generally more substantial when 
the SNR is low and the number of antennas is large. 
Similar observations can be made in Figure 6, 
obtained when the numbers of the transmit and 
receive antennas are four. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Average NOM of PHD for various choices of stages with search methods (a) LS and SD, (b) LS and 
BS, (c) BF and LS, and (d) BF and BS when  4L  and   4.t rN N  
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Figure 4. Average NOMs of proposed PHD schemes when  4,L    4,t rN N  and the value of M1 varies. 
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Figure 5. BER performances and average NOMs of BSIDE, LSD, PHD [A1(2),A2(2)], and SD: BER 
performances (a) when  2,4,8L  and   2t rN N  and average number of multiplications (b) when  2L  and 

  2,t rN N  (c) when  4L  and   2,t rN N  and (d) when  8L  and   2.t rN N  

 

 
 

Figure 6. BER performances and average NOMs of BSIDE, LSD, PHD [A1(4),A2(4)], and SD: BER 
performances (a) when  2,4,8L  and   4t rN N  and average number of multiplications (b) when  2L  and 

  4,t rN N  (c) when  4L  and   4,t rN N  and (d) when  8L  and   4.t rN N  
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4.2.4 On the choice of search method in PHD with 
two stages 
 
Based on the observations from the simulation 
results in the figures considered so far, we can 
make the following observations. (1) For a fixed 
search method in the second stage, ‘BF’ in the first 
stage produces lower computational complexity 
than ‘LS’ when   2 4t rN N  and  2 4 :L  when 

 8,L  we can make the same observations at 
lower SNR, but ‘LS’ becomes the preferred choice 
as the SNR gets higher. (2) For a fixed search 
method in the first stage, ‘BS’ in the second stage 
would be the first choice when  2,L  and ‘LS’ 
would become our preference for the search 
method in the second stage as L  gets larger. Such 
a dependence of the computational complexity of 
PHD on search methods is a natural consequence 
of the intrinsic of the depth- and breadth-first 
algorithms. We have summarized these 
observations in a somewhat quantitative manner in 
Tables 1 and 2. 
 

 4-, 16-QAM 64-QAM 

  2t rN N  BF 
BF (if SNR < 5 dB), 
LS (if SNR > 5 dB) 

  4t rN N  BF 
BF (if SNR < 28 dB), 
LS (if SNR > 28 dB) 

 
Table 1. Preferred search method in the  

first stage of PHD. 
 

 4-QAM 16-QAM 64-QAM 

  2t rN N  BS > LS ≥ 
SD 

LS > BS ≥ 
SD 

LS ≥ SD > 
BS 

  4t rN N  BS > LS ≥ 
SD 

LS ≥ SD ≥ 
BS 

LS ≥ SD ≥ 
BS 

 
Table 2. Preferred search methods in the second stage 
of PHD (   and    signifies that   is ‘preferred’ 

and ‘preferred slightly’ to ,  respectively). 

 
In passing, we would also like to mention that, if a 
common search method is employed in the second 
stage, the numbers of multiplications from various 
configurations of PHD are almost identical 
irrespective of the search methods in the first stage 
when the number of antennas and/or the size of 
signal constellation are large. 
 

5. Concluding remark 
 
For applications in MIMO systems, we have 
proposed a novel ML decoding scheme called 
PHD, which provides significant gain in the 
computational complexity compared with 
conventional ML decoding schemes. The proposed 
decoding scheme partitions the tree into several 
stages, in each of which a depth- and breadth-first 
search method is employed appropriately. The 
partitioning of a tree proposed in this paper plays a 
key role in the proposed decoding scheme, 
allowing us to appropriately and fully make use of 
the advantages of several search methods. The 
proposed decoding scheme has flexibility in 
choosing the number of stages, the number of 
layers in each of the stages, and the search 
method in each of the stages.  
 
From simulation results, it is confirmed that the 
proposed decoding scheme with proper 
configurations has considerably lower 
computational complexity than conventional ML 
decoders while maintaining the optimal BER 
performance. In addition, it is observed that the 
computational complexity gain of the proposed 
decoding scheme increases as the SNR gets low 
and the number of antennas increases. 
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