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ABSTRACT 
Continuous growth in the use of multimedia applications on portable devices makes the mobile computer systems 
have an increasing complexity. The functionalities of the used SOC chips and silicon intelligent properties in these 
portable devices are become complicated and hard to design. Traditional digital circuit designs adopt register transfer 
level with timing control methodologies, which focus on the datapath composition, timing control of registers, and the 
functions of combinational circuits. However, the huge amount of control and synchronous signals of the above 
components are difficult to design and debug. The timing costs of design and verification are increased dramatically. 
This paper proposed a new design methodology of digital system, called data-oriented methodology, to deal with the 
above problems, by using Bluespec SystemVerilog HDL and the corresponding tools. Instead of conventional timing-
control mechanism, the data-oriented methodology adopts simple handshaking protocol, blocking transferring, and 
explicitly register/FIFO declaration for communicating between adjacent modules. The designs of FDCT/IDCT and 
pipelined MIPS-like CPU are adopted to compare the design costs of conventional timing-control and data-oriented 
methodologies. The chip performance and FPGA proven of these two designs are discussed 
 
Keywords: SOC, Bluespec SystemVerilog, data-oriented methodology, IDCT/FDCT, MIPS-like processor. 
 

 
1. Introduction 
 
As the exponential growth of semiconductor 
technology make more transistors integrate in the 
chip. The increasing multimedia applications on 
portable devices also make the mobile computer 
systems have an increasing complexity. The 
functionalities of the adopted SOC chip and silicon 
intelligent properties are become complicated and 
hard to design. Meanwhile, the continuously 
growing of semiconductor technology makes the 
novel digital systems consist of huge amount of 
transistors. Accordingly, several novel design 
strategies, such as high-level synthesis [1] and 
electronic system level design are proposed to 
bridge the gap between system model and 
behavior synthesis. New hardware description 
languages, such as SystemC, SystemVerilog, and 
Bluespec SystemVerilog [2], are proposed to 
achieve the above goal. But these languages still 
lack a suitable design methodology to fulfill the 
requirements of rapidly modeling, synthesis, and 
implementation. 
 
Conventional timing-control methodology [3] 
focuses on the synchronizing the registers in a 

 
 
digital system, controlling the enable/select signals, 
and guaranteeing the manipulated data can be 
stored at correct time. However, the central control 
of huge amount of synchronous signals and states 
is difficult to maintain and design, the debugging 
and verification period is extended accordingly.  
 
This paper proposed a novel deign methodology, 
called data-oriented methodology, to overcome the 
above challenges, by using Bluespec 
SystemVerilog and the corresponding tools. 
Instead of centralized timing-control strategy, this 
methodology divides the whole complex datapath 
into several individual blocks. The simple 
handshaking mechanism and blocking mechanism 
are adopted to make sure the correctness of 
adjacent blocks, by monitoring the flow of the 
manipulated data, from ancestor blocks to the 
descendant blocks. Therefore the complex 
centralized control unit can be reduced as several 
simple distributed control blocks between two 
adjacent blocks. The designs of FDCT/IDCT and 
pipelined MIPS-like CPU are adopted to compare 
the design costs of conventional timing-control 
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and data-oriented methodologies. The chip 
performance and FPGA proven of these two 
designs are discussed. 
 
The rest of this paper is organized as following. 
Section 2 discusses some related works and 
literatures of electronic system level design and high 
level synthesis. Section 3 describes the data-oriented 
design methodology. Section 4 proposed the two 
examples, FDCT/IDCT and pipelined MIPS-like CPU, 
to demonstrate the proposed data-oriented design 
methodology. Section 5 compares performance and 
implementation effort of chip fabrication between 
conventional and proposed methodologies. Finally, 
the conclusion is drawn in Section 6. 
 
2. Related Works 
 
2.1 Electronic System Level Design Methodology 
 
The continuously growing complexity of electronic 
systems [8][9][10]make the modern chip designs 
reach the size that can not be handled by 
conventional register-transfer level modeling and 
timing-control based design methodology. 
Therefore a new design approach, System-Level 
Design (SLD) [12] or Electronic System Level 
(ESL) [13] has been proposed to overcome this 
problem. The design of complicated wires and 
signals’ transfers are replaced by higher level 
representation, Transaction Level Modeling 
(TLM)[13], to improve the abstraction level of chip 
design and shorten the design cycle. An ESL 
modeling language, SystemC [20], is widely 
adopted to write abstracted behavioral-level 
module designs and TLM models. Since SystemC 
is a class of C++, the integrating of SystemC 
modules and conventional C/C++ functions is 
easier than other hardware description languages, 
such as Verilog, VHDL, and SystemVerilog. The 
ESL modeling tools, such as CoWare Platform 
Architect and Carbon SOC Designer, can provide 
a whole system components, include processor 
models, bus models, peripheral model, DSP 
models, and other model templates, for rapidly 
composing a SOC system. The software 
testbenchs can be easily integrated into the above 
system for early hardware/software co-simulation.  
 
The major advantages SystemC modeling comes 
from its actor-oriented approach [18], which 
separates behavior from communication by actor and 

channel, respectively. The complex timing and data 
dependences of detailed RTL hardware states and 
signals can be hidden. However, there still exists a 
high gap between ESL models and corresponding 
RTL designs. The SystemC models in an ESL 
system are designed for hardware/software co-
simulation and co-verification. The abstraction 
models are hard to translate into RTL designs 
directly. The requirements of manually re-write RTL 
designs dramatically limit the population of SLD/ESL 
design methodologies and tools. 
 
2.2 High-Level Synthesis 
 
In order to overcome the design complexity of 
system-level design, the High Level Synthesis 
(HLS) [14] is proposed. The HLS mechanism is a 
process of mapping the specifications of 
behavioral hardware description languages (HDL) 
into the corresponding register-transfer level 
(RTL) models and processing the following 
translation stages of conventional cell-based IC 
design flow, such as logic synthesis and physical 
synthesis. The generated RTL design is optimized 
and met the constraints of area and delay. 
Accordingly, the quality of the final result of the 
generated design depends on the translation 
algorithm of the HLS mechanism. If the RTL 
design generated by HLS is inefficient and dirty, 
the successive optimizing stages of the cell-
based design flow can not help to turn. Therein 
the produced chip can not meet the timing and 
area constraints.  
 
Most of the HLS algorithms [14], such as 
scheduling, allocation, and resource sharing 
algorithms, adopt number of state in the generated 
finite-state machine (FSM) and datapath area as the 
evaluating metrics. Some other works adopt control 
and data flow graph (CDFG) [15][16] [17] to 
represents the hardware costs of the generated 
RTL design. However, these costs and evaluated 
metrics ignore important aspects of control datapath 
and accuracy of timing for control logics. The correct 
synchronizing timing and corresponding RTL circuits 
cannot be predicted in the behavioral-level design. 
The quality of the produced RTL design can not met 
the timing and area constraints of the target design. 
Therefore, most of the quality of the RTL designs 
generated by the behavioral-level models and HLS 
software can not be accepted by the customers and 
ASIC chip designers. 
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2.3 The Integration of Electronic System Level and 
High-Level Synthesis 
 
Due to the increasing chip capacities and 
computation capabilities, the implementation of a 
chip has to fulfill the above requirements and keep 
all of the costs small. Electronic System Level 
(ESL) design methodology is proposed to 
overcome the above design challenges and reduce 
the time-to-market of a new SOC chip. The widely 
adopted ESL modeling language, SystemC, help 
to reduce the design cycle of creating a new ESL 
model. According to the above discussion, the 
platform-based ESL modeling tools, such as 
CoWare Platform Architect and Carbon SOC 
Designed, can rapidly provide a common SOC 
platform for reference but lacks a directly 
translation approach, from SystemC to RTL 
Verilog/VHDL. These ESL SystemC models and 
virtual platforms focus on either simulation speed 
or accuracy, but not both. It widely limits the reality 
and performance of adopting ESL flows. Although 
several commercial SystemC-based behavioral 
synthesis (a.k.a. high-level synthesis) tools, such 
as Cynthesizer by Forte Design Systems [19], 
CatapultC by Mentor Graphics [21], and NEC’s 
CyberWorkBench [22], is proposed to translate the 
SystemC models into RTL Verilog designs, the 
tools for efficiently map the SystemC models into 
acceptable RTL Verilog designs are still missing.  
 
Adopting high-level synthesis (HLS) mechanisms 
from SystemC models to RTL Verilog/VHDL 
designs can offer possible solutions for bridging 
ESL models and chip implementations. 
Unfortunately, there are serious problems of 
architectural mapping from the SystemC mode. 
The quality of the derived RTL Verilog design is 
poor. That is because the HLS translating tools 
can not understand the good software algorithms 
in the SystemC model, and select a most suitable 
corresponding hardware design. The generated 
hardware design can not meet the requirements of 
area, speed, and power constraints. Most of the 
internal heuristics in the HLS tools are just some 
kinds of syntax and primitive mapping, but not 
algorithms recognitions and selections. Although 
some HLS tools adopts CDFG to understand the 
basic building blocks of the input software 
SystemC models, the exponential combinations of 
hardware configurations and datapaths make the 
HLS tools hard to decide. Accordingly, a new ESL 

design methodology and a new ESL language for 
both modeling and synthesis are very important for 
modern SLD/ESL design requirement. Therefore, 
in this paper, a novel design methodology, data-
oriented design methodology (DODM), is 
proposed, by adopting a new ESL language, 
Bluespec SystemVerilog (BSV). The detailed 
discussion of DODM and BSV are listed in the 
following sections. 
 
3. Data-Oriented Design Methodology 
 
Conventional hardware designs are implemented 
by timing-control methodology. The functionality of 
this methodology is controlled by correct signal 
arrival time, and then fetch/store manipulated data 
[3]. If the digital system becomes complicated, this 
timing-control model is too hard to implement. 
Accordingly, the design space, algorithm 
implementation, and debugging facility are also 
limited. If the timing of the synchronous signal in 
the ancestor stage is varied, the completed time of 
this stage will be changed, the then the 
descendant stage will retrieval incorrect data at the 
expected time. Finally the overall operating results 
of this digital system are incorrect. Therefore a 
novel methodology, data-oriented methodology, is 
proposed to solve this problem. This methodology 
focuses on manipulating data and the dependence 
of source operands that generate the results, 
instead of controlling precise timing and signals. 
The result of current stage is the source data of the 
next stage. Therefore the detailed plan of 
conventional datapath that consist of control 
signals, multiplexor, and  dedicated functional units 
can be replace by the data manipulating 
mechanism, called “rule”, and the simple 
handshaking mechanism, called “interface 
method”. Since the main consideration is the 
states of data, instead of datapath timing, the 
difficulties of complex chip design can be reduced 
by approaching the nature of algorithm and 
shorten the design cycle. 
 
Hence the new hardware description language, 
Bluespec SystemVerilog (BSV) [2], is adopted to 
complete the above concept. Bluespec 
SystemVerilog, developed by MIT [4], is based on 
a synthesizable subset of SystemVerilog. The 
basic building block of BSV is Rules, instead of 
synchronous always blocks, can achieve correct 
concurrency and eliminating race condition. Each 
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rule can be viewed as a declarative assertion 
expressing a potential atomic state transition. 
Rules need not be disjoint, i.e., two rules can read 
and write common state elements. The BSV 
Compiler (BSC) produces efficient RTL code that 
manages all the potential interactions between 
rules by inserting appropriate arbitration and 
scheduling logic, called handshaking circuits. The 
atomicity of rules can avoid unwanted race 
condition in large designs. Therefore BSV is 
suitable for designing complex algorithms by 
above data-oriented methodology and can 
generate synthesizable Verilog design quickly. The 
architecture of BSV module, as shown in Figure 1, 
includes three elements, State, Rule, and 
Interface, respectively. State is the storage of a 
module that is similar to the register and flip-flop in 
the digital system. Rule is the major processing 
circuits that can read and update the state within 
the module. Interface, composed by Interface 
Declaration and Interface Method, provide the 
handshaking and communication mechanism 
between adjacent modules. The hardware 
handshaking mechanisms of interface methods are 
shown in Figure 2. Since the orientations of 
interface signals can be divided into three classes: 
input, output, and combined input and output 
(inout), the proposed interface methods of BSV 
have three types: Action, Value, and ActionValue, 
respectively. In order to transfer the data at the 
right time, the Value (Output) interface methods 
consist of a Ready signal to notify the previous 
stage that this interface method is ready to 
transfer. In the Action (Input) or ActonValue (InOut) 
methods, it consists an Enable signal and a Ready 
signal to indicate that this method can be updated 
if the previous stage is ready to transfer. 
 
A simple sequential multiplier, composed by BSV, 
is proposed in Figure 3. It consists of a BSV 
module, local variable declaration, State 
declaration, and two rules. Different from 
conventional Verilog, the register in BSV is 
composed by a module and must be declared 
explicitly, to avoid the uncertainty register or latch. 
This module has two rules with mutual exclusive 
conditions, to avoid rule conflict. Detailed syntax of 
BSV please refers to [2].   
 

 
 

Figure 1. The fundamental architecture  
of a BSV module. 

 
In BSV, all the hardware computations are design 
by rules. All rules can be executed simultaneously 
while the conditions are met. It is similar to Verilog 
always block but have the essentially difference. In 
the always block of Verilog, the LHS (Left-Hand-
Side) needs to be reg type. In the logic synthesis 
stage, the reg type variables can be synthesized 
into flip-flop, latch, or wire according to its context. 
However, in BSV, the register must be explicitly 
declared by register module instantiation, so the 
designer can avoid to confusion of reg type. 
Without explicitly instantiation, all the variables 
BSV are wire which can guarantee the design 
without redundant flip-flops and latches. If different 
rules access the same resource at the same time, 
it will cause rule conflicts. Bluespec compiler will 
verify the rule conflicts, if there have unsolvable 
conflict, the compiler will stop compilation and 
return error messages. Instead of timing control of 
traditional ASIC design methodology, the major 
task of rule-based design is resolve rule-conflicts 
by using additional arbitrative rules. The 
mechanism for solving the rule conflicts and 
scheduling concurrent rules is shown in Figure 4. 
Because the rules in the BSV are composed by 
combinational circuits, the corresponding 
scheduler to solve the rule conflicts is just a simple 
combinational circuit. It is automatically generated 
by Bluespec Compiler, so there is no extra 
overhead for designer to maintain a precise 
scheduling mechanism. 
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Figure 2. The hardware handshaking mechanisms of interface methods. 

 
Figure 3. A BSV example of hardware multiplier. 

 



 

 

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Vol. 11, April 2013 200 

4. Examples of Data-Oriented Designing 
Methodology 
 
In order to verify the design facility and correctness 
of data-oriented methodology and realize the 
property that can simplify the complex design by 
using rule-based design, two cases are adopted to 
discuss the difference between data-oriented 
methodology and conventional timing-based 
methodology. The first case is the FDCT and IDCT 
algorithm of JPEG image compression, to illustrate 
the typical HDL implementation of hardware DSP 
algorithm. The second case is a MIPS-like CPU 
with five stage pipelining architecture, which can 
demonstrate a complex chip design consisted of a 
control unit and multiple functional units. 
 
4.1 Case Study 1: FDCT/IDCT algorithm of JPEG 
compression 
 
The Discrete Cosine Transform (DCT) is an 
important computation kernel of JPEG 
compression to find out the necessary information 
from original raw image data. The DCT method 
adopted in JPEG algorithm can be divided into two 
parts, one is Forward Discrete Cosine Transform, 
FDCT, the other is Inverse Discrete Cosine 

Transform, IDCT. The former part is used to 
transform space domain data to frequency 
domain, for accumulating the required data in the 
raw data stream, and then apply Huffman coding 
method to reduce data size. The later part is used 
to transform frequency domain data to space 
domain, which can decode JPEG image. Both of 
FDCT and IDCT adopt two-dimensional 8X8 
matrix operations. In practical digital ASIC design, 
it usually adopts Row-Column decomposition to 
divide original two-dimensional matrix into one-
dimensional to reduce hardware cost. Based on 
the investigation of [5], the corresponding 
equations of FDCT and IDCT are discussed, 
respectively. The equations of FDCT are listed in 
Eq. (1) and (2). 
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Figure 4. The hardware mechanism of rule scheduling. 
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The equations of IDCT are listed in Eq. (3) and (4). 
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In this study, the above algorithms are designed by 
using conventional timing-control ASIC design 
methodology, and the proposed data-oriented ASIC 
design methodology. These two methodologies are 
implemented by Verilog and Bluespec 
SystemVerilog, respectively. Detailed fabrication 
results of above designs are discussed later. 
 
4.2 Case Study 2: MIPS-like 5-Stage Pipelined 
CPU 
 
In the second case study, a classical design 
example, MIPS-like [6] pipelined CPU, is proposed  

to illustrate the design consideration of a complex 
digital system, which consists of a central control 
unit, multiple function units, multi-cycle handshaking 
circuits, and timing control of pipelined behaviors [7] 
[8]. Hence it is a good example to distinguish the 
difference between conventional timing-control 
Verilog design and the proposed data-oriented 
Bluespec SystemVerilog design. 
 
 The conventional design methodology of 

pipelined MIPS-like CPU 
 

Figure 5 shows the architectural datapath of 
MIPS-like CPU [6] [8] designed by using 
traditional timing-control methodology. Entire 
CPU is divided five stages by using pipeline 
registers. When two or more functional units 
update one register concurrently, the resource 
conflicts are occurred. One of the solutions is to 
add a multiplexer to select one of them at the 
same time. All of the selecting signals of the 
multiplexers and enable signals of registers are 
treated as control signals, which are generated 
by the central control unit. All of the operations 
of a CPU are relied on the correct timing of 
control signals producing by the control unit.  

 
 

Figure 5. The conventional architectural datapath of a pipelined MIPS-like CPU. 

(4)
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The execution flow of the pipelined stage in the 
pipelined CPU consists of three phases. First, it 
reads data from current pipelined registers. Second, 
it operates the functionality of the assigned 
functional units according to the read data and 
control signals. Finally, it writes the operating result 
to the next pipelined register based on the control 
signals that are decoded by the control units. When 
the generated control signals are incorrect or issued 
at wrong time, the operating result is incorrect. 
Therefore the major challenge of conventional 
design methodology is to schedule the arrival time 
of each control signal, to implement the correct 
functionality of the issued instruction. This 
fundamental requirement of hardware design limits 
the design flexibility and increases the complexity of 
implementing new architecture. 
 
 The proposed data-oriented design 

methodology of pipelined MIPS-like CPU 
 
Figure 6 illustrates the datapath of the pipelined 
MIPS-like CPU that is designed by the proposed 
data-oriented methodology and Bluespec 
SystemVerilog (BSV). Different from conventional 
datapath discussed before, the new datapath is only 
contains several bubbles, rectangle functional blocks 
and FIFOs, instead of complicated functional units, 
control signals, and interconnection wires. The 

centralized control unit in conventional timing-control 
digital design is replaced by distributed simple 
handshaking circuits between two adjacent blocks 
that are connected by a FIFO. The detailed functional 
units and interconnection wires within a bubble are 
replace by a set of “rules”. The operations of the 
proposed novel datapath are described below. 
 
Firstly, the rule of PC UPDATE is triggered every 
cycle to set PC by PC+4 or new branch target 
address. Then the rule of IF accesses the 
Instruction Memory block by the current PC value, 
fetches new instruction, and then puts the 
instruction into FIFO1. While FIFO1 enqueues 
instruction, it will trigger the rule of ID to decode 
new-coming instruction, and then gets operands 
from the Register File block. Then the resolved 
instruction will be pushed into FIFO2, to trigger the 
rule of EX. Because the blocking mechanism of the 
FIFO, while the FIIFO is empty or the execution 
condition of the rule will not match at this cycle, the 
rule will not be executed and pended for next 
cycle. It is very important for data-oriented design 
methodology to maintain this kind of handshaking 
mechanism. Therefore Bluespec SystemVerilog is 
adopted to implement the data-oriented 
methodology by using its micro protocol and 
atomic actions. The following rules, included EX, 
MEM, WB is similar to above actions. 

 

 
 

Figure 6. The data-oriented architectural datapath of a pipelined MIPS-like CPU. 



 

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Journal of Applied Research and Technology 203

According to above description, we can find that 
data-oriented design can reduce the complexity of 
design hardware. Instead of detailed design plan of 
datapaths, control signals, and timing-control 
mechanisms in conventional methodology, the 
proposed methodology can realize the hardware 
functionality by decision making and conflict 
resolving. Besides, BSV design is capable to 
translate into synthesizable Verilog without any 
modification. It can shorten the design latency of a 
complex SOC system. 
 
5. Experimental Results 
 
The functionality of proposed FDCT/IDCT and 
pipelined MIPS-like CPU designs have been 
simulated by Mentor Graphics Modelsim. These 
digital designs are also emulated by using ARM 
Integrator with Xilinx Vertex II Logic Tile [11], as 
shown in Figure 7. After completed the functional 
verification of above two case studies that 
demonstrates the conventional timing-control 
methodology (Verilog) and proposed data-oriented 
methodology (BSV), these six designs (FDCT-
Verilog, FDCT-BSV, IDCT-Verilog, IDCT-BSV, 
CPU-Verilog, and CPU-BSV) are synthesized by 
using Synopsys Design Compiler and TSMC 
0.13μm technology library. Table 1 listed the 
difference of fabrication performance and design 
effort between DCT-Verilog and DCT-BSV. 
 

 
 
Figure 7. ARM Integrator with Logic Tile: the emulating 

platform of the proposed digital designs. 
 

Accordingly to the results listed in Table 1 and 2, 
the code size of FDCT-BSV/IDCT-BDV are smaller 
that of FDCT-Verilog/IDCT-Verilog and produce 
better code quality. The expected performance of 
chip fabrication that is generated by Synopsys 
Design Compiler proposed that the FDCT-BSV 
achieves 1.26X faster than FDCT-Verilog version. 
However, the chip area of FDCT-BSV is also 
1.17X larger than FDCT-Verilog. Since data-
oriented methodology and BSV adopt higher 
abstraction level modeling, the potential resource 
conflicts can be avoided, the design period and 
debug time can be shortened accordingly.  
 
Although FDCT/IDCT is good example to 
illustrate the typical DSP hardware algorithm, the 
representative example of complex processing 
units in a SOC system, MIPS-like CPU, is as 
listed in Table 3. The datapaths of CPU-Verilog 
and CPU-BSV are as shown in Figure 3 and 
Figure 4, respectively. The code size of CPU-
BSV is reduced by 25 % and produced better 
quality, so the work frequency is improve 12%. 
However, the chip area is increased up to 70% 
due the handshaking circuits and FIFO of BSV 
design consumes more area. This would become 
the potential drawback of data-oriented 
methodology and BSV language. 
 
6. Conclusions 
 
This paper proposed a novel deign methodology, 
called data-oriented methodology, to overcome the 
design complexity of modern SoC chip, by using 
Bluespec SystemVerilog and the corresponding 
tools. The simple handshaking mechanism and 
blocking mechanism are adopted to make sure the 
correctness of adjacent blocks, the complex 
centralized control unit can be reduced accordingly. 
Two examples, FDCT/IDCT and pipelined MIPS-like 
CPU, are provided to compare the difference 
between proposed data-oriented methodology and 
conventional timing-control methodology. According 
to the proposed experimental results, the BSV 
version of FDCT design achieves 1.26X faster than 
Verilog version while it consumes 1.17X chip area. 
In the MIPS-like CPU example, the code size, and 
chip performance of BSV version is better than 
Verilog version by 25% and 12%, but consumes 
more chip area. The FPGA proven of these designs 
are also provided. 
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 Evaluated Metric FDCT-Verilog FDCT-BSV 
Improving Ratio 

(BSV/Verilog) 
1 Lines of Source Code 63 47 0.75 
2 Clock Period (ns) 35.7 28.26 0.79 
3 Frequency (MHz) 28.0 35.4 1.26 
4 Chip Area (um2) 1578858.5 1861381.7 1.17 

 
Table 1. Comparison of FDCT-Verilog and FDCT-BSV designs. 

 Evaluated Metric IDCT-Verilog IDCT-BSV 
Improving Ratio 

(BSV/Verilog) 
1 Lines of Source Code 63 49 0.78 
2 Clock Period (ns) 37.05 31.76 0.86 
3 Frequency (MHz) 27.00 31.5 1.17 
4 Chip Area (um2) 1573212.6 2131502.5 1.35 

 
Table 2. Comparison of IDCT-Verilog and IDCT-BSV designs. 

 Evaluated Metric CPU-Verilog CPU-BSV 
Improving Ratio 

(BSV/Verilog) 
1 Lines of Source Code 475 356 0.75 
2 Clock Period (ns) 3.28 2.92 0.89 
3 Frequency (MHz) 304.9 342.5 1.12 
4 Chip Area (um2) 2569091.1 4322142.4 1.68 

 
Table 3. Comparison of CPU-Verilog and CPU-BSV designs. 
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