

Journal of Applied Research and Technology 195

A New Design Methodology for Composing Complex Digital Systems

S. L. Chu*1, M. J. Lo2

1,2 Department of Information and Computer Engineering
Chung Yuan Christian University
Chung Li, 32023, Taiwan
*slchu@cycu.edu.tw

ABSTRACT
Continuous growth in the use of multimedia applications on portable devices makes the mobile computer systems
have an increasing complexity. The functionalities of the used SOC chips and silicon intelligent properties in these
portable devices are become complicated and hard to design. Traditional digital circuit designs adopt register transfer
level with timing control methodologies, which focus on the datapath composition, timing control of registers, and the
functions of combinational circuits. However, the huge amount of control and synchronous signals of the above
components are difficult to design and debug. The timing costs of design and verification are increased dramatically.
This paper proposed a new design methodology of digital system, called data-oriented methodology, to deal with the
above problems, by using Bluespec SystemVerilog HDL and the corresponding tools. Instead of conventional timing-
control mechanism, the data-oriented methodology adopts simple handshaking protocol, blocking transferring, and
explicitly register/FIFO declaration for communicating between adjacent modules. The designs of FDCT/IDCT and
pipelined MIPS-like CPU are adopted to compare the design costs of conventional timing-control and data-oriented
methodologies. The chip performance and FPGA proven of these two designs are discussed

Keywords: SOC, Bluespec SystemVerilog, data-oriented methodology, IDCT/FDCT, MIPS-like processor.

1. Introduction

As the exponential growth of semiconductor
technology make more transistors integrate in the
chip. The increasing multimedia applications on
portable devices also make the mobile computer
systems have an increasing complexity. The
functionalities of the adopted SOC chip and silicon
intelligent properties are become complicated and
hard to design. Meanwhile, the continuously
growing of semiconductor technology makes the
novel digital systems consist of huge amount of
transistors. Accordingly, several novel design
strategies, such as high-level synthesis [1] and
electronic system level design are proposed to
bridge the gap between system model and
behavior synthesis. New hardware description
languages, such as SystemC, SystemVerilog, and
Bluespec SystemVerilog [2], are proposed to
achieve the above goal. But these languages still
lack a suitable design methodology to fulfill the
requirements of rapidly modeling, synthesis, and
implementation.

Conventional timing-control methodology [3]
focuses on the synchronizing the registers in a

digital system, controlling the enable/select signals,
and guaranteeing the manipulated data can be
stored at correct time. However, the central control
of huge amount of synchronous signals and states
is difficult to maintain and design, the debugging
and verification period is extended accordingly.

This paper proposed a novel deign methodology,
called data-oriented methodology, to overcome the
above challenges, by using Bluespec
SystemVerilog and the corresponding tools.
Instead of centralized timing-control strategy, this
methodology divides the whole complex datapath
into several individual blocks. The simple
handshaking mechanism and blocking mechanism
are adopted to make sure the correctness of
adjacent blocks, by monitoring the flow of the
manipulated data, from ancestor blocks to the
descendant blocks. Therefore the complex
centralized control unit can be reduced as several
simple distributed control blocks between two
adjacent blocks. The designs of FDCT/IDCT and
pipelined MIPS-like CPU are adopted to compare
the design costs of conventional timing-control

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Vol. 11, April 2013 196

and data-oriented methodologies. The chip
performance and FPGA proven of these two
designs are discussed.

The rest of this paper is organized as following.
Section 2 discusses some related works and
literatures of electronic system level design and high
level synthesis. Section 3 describes the data-oriented
design methodology. Section 4 proposed the two
examples, FDCT/IDCT and pipelined MIPS-like CPU,
to demonstrate the proposed data-oriented design
methodology. Section 5 compares performance and
implementation effort of chip fabrication between
conventional and proposed methodologies. Finally,
the conclusion is drawn in Section 6.

2. Related Works

2.1 Electronic System Level Design Methodology

The continuously growing complexity of electronic
systems [8][9][10]make the modern chip designs
reach the size that can not be handled by
conventional register-transfer level modeling and
timing-control based design methodology.
Therefore a new design approach, System-Level
Design (SLD) [12] or Electronic System Level
(ESL) [13] has been proposed to overcome this
problem. The design of complicated wires and
signals’ transfers are replaced by higher level
representation, Transaction Level Modeling
(TLM)[13], to improve the abstraction level of chip
design and shorten the design cycle. An ESL
modeling language, SystemC [20], is widely
adopted to write abstracted behavioral-level
module designs and TLM models. Since SystemC
is a class of C++, the integrating of SystemC
modules and conventional C/C++ functions is
easier than other hardware description languages,
such as Verilog, VHDL, and SystemVerilog. The
ESL modeling tools, such as CoWare Platform
Architect and Carbon SOC Designer, can provide
a whole system components, include processor
models, bus models, peripheral model, DSP
models, and other model templates, for rapidly
composing a SOC system. The software
testbenchs can be easily integrated into the above
system for early hardware/software co-simulation.

The major advantages SystemC modeling comes
from its actor-oriented approach [18], which
separates behavior from communication by actor and

channel, respectively. The complex timing and data
dependences of detailed RTL hardware states and
signals can be hidden. However, there still exists a
high gap between ESL models and corresponding
RTL designs. The SystemC models in an ESL
system are designed for hardware/software co-
simulation and co-verification. The abstraction
models are hard to translate into RTL designs
directly. The requirements of manually re-write RTL
designs dramatically limit the population of SLD/ESL
design methodologies and tools.

2.2 High-Level Synthesis

In order to overcome the design complexity of
system-level design, the High Level Synthesis
(HLS) [14] is proposed. The HLS mechanism is a
process of mapping the specifications of
behavioral hardware description languages (HDL)
into the corresponding register-transfer level
(RTL) models and processing the following
translation stages of conventional cell-based IC
design flow, such as logic synthesis and physical
synthesis. The generated RTL design is optimized
and met the constraints of area and delay.
Accordingly, the quality of the final result of the
generated design depends on the translation
algorithm of the HLS mechanism. If the RTL
design generated by HLS is inefficient and dirty,
the successive optimizing stages of the cell-
based design flow can not help to turn. Therein
the produced chip can not meet the timing and
area constraints.

Most of the HLS algorithms [14], such as
scheduling, allocation, and resource sharing
algorithms, adopt number of state in the generated
finite-state machine (FSM) and datapath area as the
evaluating metrics. Some other works adopt control
and data flow graph (CDFG) [15][16] [17] to
represents the hardware costs of the generated
RTL design. However, these costs and evaluated
metrics ignore important aspects of control datapath
and accuracy of timing for control logics. The correct
synchronizing timing and corresponding RTL circuits
cannot be predicted in the behavioral-level design.
The quality of the produced RTL design can not met
the timing and area constraints of the target design.
Therefore, most of the quality of the RTL designs
generated by the behavioral-level models and HLS
software can not be accepted by the customers and
ASIC chip designers.

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Journal of Applied Research and Technology 197

2.3 The Integration of Electronic System Level and
High-Level Synthesis

Due to the increasing chip capacities and
computation capabilities, the implementation of a
chip has to fulfill the above requirements and keep
all of the costs small. Electronic System Level
(ESL) design methodology is proposed to
overcome the above design challenges and reduce
the time-to-market of a new SOC chip. The widely
adopted ESL modeling language, SystemC, help
to reduce the design cycle of creating a new ESL
model. According to the above discussion, the
platform-based ESL modeling tools, such as
CoWare Platform Architect and Carbon SOC
Designed, can rapidly provide a common SOC
platform for reference but lacks a directly
translation approach, from SystemC to RTL
Verilog/VHDL. These ESL SystemC models and
virtual platforms focus on either simulation speed
or accuracy, but not both. It widely limits the reality
and performance of adopting ESL flows. Although
several commercial SystemC-based behavioral
synthesis (a.k.a. high-level synthesis) tools, such
as Cynthesizer by Forte Design Systems [19],
CatapultC by Mentor Graphics [21], and NEC’s
CyberWorkBench [22], is proposed to translate the
SystemC models into RTL Verilog designs, the
tools for efficiently map the SystemC models into
acceptable RTL Verilog designs are still missing.

Adopting high-level synthesis (HLS) mechanisms
from SystemC models to RTL Verilog/VHDL
designs can offer possible solutions for bridging
ESL models and chip implementations.
Unfortunately, there are serious problems of
architectural mapping from the SystemC mode.
The quality of the derived RTL Verilog design is
poor. That is because the HLS translating tools
can not understand the good software algorithms
in the SystemC model, and select a most suitable
corresponding hardware design. The generated
hardware design can not meet the requirements of
area, speed, and power constraints. Most of the
internal heuristics in the HLS tools are just some
kinds of syntax and primitive mapping, but not
algorithms recognitions and selections. Although
some HLS tools adopts CDFG to understand the
basic building blocks of the input software
SystemC models, the exponential combinations of
hardware configurations and datapaths make the
HLS tools hard to decide. Accordingly, a new ESL

design methodology and a new ESL language for
both modeling and synthesis are very important for
modern SLD/ESL design requirement. Therefore,
in this paper, a novel design methodology, data-
oriented design methodology (DODM), is
proposed, by adopting a new ESL language,
Bluespec SystemVerilog (BSV). The detailed
discussion of DODM and BSV are listed in the
following sections.

3. Data-Oriented Design Methodology

Conventional hardware designs are implemented
by timing-control methodology. The functionality of
this methodology is controlled by correct signal
arrival time, and then fetch/store manipulated data
[3]. If the digital system becomes complicated, this
timing-control model is too hard to implement.
Accordingly, the design space, algorithm
implementation, and debugging facility are also
limited. If the timing of the synchronous signal in
the ancestor stage is varied, the completed time of
this stage will be changed, the then the
descendant stage will retrieval incorrect data at the
expected time. Finally the overall operating results
of this digital system are incorrect. Therefore a
novel methodology, data-oriented methodology, is
proposed to solve this problem. This methodology
focuses on manipulating data and the dependence
of source operands that generate the results,
instead of controlling precise timing and signals.
The result of current stage is the source data of the
next stage. Therefore the detailed plan of
conventional datapath that consist of control
signals, multiplexor, and dedicated functional units
can be replace by the data manipulating
mechanism, called “rule”, and the simple
handshaking mechanism, called “interface
method”. Since the main consideration is the
states of data, instead of datapath timing, the
difficulties of complex chip design can be reduced
by approaching the nature of algorithm and
shorten the design cycle.

Hence the new hardware description language,
Bluespec SystemVerilog (BSV) [2], is adopted to
complete the above concept. Bluespec
SystemVerilog, developed by MIT [4], is based on
a synthesizable subset of SystemVerilog. The
basic building block of BSV is Rules, instead of
synchronous always blocks, can achieve correct
concurrency and eliminating race condition. Each

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Vol. 11, April 2013 198

rule can be viewed as a declarative assertion
expressing a potential atomic state transition.
Rules need not be disjoint, i.e., two rules can read
and write common state elements. The BSV
Compiler (BSC) produces efficient RTL code that
manages all the potential interactions between
rules by inserting appropriate arbitration and
scheduling logic, called handshaking circuits. The
atomicity of rules can avoid unwanted race
condition in large designs. Therefore BSV is
suitable for designing complex algorithms by
above data-oriented methodology and can
generate synthesizable Verilog design quickly. The
architecture of BSV module, as shown in Figure 1,
includes three elements, State, Rule, and
Interface, respectively. State is the storage of a
module that is similar to the register and flip-flop in
the digital system. Rule is the major processing
circuits that can read and update the state within
the module. Interface, composed by Interface
Declaration and Interface Method, provide the
handshaking and communication mechanism
between adjacent modules. The hardware
handshaking mechanisms of interface methods are
shown in Figure 2. Since the orientations of
interface signals can be divided into three classes:
input, output, and combined input and output
(inout), the proposed interface methods of BSV
have three types: Action, Value, and ActionValue,
respectively. In order to transfer the data at the
right time, the Value (Output) interface methods
consist of a Ready signal to notify the previous
stage that this interface method is ready to
transfer. In the Action (Input) or ActonValue (InOut)
methods, it consists an Enable signal and a Ready
signal to indicate that this method can be updated
if the previous stage is ready to transfer.

A simple sequential multiplier, composed by BSV,
is proposed in Figure 3. It consists of a BSV
module, local variable declaration, State
declaration, and two rules. Different from
conventional Verilog, the register in BSV is
composed by a module and must be declared
explicitly, to avoid the uncertainty register or latch.
This module has two rules with mutual exclusive
conditions, to avoid rule conflict. Detailed syntax of
BSV please refers to [2].

Figure 1. The fundamental architecture
of a BSV module.

In BSV, all the hardware computations are design
by rules. All rules can be executed simultaneously
while the conditions are met. It is similar to Verilog
always block but have the essentially difference. In
the always block of Verilog, the LHS (Left-Hand-
Side) needs to be reg type. In the logic synthesis
stage, the reg type variables can be synthesized
into flip-flop, latch, or wire according to its context.
However, in BSV, the register must be explicitly
declared by register module instantiation, so the
designer can avoid to confusion of reg type.
Without explicitly instantiation, all the variables
BSV are wire which can guarantee the design
without redundant flip-flops and latches. If different
rules access the same resource at the same time,
it will cause rule conflicts. Bluespec compiler will
verify the rule conflicts, if there have unsolvable
conflict, the compiler will stop compilation and
return error messages. Instead of timing control of
traditional ASIC design methodology, the major
task of rule-based design is resolve rule-conflicts
by using additional arbitrative rules. The
mechanism for solving the rule conflicts and
scheduling concurrent rules is shown in Figure 4.
Because the rules in the BSV are composed by
combinational circuits, the corresponding
scheduler to solve the rule conflicts is just a simple
combinational circuit. It is automatically generated
by Bluespec Compiler, so there is no extra
overhead for designer to maintain a precise
scheduling mechanism.

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Journal of Applied Research and Technology 199

Figure 2. The hardware handshaking mechanisms of interface methods.

Figure 3. A BSV example of hardware multiplier.

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Vol. 11, April 2013 200

4. Examples of Data-Oriented Designing
Methodology

In order to verify the design facility and correctness
of data-oriented methodology and realize the
property that can simplify the complex design by
using rule-based design, two cases are adopted to
discuss the difference between data-oriented
methodology and conventional timing-based
methodology. The first case is the FDCT and IDCT
algorithm of JPEG image compression, to illustrate
the typical HDL implementation of hardware DSP
algorithm. The second case is a MIPS-like CPU
with five stage pipelining architecture, which can
demonstrate a complex chip design consisted of a
control unit and multiple functional units.

4.1 Case Study 1: FDCT/IDCT algorithm of JPEG
compression

The Discrete Cosine Transform (DCT) is an
important computation kernel of JPEG
compression to find out the necessary information
from original raw image data. The DCT method
adopted in JPEG algorithm can be divided into two
parts, one is Forward Discrete Cosine Transform,
FDCT, the other is Inverse Discrete Cosine

Transform, IDCT. The former part is used to
transform space domain data to frequency
domain, for accumulating the required data in the
raw data stream, and then apply Huffman coding
method to reduce data size. The later part is used
to transform frequency domain data to space
domain, which can decode JPEG image. Both of
FDCT and IDCT adopt two-dimensional 8X8
matrix operations. In practical digital ASIC design,
it usually adopts Row-Column decomposition to
divide original two-dimensional matrix into one-
dimensional to reduce hardware cost. Based on
the investigation of [5], the corresponding
equations of FDCT and IDCT are discussed,
respectively. The equations of FDCT are listed in
Eq. (1) and (2).

 10 ,
2

)12(cos)()()(
1

0







 

 




Nk

N

kn
nxkkX

N

n


 (1)

where

1 2(0) , () , 1 1 (2)k k N
n n

     

Figure 4. The hardware mechanism of rule scheduling.

(2)

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Journal of Applied Research and Technology 201

The equations of IDCT are listed in Eq. (3) and (4).

 10 ,
2

)12(cos)()()(
1

0







 

 




Nn

N

kn
nXknx

N

n


 (3)

where

1 2(0) , () , 1 1 (4)k k N
N N

     

In this study, the above algorithms are designed by
using conventional timing-control ASIC design
methodology, and the proposed data-oriented ASIC
design methodology. These two methodologies are
implemented by Verilog and Bluespec
SystemVerilog, respectively. Detailed fabrication
results of above designs are discussed later.

4.2 Case Study 2: MIPS-like 5-Stage Pipelined
CPU

In the second case study, a classical design
example, MIPS-like [6] pipelined CPU, is proposed

to illustrate the design consideration of a complex
digital system, which consists of a central control
unit, multiple function units, multi-cycle handshaking
circuits, and timing control of pipelined behaviors [7]
[8]. Hence it is a good example to distinguish the
difference between conventional timing-control
Verilog design and the proposed data-oriented
Bluespec SystemVerilog design.

 The conventional design methodology of

pipelined MIPS-like CPU

Figure 5 shows the architectural datapath of
MIPS-like CPU [6] [8] designed by using
traditional timing-control methodology. Entire
CPU is divided five stages by using pipeline
registers. When two or more functional units
update one register concurrently, the resource
conflicts are occurred. One of the solutions is to
add a multiplexer to select one of them at the
same time. All of the selecting signals of the
multiplexers and enable signals of registers are
treated as control signals, which are generated
by the central control unit. All of the operations
of a CPU are relied on the correct timing of
control signals producing by the control unit.

Figure 5. The conventional architectural datapath of a pipelined MIPS-like CPU.

(4)

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Vol. 11, April 2013 202

The execution flow of the pipelined stage in the
pipelined CPU consists of three phases. First, it
reads data from current pipelined registers. Second,
it operates the functionality of the assigned
functional units according to the read data and
control signals. Finally, it writes the operating result
to the next pipelined register based on the control
signals that are decoded by the control units. When
the generated control signals are incorrect or issued
at wrong time, the operating result is incorrect.
Therefore the major challenge of conventional
design methodology is to schedule the arrival time
of each control signal, to implement the correct
functionality of the issued instruction. This
fundamental requirement of hardware design limits
the design flexibility and increases the complexity of
implementing new architecture.

 The proposed data-oriented design

methodology of pipelined MIPS-like CPU

Figure 6 illustrates the datapath of the pipelined
MIPS-like CPU that is designed by the proposed
data-oriented methodology and Bluespec
SystemVerilog (BSV). Different from conventional
datapath discussed before, the new datapath is only
contains several bubbles, rectangle functional blocks
and FIFOs, instead of complicated functional units,
control signals, and interconnection wires. The

centralized control unit in conventional timing-control
digital design is replaced by distributed simple
handshaking circuits between two adjacent blocks
that are connected by a FIFO. The detailed functional
units and interconnection wires within a bubble are
replace by a set of “rules”. The operations of the
proposed novel datapath are described below.

Firstly, the rule of PC UPDATE is triggered every
cycle to set PC by PC+4 or new branch target
address. Then the rule of IF accesses the
Instruction Memory block by the current PC value,
fetches new instruction, and then puts the
instruction into FIFO1. While FIFO1 enqueues
instruction, it will trigger the rule of ID to decode
new-coming instruction, and then gets operands
from the Register File block. Then the resolved
instruction will be pushed into FIFO2, to trigger the
rule of EX. Because the blocking mechanism of the
FIFO, while the FIIFO is empty or the execution
condition of the rule will not match at this cycle, the
rule will not be executed and pended for next
cycle. It is very important for data-oriented design
methodology to maintain this kind of handshaking
mechanism. Therefore Bluespec SystemVerilog is
adopted to implement the data-oriented
methodology by using its micro protocol and
atomic actions. The following rules, included EX,
MEM, WB is similar to above actions.

Figure 6. The data-oriented architectural datapath of a pipelined MIPS-like CPU.

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Journal of Applied Research and Technology 203

According to above description, we can find that
data-oriented design can reduce the complexity of
design hardware. Instead of detailed design plan of
datapaths, control signals, and timing-control
mechanisms in conventional methodology, the
proposed methodology can realize the hardware
functionality by decision making and conflict
resolving. Besides, BSV design is capable to
translate into synthesizable Verilog without any
modification. It can shorten the design latency of a
complex SOC system.

5. Experimental Results

The functionality of proposed FDCT/IDCT and
pipelined MIPS-like CPU designs have been
simulated by Mentor Graphics Modelsim. These
digital designs are also emulated by using ARM
Integrator with Xilinx Vertex II Logic Tile [11], as
shown in Figure 7. After completed the functional
verification of above two case studies that
demonstrates the conventional timing-control
methodology (Verilog) and proposed data-oriented
methodology (BSV), these six designs (FDCT-
Verilog, FDCT-BSV, IDCT-Verilog, IDCT-BSV,
CPU-Verilog, and CPU-BSV) are synthesized by
using Synopsys Design Compiler and TSMC
0.13μm technology library. Table 1 listed the
difference of fabrication performance and design
effort between DCT-Verilog and DCT-BSV.

Figure 7. ARM Integrator with Logic Tile: the emulating

platform of the proposed digital designs.

Accordingly to the results listed in Table 1 and 2,
the code size of FDCT-BSV/IDCT-BDV are smaller
that of FDCT-Verilog/IDCT-Verilog and produce
better code quality. The expected performance of
chip fabrication that is generated by Synopsys
Design Compiler proposed that the FDCT-BSV
achieves 1.26X faster than FDCT-Verilog version.
However, the chip area of FDCT-BSV is also
1.17X larger than FDCT-Verilog. Since data-
oriented methodology and BSV adopt higher
abstraction level modeling, the potential resource
conflicts can be avoided, the design period and
debug time can be shortened accordingly.

Although FDCT/IDCT is good example to
illustrate the typical DSP hardware algorithm, the
representative example of complex processing
units in a SOC system, MIPS-like CPU, is as
listed in Table 3. The datapaths of CPU-Verilog
and CPU-BSV are as shown in Figure 3 and
Figure 4, respectively. The code size of CPU-
BSV is reduced by 25 % and produced better
quality, so the work frequency is improve 12%.
However, the chip area is increased up to 70%
due the handshaking circuits and FIFO of BSV
design consumes more area. This would become
the potential drawback of data-oriented
methodology and BSV language.

6. Conclusions

This paper proposed a novel deign methodology,
called data-oriented methodology, to overcome the
design complexity of modern SoC chip, by using
Bluespec SystemVerilog and the corresponding
tools. The simple handshaking mechanism and
blocking mechanism are adopted to make sure the
correctness of adjacent blocks, the complex
centralized control unit can be reduced accordingly.
Two examples, FDCT/IDCT and pipelined MIPS-like
CPU, are provided to compare the difference
between proposed data-oriented methodology and
conventional timing-control methodology. According
to the proposed experimental results, the BSV
version of FDCT design achieves 1.26X faster than
Verilog version while it consumes 1.17X chip area.
In the MIPS-like CPU example, the code size, and
chip performance of BSV version is better than
Verilog version by 25% and 12%, but consumes
more chip area. The FPGA proven of these designs
are also provided.

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Vol. 11, April 2013 204

 Evaluated Metric FDCT-Verilog FDCT-BSV
Improving Ratio

(BSV/Verilog)
1 Lines of Source Code 63 47 0.75
2 Clock Period (ns) 35.7 28.26 0.79
3 Frequency (MHz) 28.0 35.4 1.26
4 Chip Area (um2) 1578858.5 1861381.7 1.17

Table 1. Comparison of FDCT-Verilog and FDCT-BSV designs.

 Evaluated Metric IDCT-Verilog IDCT-BSV
Improving Ratio

(BSV/Verilog)
1 Lines of Source Code 63 49 0.78
2 Clock Period (ns) 37.05 31.76 0.86
3 Frequency (MHz) 27.00 31.5 1.17
4 Chip Area (um2) 1573212.6 2131502.5 1.35

Table 2. Comparison of IDCT-Verilog and IDCT-BSV designs.

 Evaluated Metric CPU-Verilog CPU-BSV
Improving Ratio

(BSV/Verilog)
1 Lines of Source Code 475 356 0.75
2 Clock Period (ns) 3.28 2.92 0.89
3 Frequency (MHz) 304.9 342.5 1.12
4 Chip Area (um2) 2569091.1 4322142.4 1.68

Table 3. Comparison of CPU-Verilog and CPU-BSV designs.

A New Design Methodology for Composing Complex Digital Systems, S. L. Chu / 195‐205

Journal of Applied Research and Technology 205

Acknowledgements

This work is supported in part by the National Science
Council of Republic of China, Taiwan under Grant NSC
101-2221-E-033-049.

References

[1] S. Gupta et al., “SPARK: a High-Level Synthesis
Framework for Applying Parallelizing Compiler
Transformations,” in International Conference of VLSI
Design, 2003, pp. 461-466.

[2] Bluespec Inc., Bluespec SystemVerilog Reference
Guide, Available from: http://www.bluespec.com.

[3] A. Benvensitee et al., “The Synchronous Languages
12 Years Later,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 64-93, 2003.

[4] Arvind, and X. Shen, “Using Term Rewriting Systems
to Design and Verify Processors,” IEEE Micro, vol. 19,
no. 3, pp. 36-46, 1999.

[5] W. H. Chen et al., “A Fast Computational Algorithm for
the Discrete Cosine Transform,” IEEE Trans. on
Communication, vol. 25, no. 9, pp. 1004-1009, 1977.

[6] D. A. Patterson, and J. L. Hennessy, Computer
Organization & Design: The Hardware/Software
Interface, 4th ed., Morgan Kaufmann, 2009.

[7] J. Plosila, and K. Sere, “Action Systems in Pipelined
Processor Design,” in Third International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, 1997, pp. 156-166.

[8] S. L. Chu, and C. C. Hsiao, “Golden-Finger and Back-
Door: Two HW/SW Mechanisms for Accelerating
Multicore Computer Systems,” International Journal of
Engineering and Technology Innovation, vol. 2, no. 1, pp.
72-84, 2012.

[9] A. Dargužis et al., “Dynamic Processes of a Vehicle
Moving over Stepshaped Obstacles, “ Journal of
Vibroengineering, vol. 13, no. 3, 2011.

[10] A. Khalkhali et al., “Modeling and Multi-Objective
Optimization of Forward-Curved Blade Centrifugal Fans
Using CFD and Neural Networks,” Transactions of the
Canadian Society for Mechanical Engineering, vol. 35,
no. 1, pp. 63-79, 2011.

[11] ARM Inc., Integrator Logic Module User Guide.
Available from: http://www.arm.com.

[12] A. Sangiovanni-Vincentelli, and Vadis Quo, “SLD?
Reasoning about the Trends and Challenges of System
Level Design,” Proceedings of the IEEE, vol. 95, no. 3,
pp. 467-506, 2007.

[13] G. Stehr, and J. Eckmüller , “Transaction Level
Modeling in Practice: Motivation and Introduction,” in
International Conference on Computer-Aided Design,
2010, pp. 324-331.

[14] R.A. Bergamaschi, “Bridging the Domains of High-
Level and Logic Synthesis,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 21 ,
no. 5, pp. 582-596, 2002.

[15] R. A. Bergamaschi, and S. Raje, “Control-Flow
versus Data-Flow-Based Scheduling: Combining Both
Approaches in An Adaptive Scheduling System,” IEEE
Trans. on Very Large Scale Integration System, vol. 5,
no. 1, pp. 82-100, 1997.

[16] A. Orailoglu, and D. D. Gajski, “Flow Graph
Representation,” in 23rd ACM/IEEE Design Automation
Conference, 1986, pp. 503-509.

[17] J. Keinert et al., “SystemCoDesigner - An Automatic
ESL Synthesis Approach by Design Space Exploration
and Behavioral Synthesis for Streaming Applications,”
ACM Trans. on Design Automation of Electronic
Systems, vol. 14, no. 1 pp. 1-23, 2009.

[18] E. A. Lee et al., “Actor-Oriented Design of
Embedded Hardware and Software Systems,” Journal of
Circuits, Systems and Computers, vol. 12, no. 03, pp.
231-260, 2003.

[19] Forte Design Systems. Available from:
http://www.forteds.com.

[20] T. Grotker et al., System Design with SystemC,
Kluwer Academic Publishers, 2002.

[21] Mentor Graphics Corp., Available from:
http://www.mentor.com.

[22] NEC System Technologies, Ltd., Available from:
http://www.cyberworkbench.com.

