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ABSTRACT 
Cognitive radios (CRs) have been recently emerging  as prime candidates to enhance spectral efficiency by exploiting 
spectrum-aware systems which can reliably monitor licensed users’ activities. CR users monitor such activities by 
performing spectrum sensing to detect potential white spaces. However, this process of local sensing might be a 
challenging  task in fading environments. The inefficiency of spectrum sensing might cause interference to licensees if 
they are  miss-detected by CR users. Thus, cooperative spectrum sensing is proposed as a means to combat fading and 
improve the detection performance. However, the detection performance does not improve by such cooperation when 
low-SNR environment is considered. In this paper, cooperative spectrum sensing with PSO-based threshold adaptation 
is presented to address the aforementioned problem. Simulation results show that the detection performance with PSO-
based adaptive detection threshold is improved, particularly, in low-SNR environment. 
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1. Introduction 
 
As wireless communication technology grows 
rapidly, the demand for spectrum is increasing 
consequently in order to support more wireless 
services. However, the limited radio resources 
become a great barrier to meet the increasing 
demand for spectrums. A survey is carried out by 
Federal Communication Commission (FCC) to 
investigate the spectrum usage efficiency in a 
temporal and geographical area variation [1]. This 
survey indicated the that current the licensed 
spectrum usage is often mostly under-utilized. Due 
to this fact, cognitive radio (CR) is proposed as 
one of the most promising solutions to support the 
increasing need for spectrum by occupying these 
under-utilized licensed spectrum segments.  

 
CR is defined as a radio which is able to adapt and 
learn from its surrounding radio environment and 
adjust its network parameters to optimize the 
utilization of the spectrum while providing flexibility 
in wireless access [1]. In other words, CR is a 
technology which is capable of detecting and 

 
 
accessing the under-utilized spectrums efficiently. 
In order to perform this capability, four important 
functions are proposed for CR systems, namely, 
spectrum sensing, spectrum decision, spectrum 
sharing and spectrum mobility [2]. During CR 
operation, spectrum sensing will first be performed 
to detect all available under-utilized spectrums, 
also known as spectrum holes or white spaces [3]. 
After detecting all the white spaces, the function of 
spectrum decision-making will be performed to 
select the best white space for instantaneous 
transmission. The spectrum sharing function in CR 
provides coordination or scheduling for sharing of 
spectrum bands with other secondary users (SUs) 
and/or CR users. Lastly, the spectrum mobility 
function allows SU to smoothly release the 
spectrum band back to its owner, also known as 
primary user (PU), once detected and move to 
another available white space. 
 
In reality, PU signals could be shadowed and 
faded, hence causing rapid fluctuation in signal 
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strength, as indicated in many studies [2][4][5]. 
Local spectrum sensing by a single SU might not 
be able to determine the presence of PU signal 
accurately due to potential fading and shadowing 
effects. To tackle this issue, cooperative spectrum 
sensing is proposed [2][4]. The cooperative 
spectrum sensing techniques show promising 
improvement in detection performance [6][7].  
However, the cooperative sensing can hardly 
provide improvement to the detection performance 
in low-SNR environment as can be observed in [7]. 
 
In this paper, performance investigations for local 
spectrum sensing and cooperative spectrum 
sensing are carried out under different radio 
environments, i.e., Additive White Gaussian Noise 
(AWGN) and Rayleigh fading channels. Energy 
detection-based spectrum sensing is adopted in 
this paper due to its implementation simplicity. 
Also, an OR-rule hard decision fusion scheme is 
used to realize cooperative sensing while 
maintaining low communication overhead in 
comparison to soft fusion schemes. Finally, a 
cooperative spectrum sensing with PSO-based 
threshold adaptation is proposed to address the 
drawback of inefficient performance of cooperative 
spectrum sensing in low-SNR scenario. 
 
The rest of this paper is organized as follows. 
Section 2 provides an overview on energy 
detection-based spectrum sensing technique. In 
Section 3, cooperative spectrum sensing is 
explained. Section 4 presents cooperative spectrum 
sensing with PSO-based threshold adaptation and 
its performance evaluation. Finally, several 
concluding remarks are drawn in Section 5. 
 
2. Energy detector-based local spectrum sensing 
 
In energy detection, the PU signal is first received 
and sampled. From the sampled received signals by 
SU, two hypotheses can be deduced as given below: 
 
H0: PU does not exist. 
H1: PU does exist 
 
Based on the two hypotheses above, the received 
signal for the i-th SU can be expressed as follows [8] 
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where yi(t) is the signal received by i-th SU, x(t) is 
the PU signal, ni(t) is the AWGN noise received 
by i-th SU and hi is the channel gain. To 
determine whether H0 or H1 is true, the energy of 
the received signal, yi(t), is estimated from the 
licensed channel of interest within an observation 
period or sensing period, T, and then a 
test/decision statistic is obtained. According to [8], 
the decision statistic, Zi, obtained from the energy 
detector for the i-th SU is given as 
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Where yi,k = yi(k/2W) and N0 is the one-sided noise 
power spectral density. The decision statistic for 
the i-th SU, Zi, obtained from the energy detection 
is found to have chi-square distribution [8] and can 
be characterized as [9]   
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Where m = TW, that is the time-bandwidth product 
of the energy detector. For simplicity, m is 
assumed to be an integer value. From Equation 3,

2
2m  represents a central chi-square distribution 

with 2m degrees of freedom whereas  im  22
2  

represents a noncentral chi-square distribution with 
2m degrees of freedom and a noncentrality 
parameter of 2γi for H1 where γi is the 
instantaneous SNR received at the i-th SU. 
 
In general, the probability of false alarm and 
probability of detection for the i-th SU are, 
respectively, given as 
 

)|Pr(, 0HZP iiif      (4) 
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Where λi is the detection threshold for the i-th SU. 
Hence, from Equations 3 and 4, the closed-form 
expression for probability of detection over AWGN 
channel can be obtained from [9] as 
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where  baQm ,  refers to the generalized Marcum 

Q-function defined: 
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The probability of missed detection is simply 
defined as 
 

idim PP ,,  1      (8) 

 
On the other hand, using Equations 3 and 5, the 
probability of false alarm over AWGN channel is 
obtained as [9]: 
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Where Γ(.) and Γ(.,.) are the complete gamma 
function and the upper incomplete gamma function, 
respectively. It was noted that Equation 9 is 
independent of γi; the instantaneous channel SNR. 
 
For fading channels, the probability of detection, 
Pd,i, for the i-th SU over fading channels can be, 
respectively, given as [6] 
 

  dxxfQP
iimid )(,,  2              (10)  

 
Where )(xf

i
 is the PDF for γi which varies with 

different fading models. However, the probability of 
false alarm will remain the same as in Equation 9 
because it is independent of γi. When the PU 
signal experiences scattering imposed by the 
environment, the PU signal undergoes multipath 
fading. Due to this phenomenon, the faded PU 
signal is described by Rayleigh distribution. 
Therefore, γi would have an exponential 
distribution and thus the probability of detection 
over Rayleigh fading channel can be found as [9] 
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Figure 1 shows the complementary ROC curves 
for local spectrum sensing under AWGN and 
Rayleigh fading channels for different SNR values. 
It is observed that the probability of detection 
decreases diminishingly for a fixed probability of 
false alarm under both AWGN channel and 
Rayleigh fading channel when SNR decreases. 
 
3. Cooperative spectrum sensing 
 
A simple operating cognitive radio network (CRN) is 
illustrated in Figure 2. Each SU performs spectrum 
sensing to detect the presence of PU signal. When 
the PU signal undergoes deep fading and 
shadowing, the signal strength varies at different 
times and locations depending on the channel 
conditions represented by the corresponding noises 
and gains imposed. 
 
Figure 2 shows different sensing scenarios by 
multiple SUs where some SUs may be able to 
reliably detect the PU signal such as SU 2 and SU 
3 while others such as SU 1 and SU 4 may not 
able to detect it due to intermediate blocking 
obstacles. This observation leads to the idea of 
cooperative signal detection which involves 
collaboration among all SUs in a CRN to improve 
the detection performance. In cooperative 
spectrum sensing, each SU sends the sensing 
information to the SU base station and the base 
station makes a global final decision. 
 
Many decision fusion schemes are proposed in the 
literature. One of the well-known decision fusion 
schemes is the so-called one-out-of-N rule or OR-
rule, where N is the total number of cooperating SU. 
In this hard decision fusion scheme, all cooperating 
SUs send their local sensing decisions to a common 
fusion center for final decision fusion. A final decision 
corresponds to H0 is deduced if all N collaborating 
SUs indicated that the PU is absent whereas that 
corresponds to H1 is made if there is at least one out 
of N SUs reports that the PU is present. Assuming 
that all decisions are independent, the probability of 
detection, the probability of missed detection, and the 
probability of false alarm of cooperative spectrum 
sensing denoted by Qd, Qm and Qf, respectively, can 
be defined as [10]:  
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Figures 3, 4 and 5 illustrate the detection 
performance of cooperative spectrum sensing 
using OR-rule under AWGN and Rayleigh fading 
channel at different SNR values (i.e., 10 dB, 0 dB, 
and -10 dB). Under both AWGN and Rayleigh 
fading channels, it can be seen that the detection

performance of cooperative spectrum sensing was 
greatly improved at high-SNR value (i.e., 10 dB) 
where the greater the number of cooperating SUs, 
the greater the improvement observed on the 
complementary ROC curve. However,  Figure 4, 
shows that the improvement of detection 
performance did not improve significantly with the 
increased cooperation among SUs in medium-
SNR scenario (i.e., SNR = 0 dB). Even more 
noticeable, in low SNR (i.e., SNR = -10 dB), the 
cooperative spectrum sensing (e.g., N = 5 or N = 
10) did not provide any improvement in 
comparison to the detection performance of local 
sensing (i.e., N = 1), as depicted in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Complementary ROC curves for local spectrum sensing under AWGN  
and Rayleigh channel with m = 10. 

 

 
 

Figure 2. Cognitive radio network (CRN). 
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Figure 3. Complementary ROC curves for cooperative spectrum sensing using  
OR-rule under AWGN and Rayleigh channel with m = 10 and SNR = 10 dB. 

 

 
 

Figure 4. Complementary ROC curves for cooperative spectrum sensing using OR 
rule under AWGN and Rayleigh channel with m = 10 and SNR = 0 dB. 
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4. Cooperative spectrum sensing with dynamic 
threshold adaptation 
 
As mentioned in Section 3, the cooperative 
spectrum sensing did not provide significant 
improvement to the detection performance in low-
SNR environment. In order to tackle this issue, this 
paper presents a cooperative spectrum sensing 
technique armed with PSO-based threshold 
adaptation. Figure 6 illustrates a simple block 
diagram for the proposed scheme. 
 
Assuming that each SU is capable of estimating SNR 
at its receiver; each SU will perform local spectrum 
sensing and will calculate its own decision statistic. 
Then, every SU will run its PSO evolutionary 
processes to search for an optimal detection 
threshold such that high probability of detection and 
low probability of false alarm are jointly attained. The 
calculated decision statistic by each SU will be then 
compared with the optimized threshold and the 
corresponding decisions made by all SUs will be sent 
to an OR-rule common fusion center for developing a 
final global decision on PU availability. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 Problem formulation for threshold adaptation 
 
To optimize the detection performance in an SNR-
varying environment, low probability of missed 
detection and low probability of false alarm must 
always be jointly maintained. This is because 
minimizing the probability of missed detection 
makes the PU more protected against potential SU 
transmissions whereas minimizing the false alarm 
probability allows SUs to efficiently utilize the 
unused bands of spectrum. Therefore, the decision 
threshold has to be adaptively adjusted to satisfy 
the aforementioned two conflicting requirements 
for various channel conditions. The overall 
performance objective of the whole CRN can be 
put into a single optimization problem of minimizing 
the total sensing error given by [11]: 
 

  fm PP   1               (15) 
 
Where δ is a weighting constant ranging in (0, 1) 
for the probability of missed detection relative to 
that of false alarm. Because low probability of false 
alarm and high probability of detection are desired,

 
 

Figure 5. Complementary ROC curves for cooperative spectrum sensing using OR-rule  
under AWGN and Rayleigh channel with m = 10 and SNR = -10 dB. 
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a constraint has to be imposed to the threshold. In 
this paper, probability of false alarm is limited to 
the range of [0.001, 0.1]. It is reasonable to impose 
a maximum limit to the probability of false alarm so 
that low probability of false alarm can be 
maintained. A minimum limit is also imposed 
because a very low probability of false alarm would 
imply that that the probability of detection is also 
very low, thus imposing a minimum limit to the 
probability of false alarm could preserve a 
reasonable probability of detection. Hence, the 
optimization problem becomes 
 

 

10.0.001   t. s.       

minarg





fP


              (16) 

 
4.2 Particle swarm optimization 
 
Particle swarm optimization (PSO) is a population-
based random search algorithm developed by 
Kennedy and Eberhart in 1995 based on swarm 
behavior of bird flocking and fish schooling 
[13][14]. In PSO, a population, also known as 
swarm, is initially created based on the search 
space of a given optimization problem. Each

member in the swarm, also referred to as particle, is 
distributed randomly within the predefined search 
space. This population will randomly ‘fly’ through the 
search space to look for the global optimum. The 
trajectory of each particle is influenced by the best 
position personally found so far, which is called 
personal best (pbest), and the best position found 
by the entire swarm, named as global best (gbest). 
The velocity-update and position-update equations 
for each particle are given as [13][14]: 
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Where vij(t) denotes the velocity of i-th particle in j-
th dimension at t-th iteration, c1 and c2 are referred 
as acceleration constants, r1 and r2 are uniformly 
distributed random values ranging in [0, 1]. yij(t) is 
referred as pbest, which is the best position found 
by the i-th particle in j-th dimension so far by the t-
th iteration whereas ŷj(t) is referred as gbest, which 
is the best position found by the entire swarm 

 
 

Figure 6. Block diagram for cooperative spectrum sensing with PSO-based threshold adaptation. 
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in j-th dimension so far at the  t-th iteration. xij(t) 
denotes the position of i-th particle in j-th dimension 
at t-th iteration. Another parameter, so-called 
maximum velocity, Vmax is imposed to limit the 
velocity of each particle to ensure exploration within 
the search space. A pseudocode of PSO is shown 
in Figure 7 for a given minimization problem [12]. In 
this paper, the performance objective of CRN is to 
minimize the total sensing error. Thus, the fitness 
function to be optimized by PSO is the objective 
function in Equation 15 and each particle represents 
a potential setting of the decision threshold. 
 

 
 

Figure 7. Pseudocode for PSO algorithm [12]. 
 
4.3 Results and analysis 
 
In this section, m is set to 10, δ is set to 0.5 as in 
[15], and SNR varies from -10 dB to 0 dB with a 
step size of 1 dB. In the PSO algorithm, the 
search space is set to the threshold values 
correspond to the constraint of the probability of 
false alarm stated in the Equation 16, Vmax is set 
as the difference between the minimum and 
maximum search space boundaries, c1 and c2 are 
both set to 2 as in [13][14], and the number of 
particles is set to 10. The PSO evolutionary 
operation runs for 100 iterations and to be 
repeated for 100 times to perform averaging (i.e., 
number of realizations = 100) for each step 
increase in SNR. The convergence performance 
of PSO for AWGN channel, for instance, with 
SNR = 0 dB is depicted in Figure 8. It can be 
observed that the PSO algorithm is able to 
converge within the first 10 iterations, which is 
extremely fast. This implies that the 
computational time of the proposed PSO 
algorithm is sufficiently short to meet the real-time

requirements. The similar convergence 
performance of the proposed PSO-based 
cooperative spectrum sensing scheme can be 
observed at different SNR values and for 
channels encountering Rayleigh fading. This 
convergence performance confirms the 
effectiveness of employing a PSO-based 
threshold adaptation at the receiver of every SU 
which is observed by the fast processing speed of 
the optimization algorithm. Next, we are 
interested to show the improvement on the 
detection performance at the common fusion 
centre of a CRN employing PSO-based threshold 
adaption at its CR nodes. Remember that the 
main objective of employing PSO for dynamic 
adaption of CR/SU receiver’s threshold is to 
minimize the overall sensing errors of cooperative 
SUs in low-SNR environment. Consider the SNR 
range of PU signal at SU receivers from -10 dB to 
0 dB. Figure 9 depicts the detection performance 
represented by the probability of sensing error 
versus SNR for cooperative network of 5 SUs 
(i.e., N = 5) for AWGN channel. Figure 10 shows 
the detection performance for the same number 
of SUs but with assuming Rayleigh channels. For 
the two cases in Figures 9 and 10, it can be 
observed that the probability of sensing error is 
minimized by using threshold adaptation at the 
SUs’ receivers in comparison to the case of using 
static threshold setting based on a given 
probability of false alarm; Pf = 0.1. The static 
threshold setting is basically obtained from 
Equation 9 for AWGN and Rayleigh fading 
channels, respectively, given a fixed probability of 
false alarm. Interestingly, the probability of 
sensing error is continually decreasing as the 
SNR goes lower for both AWGN and Rayleigh 
channels. This observation makes the proposed 
idea of employing PSO-based threshold adaption 
a good choice, in particular, in low-SNR 
scenarios. In addition, since minimizing the 
overall sensing error requires joint minimization of 
missed detection and false alarm probabilities, 
this approach provides a balanced compromise 
between PU protection demands and SU 
willingness to opportunistically access available 
unused spectrum bands or white spaces. 
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Figure 8. Convergence performance of PSO. 

 

 
 

Figure 9. Sensing error versus SNR for N = 5 under AWGN channel. 
 

 
 

Figure 10. Sensing error versus SNR for N = 5 under Rayleigh fading channel. 
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5. Conclusion 
 
In this paper, the detection performance for local 
spectrum sensing and cooperative spectrum 
sensing using OR-rule under AWGN and 
Rayleigh fading channel are evaluated. It was 
demonstrated that the cooperative spectrum 
sensing can hardly improve the detection 
performance in low-SNR environment. Thus, 
cooperative spectrum sensing with PSO-based 
threshold adaptation has been proposed to 
address the aforementioned drawback. The PSO 
threshold adaption algorithms are implemented 
at the receivers of CRN. The aim of improving 
the detection performance of CRN in low-SNR 
environment was realized by minimizing the 
overall sensing error; that is, by the joint 
minimization of probability of false alarm and 
probability of missed detection at the common 
fusion centre of CRN. Computer simulations 
showed that the performance of the proposed 
scheme is superior to that with fixed threshold 
and provide lower sensing errors in low-SNR 
environment. It was also observed that the gain 
of decreasing the sensing error increases as the 
SNR goes lower. Thus, these interesting findings 
confirmed the efficiency of employing PSO-
based adaptive thresholds to improve the 
sensing performance of CRN in deteriorated 
channel conditions. 
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