

Vol. 11, June 2013 408

Comprehensive Comparison of Schedulability Tests for Uniprocessor
Rate-Monotonic Scheduling

Arnoldo Díaz-Ramírez1,*, Pedro Mejía-Alvarez2, Luis E. Leyva-del-Foyo3

1 Departamento de Sistemas y Computación
Instituto Tecnológico de Mexicali
Mexicali, Baja California, México
*adiaz@itmexicali.edu.mx
2 Departamento de Computación
CINVESTAV-IPN
México, D. F., México
3 Departamento de Tecnologías de la Información
Universidad Autónoma Metropolitana
México, D. F., México

ABSTRACT
Schedulability conditions are used in real-time systems to verify the fulfillment of the temporal constraints of task sets.
In this paper, a performance analysis is conducted for the best-known real-time schedulability conditions that can be
used in online admission control on uni-processor systems executing under the Rate-Monotonic scheduling policy.
Since Liu and Layland introduced the Rate-Monotonic scheduling algorithm, many research studies have been
conducted on the schedulability analysis of real-time periodic task sets. However, in most cases, the performance of
the proposed schedulability conditions were compared only against the Liu and Layland test and not against the
remaining schedulability tests. The goal of this paper is to provide guidelines for system designers in order to decide
which schedulability condition provides better performance under different task characteristics. Extensive simulation
experiments were conducted to evaluate the inexact schedulability conditions and compare their performance and
computational complexity.

Keywords: real-time systems, real-time scheduling, rate-monotonic scheduling

RESUMEN
Las condiciones de planificabilidad son utilizadas en los sistemas de tiempo real para verificar el cumplimiento de las
restricciones temporales de los conjuntos de tareas. En este artículo se presenta un análisis del desempeño de las
condiciones de planificabilidad mas conocidas y que pueden ser usadas como control de admisión en línea en
sistemas monoprocesador que se ejecutan con la política de planificación rate-monotonic. Desde que Liu y Layland
propusieron el algoritmo de planificación R-M, se han llevado a cabo muchos proyectos de investigación acerca del
análisis de planificabilidad de conjuntos de tareas periódicas de tiempo real. Sin embargo, en la mayoría de los
casos, el desempeño de las condiciones de planificabilidad ha sido comparado tan solo con la prueba de Liu y
Layland y no consideran al resto de las condiciones de planificabilidad. El objetivo de este artículo es el de
proporcionar una guía a los diseñadores de sistemas para que puedan decidir qué condición de planificabilidad
presenta un mejor desempeño con diferentes características de las tareas. Se llevaron a cabo extensos experimentos
de simulación para evaluar a las condiciones inexactas de planificabilidad, así como para comparar su desempeño y
complejidad computacional.

1. Introduction

In a real-time system, the scheduling algorithm
decides an order of execution of the tasks and the
amount of time allowed to each task in the system
so that no task (for hard real-time systems), or a
minimum number of tasks (for soft real-time
systems), misses their deadlines. To verify if a

scheduling policy guarantees the fulfillment of the
temporal constraints of a task set, real-time systems
designers use different exact or inexact schedulability
conditions (also known as schedulability tests). The
schedulability condition indicates if a given task set
can be scheduled with a given scheduling algorithm

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 409

such that none of the tasks in the set miss their
deadlines. When a new task is created in a dynamic
real-time system, an online admission control
mechanisms that uses a schedulability test
guarantees predictability if the new task is admitted.
Examples of these kind of systems are those with
quality-of-service (QoS) requirements, such as
multimedia systems [1] [2], communication services
[3][4], and automated flight control [5]. Other
examples are found on the scheduling of real-time
traffic over networks [6][7], or in open systems
environments [8][9].

Exact schedulability tests usually have high-time
complexities and may not be adequate for online
admission control if the system has a large amount
of tasks or a dynamic workload. In contrast, most
of the inexact schedulability tests provide low-
complexity sufficient schedulability tests, which are
suitable for using in online admission control
mechanisms to decide the acceptance of the newly
arrived tasks in the system. If a task set does not
satisfy a sufficient schedulability test, it is not
known if the task set can be feasibly scheduled
using a given scheduling policy. For this reason, it
is important to determine which inexact
schedulability test provides a better performance,
given the specific task set parameters.

The rate-monotonic scheduling algorithm assigns
priorities proportionally to the task activation rates.
Many other scheduling algorithms have been
proposed, such as the earliest deadline first (EDF)
[10] that allows a better use of the computational
resources. However, because RM introduces low-
computational overhead, is simple to implement
and is predictable. It is widely used on most real-
time operating systems and is supported by most
real-time systems standards.

Liu and Layland first introduced the rate-monotonic
algorithm along with a sufficient schedulability test
[10]. They introduced the concept of achievable
utilization factor to derive a low complexity test that
is used to determine the schedulability of
independent, periodic and preemptable task sets
executed on one processor.

The schedulability test introduced by Liu and
Layland for RM states that a task set will not miss
any deadline if the utilization factor of the task set,

defined as 


n

i T
C

i

iU
1 , is not greater than)12(1

nn ,
where Ci and Ti are the computation requirement

and period of the task i , respectively, and n is the
number of tasks. Unfortunately, this condition fails to
identify many schedulable task sets when the
system is heavily loaded.

After Liu and Layland’s seminal work, many
researchers, motivated by the low overhead and
simplicity of RM, developed new tests that
improved the test proposed by them. The
improvement on these new tests was due to the
introduction of additional timing parameters in the
schedulability analysis, and in some cases, also to
the transformation of the task sets.

When comparing the inexact schedulability
conditions, the problem of evaluating their
performance with respect to either the pessimistic
Liu and Layland test or the exact schedulability
test, becomes an important issue. The
effectiveness of the schedulability test is measured
in terms of the acceptance ratio. The higher the
acceptance ratio, the better the test, which means
that more tasks sets are schedulable. When the
ratio is equal to one, it means that the
schedulability condition finds as many schedulable
task sets as those found by the exact condition.

Comparing the inexact schedulability conditions,
using a rigorous analytical approach, is not easy
because each schedulability condition considers
different task set parameters. Furthermore, some
of them are based on algorithms, that is,
transforming the original task set into an equivalent
one. Consequently, the acceptance ratio of a given
test is affected by the characteristics of the task set
parameters. For these reasons, our aim is to
evaluate the performance of the schedulability
conditions through extensive simulations.

In this paper, we surveyed the inexact
schedulability conditions that can be used in online
admission control when the system is comprised of
periodic and preemptable real-time tasks, using
the rate-monotonic scheduling algorithm. We
analyzed the best-known inexact schedulability
conditions for one processor that exists in the
literature. We also conducted extensive simulation
experiments to evaluate and compare their

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 410

performance in terms of the acceptance ratio and
the computational complexity. Based on the
results provided by the experimental evaluations,
we provided guidelines to help system designers
to decide, given a particular task set parameters
and load conditions, which schedulability tests
provide better or worst performance, and how
they compare with each other under these
different characteristics.

To the best of our knowledge, no previous
comparative analysis of the RM schedulability
conditions has been conducted for real-time
scheduling on one processor. Most of the published
schedulability conditions compared their performance
only against the schedulability condition introduced
by Liu and Layland, and just a few of them compared
their performance against each other.

The rest of this document is organized as follows: In
Sections 2 and 3, an overview of the real-time
scheduling theory and schedulability analysis of
real-time systems is introduced. In Section 4, the
schedulability conditions for RM on one processor
are introduced, and in Section 5, extensive
simulation experiments conducted to test and
compare the performance of the inexact
schedulability conditions are described. Finally, the
conclusions appear in Section 6.

2. Real-time systems scheduling

A real-time system is composed of several
concurrent activities that are normally implemented
as tasks. To schedule these tasks, real-time
operating systems use scheduling algorithms to
decide the order of execution of the tasks and the
amount of time assigned to each task.

Scheduling algorithms of general-purpose operating
systems are nondeterministic because the
correctness of the system does not depend on the
order in which every task is executed. In these
operating systems, the scheduler is intended to
provide optimal performance, optimal usage of
resources, and fairness in resource assignment. In
contrast, in real-time operating systems, the
scheduler must restrict the nondeterminism
associated with the concurrent system, and must
provide the means to predict the worst-case
temporal behavior of the task set.

A real-time scheduling algorithm provides an ordering
policy for the execution of the tasks (as in the non-
real-time scheduling algorithm). A given real-time
scheduling algorithm may produce feasible or
infeasible schedules. In a feasible schedule, every
job for a given task set always completes by its
deadline. In contrast, in an infeasible schedule, some
jobs may miss a few of their deadlines. A set of jobs
is schedulable according to a given scheduling
algorithm if, when using the algorithm, the scheduler
always produces a feasible schedule. The criterion
used to measure the performance of the scheduling
algorithms for real-time applications is their ability to
find feasible schedules of the given application
whenever such schedules exist. A hard real-time
scheduling algorithm is optimal if, for any feasible
task set, it always produces feasible schedules [11].

The scheduling algorithms can be classified as static
and dynamic. In a static scheduling algorithm, all
scheduling decisions are provided a priori. For a
given set of timing constraints, a table is constructed
indicating the starting and completion times of each
task, such that, no task misses its deadline. This
approach is highly predictable, but when the
parameters of the tasks change, the table must be
recomputed and the system restarted.

In dynamic scheduling algorithms, the scheduling
decisions are taken at run-time based on the
priorities of the tasks. These priority values are used
to decide the execution order of the tasks. Priority
values can be assigned statically or dynamically,
depending on the dynamic scheduling algorithm. If
static priorities are used, the priority of each task
remains fixed during the complete execution of the
system, whereas if dynamic priorities are used, the
priority of a task is allowed to change at any moment.

As mentioned before, Liu and Layland [10]
introduced the first real-time scheduling algorithms for
a single processor (rate-monotonic and earliest
deadline first), and developed their corresponding
schedulability analysis. RM assigns the highest
priority to the task with the smallest period, and EDF
assigns priorities to the tasks considering the
proximity of each instance of a task with its deadline,
so that the task with the closest relative deadline
receives the highest priority. Liu and Layland
demonstrated that RM and EDF are optimal for fixed
and dynamic priority algorithms, respectively.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 411

2.1 System model

In this paper, we consider a real-time system
composed of a set of n real-time tasks

},,{ 21 n  on one processor under rate-

monotonic. A task is usually a thread or a process
within an operating system. The parameters that

define a task i are: the execution time Ci, the

period Ti, and the deadline Di. We will consider that
only periodic tasks can be executed in the system,
and we will consider that Ti = Di. Each periodic task

i is composed of an infinite sequence of jobs. The

period Ti of the periodic task i is a fixed time

interval between the release times of consecutive

jobs in i . Its execution time Ci is the maximum

execution time of all the jobs in i . The period and

execution time of the task i satisfies that Ti > 0

and 0 < Ci ≤ Ti = Di, (i = 1,..., n). The utilization

factor of the task i is defined as
i

i
T

C
iu  . The

utilization factor of the task set, denoted as U, is the
sum of the utilization of the tasks in the set, that is,




n

i T
C

i

iU
1

. We will consider that a job in i that is

released at time t, must complete within Di, that is,
it must complete within the time interval (t, t+Di];

where Di is the relative deadline of the task i . The

release time of the first job in each task i is called

the phase of i , and is denoted as θi.

We use H to denote the least common multiple of
Ti, for i = 1, 2,..., n. A time interval of length H is
called the hyperperiod of the task set.

In the model used in this paper, the following
restrictions also apply

A1 The tasks are independent. That is, the arrival

of a job of task i is not affected by the arrival of

any job of the other task ij .

A2 It is assumed that all tasks in the system can
be preempted at any time.

A3 The cost of the context switch of the tasks is
considered negligible.

A4 No resources, other than the CPU are shared
among the tasks.

3. Schedulability tests

A schedulability test defines a mathematical
condition that is used to verify whether the task set
meets its temporal restrictions for a given
scheduling algorithm. The inputs of the test are the
temporal parameters of the task set.

A test is said to be sufficient in the sense that a
task set is schedulable if it satisfies the test.
However, if the task set does not satisfy the
sufficient test, it is not known whether the task set
can be schedulable using that scheduling
algorithm. A test is said to be necessary if all
schedulable task sets satisfy the test. Otherwise, if
a given task set satisfies the test, we cannot say
that it is schedulable. Exact tests provide a
necessary and sufficient condition. The inexact
schedulability tests provide only a sufficient (but not
necessary) schedulability condition.

Schedulability tests depend on the scheduling
algorithm chosen and the knowledge of the
parameters of the task set. The schedulability test
in dynamic scheduling algorithms can be performed
off-line or online. If the test is executed off-line,
there must be complete knowledge of the set of
tasks that are to be executed in the system along
with the timing constraints imposed on every task
(e.g., deadlines, precedence restrictions, execution
times) before the execution of the system. In this
case, the arrival of new tasks is not allowed while
the system is executing, and the tasks cannot
change their timing constraints.

In contrast, if the scheduling test is performed
online, new arrivals are allowed at any time and
the tasks can change their timing constraints
during the execution of the system. In this test,
the scheduler decides dynamically, by means of
an admission control mechanism, if the
acceptance of these new tasks will not cause
other tasks to miss their deadlines.

The utilization bound Û, for a given real time
scheduling algorithm, is the value such that any
task set, whose utilization factor is no larger than Û,
is schedulable under that scheduling algorithm.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 412

Utilization-based schedulability conditions verify if
the utilization of the task set does not exceed the
utilization bound (that is, U ≤ Û).

We classify the inexact tests in accordance with the
parameters used as follows

Non-period-aware schedulability conditions. These
schedulability conditions derive the utilization
bound using information about the number of tasks
or the utilization of the tasks in the system. The
tests based on the utilization found in the literature
are:

- The Liu and Layland condition (LL) introduced in
[10].
- Increasing Period condition (IP) [12].
- Utilization Oriented condition (UO) developed by
Y. Oh et al. [13].

Period-aware schedulability conditions. Some
variants of the utilization-based conditions use
additional information from the task set in order
to derive the utilization bound. In these
conditions, the value of the periods of the tasks
is included in the analysis. According to the way
they derive their schedulability bounds, these
conditions can be further classified as closed-
form period-aware conditions and non-closed-
form period-aware conditions:

- Closed-form period-aware conditions: Period
Oriented (PO) [14], Conditions based on Harmonic
Chains [15-17] and CRMB [18].
- Non-closed-form period-aware conditions: T-
Bound and R-Bound [19], Algorithms of Chen, Mok
and Kuo [20], Sr and DCT [17], and conditions that
use linear programming techniques, such as the
PSUB [21] and LP conditions [1].

4.-Schedulability conditions for fixed-priority
scheduling on a single processor

In this section, we review the best-known
schedulability conditions found in the literature for
rate-monotonic on one processor.

4.1 Exact schedulability conditions for rate-monotonic

After Liu and Layland derived the RM scheduling
algorithm along with its inexact condition, many
necessary and sufficient tests for RM on one

processor have been proposed [20][22-27]. In this
section, we will review two of them.

4.1.1 Exact schedulability condition based on
processor’s demand (LE)

One of the first exact conditions was proposed by
Lehoczky et al. [22]. In this test, the total demand of
the processor time by a job in a critical instant is
computed, along with the total demand of the
processor time for all the higher priority tasks.
Then, the test checks if this demand can be met
before the deadline of the job. The LE scheduling
condition is formally defined in Theorem 1 [22].

Theorem 1 (LE Condition). Let },,{ 21 n 

be a task set with n tasks and T1 ≤ T2 ≤ ... ≤ Tn.

i can be schedulable under RM if and only if,

  1min)(
}{   t

tW
Sti

i

i
L (1)

Where


























j

i
ji T

T
kijkTS ,,1;,,1|  ,

 













 TCW
j

i

j
ji

t
t

1

The entire task set can be schedulable under RM if
and only if

L = max{1 ≤ i ≤ n} Li ≤ 1 (2)

It can be observed that the computational
complexity of the LE condition is pseudo-
polynominal [22].

The function Li(t) is monotonically decreasing since

t

t

T i 









 is strictly decreasing except at a finite set of

values called rate-monotonic scheduling points.
When t is a multiple of one of the periods Tj, for 1 ≤
j ≤ i, the function has a local minimum [22].
Consequently, only a search over these local
minimum values (the multiples of Tj ≤ Ti, 1 ≤ j ≤ i) is

needed, to determine if i can meet its deadline.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 413

Example 1. Table 1 shows a task set  with five
tasks, including its timing constraints: Ci, Ti, ui and
U = ∑{j = 1, .., i}ui. In order to verify if this task set is
schedulable under the RM algorithm, we will use
the exact LE condition.

i 1 2 3 4 5

Ti 8 16 3 12 48

Ci 1 3 1 2 6

ui 0.125 0.1875 0.333 0.1666 0.125

U 0.125 0.3125 0.6458 0.8124 0.9374

Table 1. Example task set.

We first sort the task set by the ascending period

values. Thus, 1  = (3, 1), 2  = (8, 1), 3  = (12, 2),

4  = (16, 3) and 5  = (48, 6). To determine if the

task set is schedulable we just need to check if 5 
fulfills its timing constraint. The set of scheduling
points is S5 = {3, 6, 8, 9, 12, 15, 16, 18, 21, 24, 27,
30, 32, 33, 36, 39, 40, 42, 45, 48}.

Task 5  is schedulable if any of the following

Equations hold (for Di = Ti):

if W5 (3) = C1 + C2 + C3 + C4 + C5 ≤ T1    13 > 3
or W5 (6) = 2C1 + C2 + C3 + C4 + C5 ≤ 2T1   14 > 6
or W5 (8) = 3C1 + C2 + C3 + C4 + C5 ≤ T2   15 > 8
…
or W5(45) = 15C1 + 6C2 + 4C3 + 3C4 + C5 ≤ 15T1 44 ≤45
or W5(48) = 16C1 + 6C2 + 4C3 + 3C4 + C5 ≤ T5 46 ≤ 48

From the previous analysis, note that W5(t) ≤ t ≤
T5 (t=45 and t=48). Therefore, we can conclude
that the task set shown in Table 1 is schedulable
under the RM algorithm.

4.1.2 Exact schedulability condition based on the
task’s response times

Joseph and Pandya introduced an exact
schedulability condition in [23] for fixed priority
scheduling. In this test, the response time of each

task ri is obtained, and if ri ≤ Di, then task i

meets its deadline.

This test starts by obtaining the response time of the
highest priority task, using the following Equation

j
ihpj j

i
ii C

T

r
Cr 

 












)(

Where hp(i) is the set of tasks with a higher priority

than the task i . Given that ri appears on both

sides of the Equation, a possible solution was
proposed by Audsley et al. in [24]. The solution is
obtained by the following iterative process:

 j
ihpj j

n
i

i
n

i C
T

r
Cr 


















)(

1

(3)

Iterations described in Equation 3 can start
considering  


i

k ki Cr
1

0 . It is easy to note that ri
n +

1 ≥ ri
n. If ri

n ≥ Di, then task i will miss its deadline.

However, if ri
n + 1 = ri

n, the iterative process will

conclude, meaning that i is schedulable.

The response time analysis has evolved to
include offsets, blocking, fault tolerance, and
release jitter [24].

The exact schedulability analysis is time-consuming
due to its high computational complexity. Therefore,
it is not suitable for online schedulability analysis.

4.2 Liu and Layland (LL) schedulability condition

In [10], Liu and Layland defined the critical instant
for a task as the instant at which a request for that
task will have the largest response time, and
showed that if all the tasks meet their deadlines at
their critical instants, then the task set is feasible.
The worst-case phasing occurs when

n  21 (e.g. 0i for all i).

Liu and Layland introduced the concept of
utilization factor in [10] and defined it as the fraction
of the processor time spent in the execution of the
task set. Further, they defined that a task set is said
to fully utilize the processor according to a given
scheduling algorithm if the set of tasks can be
feasibly scheduled and that any increase in the

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 414

execution time of any of the tasks will make the
task set infeasible with respect to that algorithm.
For a given fixed-priority scheduling algorithm, the
least upper bound of the utilization factor is the
minimum of the utilization factors over all the sets
of tasks that fully utilize the processor.

In order to derive the least upper bound for the rate
monotonic algorithm, Liu and Layland showed that
the worst-case situation occurs when the task set
fully utilizes the processor, all tasks start
simultaneously (that is, at its critical instant) and the
relationship among the periods is such that

11 2;,,2 TTTni i   . Under this worst-case

scenario, Liu and Layland found the least upper
bound by minimizing the total utilization with
respect to the period values.

The Liu and Layland condition (LL) is formalized in
Theorem 2 [10].

Theorem 2 (LL condition). A set of tasks  is
schedulable under the RM algorithm if the following
condition is satisfied

)12(
1

 nnU (4)

If the condition of Theorem 2 is not satisfied, that is,

)12(1
 nnU , then it is not known whether the

task set is schedulable under Rate-Monotonic.

 It is important to note that the LL condition
depends only on the number of tasks in the system
[29]. The computational complexity of the LL
condition is O(n).

Figure 1. Performance of the LL condition.

Figure 1 shows the processor utilization factor
under the LL schedulability condition. It can be
observed that when the number of tasks tends to
infinity, the minimum achievable utilization factor
tends to ln(2) = 0.6931.

Leung and Whitehead, in [28], generalized the
results provided by Liu and Layland and proved
that the Deadline monotonic (DM) algorithm is
optimal for the fixed-priority scheduling model. In
the DM scheduling algorithm, task deadlines can be
smaller than its periods (Di ≤ Ti).

i iT iC iu iU LL bound

1 8 1 0.125 0.1250 1

2 16 3 0.1875 0.3125 0.8284

3 3 1 0.3333 0.6458 0.7798

4 12 2 0.1666 0.8124 0.7568

5 48 6 0.1250 0.9374 0.7435

Table 2. LL condition applied to the TS of Table 1.

Example 2. After applying the LL condition to the
task set shown in Table 1, we can conclude that

tasks 1 , 2 , and 3 can be feasibly scheduled,

but adding 4 and 5 violates the LL condition, as

shown in Table 2.

4.3 Increasing period (IP) schedulability condition

The IP condition was introduced by Dhall and Liu
[12] and was proposed to be used together with the
multiprocessor algorithms rate-monotonic next fit
and rate-monotonic first-fit. In order to determine the
tasks that can be assigned to each processor, the
IP condition takes into account both the utilization of
the task set assigned to a processor and the
utilization of the new task. The IP schedulability
condition is defined in Theorem 3 [12]:

Theorem 3 (IP condition). Let },,{ 21 n 

be a set of n tasks with T1 ≤ T2 ... ≤ Tn and let

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 415





  

1

1
1)12)(1()1(

1
n

i
T
C

n
n

i

i nU (5)

If the following condition is met

1
)1(

12
)1(

1 














n

n
n n

U
u (6)

Then the set of tasks can be feasibly scheduled
under the RM algorithm. When n → ∞, the minimum

utilization of task n approaches to (2 e − u - 1).

This condition requires an ordering of the periods
of the tasks. Because of this ordering, its
complexity is O(n log n). As it can be noticed, this
condition is based on the utilization and the
number of tasks in the system.

Figure 2. Performance of the IP condition.

Figure 2 shows the performance of the IP condition,

where the utilization of task n is a function of the

(n-1) tasks already in the system. The different
curves illustrate different values for the number of
tasks (n). The area under the curve denotes the
feasibility area for this test.

i iT iC iu IP bound

3 3 1 0.3333 -

1 8 1 0.1250 0.5000

4 12 2 0.1666 0.3238

2 16 3 0.1875 0.1336

5 48 6 0.1250 0.1336

Table 3. IP condition applied to the TS of Table 1.

Example 3. In this example, we will show the
performance of the IP schedulability condition using
the task set described in Table 1. To use this
condition, tasks must be sorted in the
nondecreasing order of their periods. After applying
the IP condition, we note, in Table 3, that while

tasks 3 , 1 , 4 , and 5 are identified as

schedulable, the IP condition fails to identify task

2 as schedulable.

4.4 Period oriented (PO) schedulability condition

Burchard et al. [14] introduced the period oriented
condition to be used by the rate monotonic small
tasks (RMST) and rate monotonic general tasks
(RMGT) multiprocessor algorithms. To be able to
use the PO condition, it is necessary to know the
values of the periods of the tasks in the system. The
PO condition is formally defined in Theorem 4 [14]:

Theorem 4 (PO condition). Given a set of tasks

},,{ 21 n  , Si and β are defined as follows:

 iii TTS 22 loglog  i = 1,…,n (7)

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 416

and

i
ni

i
ni

SS



11
minmax

 (8)

(a) if β < (1 − 1/n) and the total utilization satisfies
that

12)12()1(1)1(  
nnU (9)

then the task set is schedulable on one processor
under RM.

(b) if β ≥ (1 − 1/n) and the total utilization satisfies
that

)12(
1

 nnU (10)

Then the task set is schedulable on one processor
under RM.

From Equation 7 it can be observed that Si is a
function that goes from zero (when the period Ti is a
power of two) to one (when the period Ti is the next
power of two), and it measures the logarithmic

distance of the period of task i from a power of
two (where 0.5 means that the period is
logarithmically in the middle of two powers of two).
Therefore, β measures how logarithmically
equidistant the periods of all tasks are from a power

of two. When
niTT ii ,,2,12,0 1   

;

and  , and 0 .

As β approaches to zero, the utilization bound
tends to one, independent of the number of task.
On the other hand, as β approaches to one, the
utilization bound approaches the LL condition.

A simpler version of Equation 9 of the PO condition
is defined in Corollary 1 [14].

Corollary 1 (PO condition). Given a set of tasks

},,{ 21 n 
 and given β (as defined in

Theorem 4), if the total utilization satisfies that

U ≤ max{ln 2, 1 − β ln 2} (11)

then the task set can be feasibly scheduled on one
processor under RM.

Figure 3. Performance of the PO condition.

Figure 3 shows the performance of the PO
condition. Each curve shows, for a given number
of tasks, the relationship between β and the
utilization of the task set. The area under the curve
denotes the feasibility area for this test. It can be
observed that when the number of tasks is large
and the value of β = 1, then the minimum
achievable utilization is approximately 69%, similar
to the result provided by the LL condition.

Example 4. The first step on applying the PO
condition to the task set described in Table 1
involves calculating the Si values using Equation
7, and sorting them in the nondecreasing order.
The obtained values are Si = {S1= 0, S2= 0, S3=
0.5849, S4= 0.5849, S5= 0.5849}, and β = 0.5849
(from Equation. 8). Because β < (1 − 1/n) (0.5848
< 0.8), Corollary 1 can be used to check the
schedulability of the task set. given that 0.9375 >
0.6931, the PO condition fails to identify the task
set as schedulable.

4.5 Utilization oriented (UO) schedulability condition

Y. Oh et al. [13] introduced a schedulability
condition based on the values of tasks utilization ui.
Oh et al. derived their schedulability condition from
the worst-case scenario identified by Liu and
Layland [10], but instead of minimizing the total
utilization with respect to the period values, they
derived their schedulability condition as a function
of the individual task utilization [13].

The UO condition was proposed to be used in the
fate-monotonic-first-fit-decreasing-utilization (RM-
FFDU) multiprocessor algorithm and is defined in
Theorem 5 [13].

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 417

Theorem 5 (UO Condition). Let
},,{ 121  n 

be a task set of (n-1) tasks, feasibly scheduled

under RM. A new task n can be feasibly
scheduled along with the (n-1) tasks already in the
system (on one processor under RM), if the
following condition is met:

  112
11

1















n

i
i

n

n u
T

C

 (12)

Figure 4 shows the UO utilization bound for
different values of n, where the x-axis denotes the
utilization of the (n-1) tasks already in the system,

and the y-axis denotes the utilization of task i .
The area under each curve denotes the feasibility
area for this test. Note that this condition takes into
account the number of tasks and the individual
utilization of the tasks. The complexity of this
condition is O(n).

Figure 4. Performance of the UO condition.

Bini et al. [29] introduced the Hyperbolic Bound
(HB) condition, a schedulability test similar to the
one provided by the UO condition. The HB
condition is expressed in Theorem 6 [29].

Theorem 6 (HB Condition). Let
},,{ 21 n 

be a set of n periodic tasks, where each tasks i is
characterized by a processor utilization ui.. Then,
 is schedulable by the RM algorithm if

 



n

i
iu

1

21
 (13)

i iT iC iu

UO bound

3 3 1 0.3333 -

1 8 1 0.1250 0.5000

4 12 2 0.1666 0.3333

2 16 3 0.1875 0.1429

5 48 6 0.1250 0.1429

Table 4. UO condition applied to the TS of Table 1.

It is clear that Equation 13 can be derived from
Equation 12. Bini et al. extended the HB condition
to include resource sharing and aperiodic servers.

Example 5. After using the UO condition to verify
the schedulability of the task set described in

Table 1, we find that tasks 1 , 2 , and 3 are
proved to be schedulable, but the UO condition

fails to identify tasks 4 and 5 as schedulable,
as shown in Table 4.

4.6 T-Bound and R-Bound schedulability
conditions

Lauzac et al. [30] developed the T-Bound and R-
Bound schedulability conditions to be used as an
admission control for RM scheduling on
uniprocessor systems, and extended their results
to be used as an admission control for the
multiprocessor systems. While discussing the LL
schedulability condition, we noted that the worst-
case scenario occurs when all the tasks start
simultaneously and the relationship among the
periods is such that the ratio between any task
periods is less than two. Liu and Layland showed
in [10] that under this scenario, the computation
times used to derive the least upper bound are:

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 418

Ci = Ti + 1 − Ti (i = 1, …, n − 1) and Cn = 2T1 − Tn

If the total utilization
 


n

i T

C

i

iU
1 is rewritten

using these computation times, a new
schedulability bound for RM can be derived. This
bound is shown in Lemma 1 [30].

Lemma 1. Given a task set  of n tasks ordered
by increasing periods, and the restriction that the
ratio between any task periods is less than 2 
is schedulable if

  n
ni

i

i

i

T
T

n

i

n

i
T

T
T
C  







 11 2
1

1

1 (14)

The T-Bound condition uses the ScaleTaskSet
algorithm to transform the original task set into an
equivalent task set where the ratio between the
maximum and minimum periods is less than 2 (that
is, r = Tmax / Tmin < 2). Using this transformed task
set, the condition verifies its schedulability through
Equation 14. As stated in Lemma 2 [30], if the
transformed task set is feasibly scheduled under
RM then the original task set is also feasible.

Lemma 2. Let  be a given periodic task set, and

let   be the transformed task set after applying

the ScaleTaskSet algorithm to  . If   is
schedulable on one processor under RM, then 
is also schedulable.

ScaleTaskSet (In:  , Out:  )

Begin

 Sort the task set in  by increasing period;for
(i=1 to n-1) do

 iT

nT

ii TT
log2

;

 iT

nT

ii CC
log2

;

 Sort the task set in   by increasing period;

 return ( );

end

Algorithm 1 ScaleTaskSet Algorithm.

The ScaleTaskSet algorithm is defined in
Algorithm 1 and the T-Bound condition is formally
defined in Theorem 7 [30].

Theorem 7 (T-Bound condition). Consider a

periodic task set  , and let   be the transformed
task set after executing the ScaleTaskSet

algorithm to  . If Equation 14 holds for   , then
the task set  can be feasibly scheduled on one
processor under RM.

It is important to note that the T-Bound condition

uses the value of the periods 1T  ,…, nT 
, derived by

the ScaleTaskSet algorithm. However, in order to
provide an admission control criterion that does not
depend on the periods of all the tasks, Lauzac et
al. [30,19] derived the R-Bound schedulability
condition, which uses the relationship between the
largest and the smallest period values in the task
set. The R-Bound schedulability condition is
defined in Theorem 8 [19].

Theorem 8 (R-Bound condition). Consider a

periodic task set  , and let   be the
transformed task set after applying the
ScaleTaskSet algorithm to  . If,

      111 2

1

)1(
1

 


r

n

i
T
C n

i

i rn
 (15)

Where 1T
Tr n




, the task set  can be feasibly
scheduled on one processor under RM.

Because the T-Bound condition uses more
information about the task set, it outperforms the
R-Bound condition. However, Lauzac et al.
showed in [19] that when r is close to one, the
performance of the R-Bound condition is similar to
the performance of the T-Bound condition. The
complexity of the T-Bound and R-Bound conditions
is O(n log n).

Example 6. Before applying the T-Bound condition
to the task set described in Table 1, we first need
to generate a transformed task set using the
ScaleTaskSet algorithm. Then, according to
Theorem 7, if the transformed task set is

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 419

schedulable under RM, the former task set is also
schedulable. Table 5 shows the values of the
periods and the execution times of the transformed
tasks. It can be noted that under the T-Bound

condition tasks 1 , 2 , 3 and 4 are proved to
be schedulable, whereas the T-Bound condition

fails to identify task 5 as schedulable.

i iT
 iC

 iT 
 iC

 iU 

T-Bound

3
3 1 32 4 0.1250 -

1 8 1 32 6 0.3125 1

4 12 2 48 16 0.6458 0.8333

2 16 3 48 8 0.8124 0.8333

5
48 6 48 6 0.9374 0.8333

Table 5. T-Bound applied to the TS of Table 1.

4.7 Harmonic chains (HC) schedulability condition

Kuo and Mok [15] extended the results provided by
Liu and Layland [10], by relating the achievable
utilization factor to the number of harmonic chains
found in a task set. A harmonic chain is a list of
numbers (periods) wherein each number divides
every number after it [20].

Kuo and Mok [15] developed the harmonic chain
(HC) condition, in which a periodic task set  will
find a feasible schedule if its utilization factor is no

larger than)12(1
kk , where k is the size of the

harmonic base of  .

The harmonic chains found in the task set conform
the harmonic base of a task set. The definition of
harmonic base is described as follows:

Definition 1 (Harmonic Base of τ). Let S be the set
of periods (positive numbers) of a set of periodic
tasks  . A subset H of S is said to be a harmonic
base of the task set  if there is a partition, say Γ,
of S into |H| subsets such that:

1. Each member of H is the smallest element in
exactly one member of the partition Γ, and

2. If x and y are two elements in the same member
of the partition Γ, then either x divides y or y
divides x.

Each subset in the partition Γ is called a harmonic
chain [15].

In order to explain the HC condition, we will use
the following example:

Let T be a task set where every task is defined as

i = (Ti, Ci). We have T = { 1 = (3, 1), 2 = (5, 1),

3 = (15, 2), 4 = (20, 3), 5 = (60, 8) }. Let P be
the set of periods from T, such that P = {3, 5, 15,
20, 60}. The subset H = {3,5} is a harmonic base of
P because there exists a partition Γ in |H| subsets,
namely Γ = {{3,15}, {5,20,60}}, such that:

(1) each member of H is the smallest single
element of the partition Γ, and

(2) for each par of elements within the partition Γ,
one element divides the other.

The harmonic chains condition is formally defined
in Theorem 9 [15].

Theorem 9 (HC condition). Let  be a set of
periodic tasks and let k be the size of the harmonic
base of  . If the utilization factor is no larger than

)12(1
kk , then  is schedulable by a preemptive

fixed priority scheduler.

A polynomial time algorithm can solve the problem
of computing the harmonic base of a periodic task
set. From Theorem 9, it can be observed that

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 420

12 16

8 3

when the size of the harmonic base is small, the
utilization bound is large. For instance, for k=1,
though the utilization may be as high as 100%, the
task set is guaranteed to be schedulable. Note that
the HC condition is similar to the LL condition
when the periods of all tasks are relative primes1

Figure 5. The harmonic chains in the TS of Table 1.

Example 7. The task set described in Table 1 has
two harmonic chains: Γ = {{8, 16}, {3, 12, 48}},
as shown in Figure 5. After applying the HC
condition, we concluded that this condition

identifies tasks 1 , 2 , 3 , and 4 as
schedulable, since their total utilization is not

higher than)12(2 2
1
 . Task 5 violates the HC

condition because
)12(2 2

15

1
 i iu

, therefore,
it is not identified as schedulable.

4.8 Root condition

Kuo et al. [16] developed the Root condition and
demonstrated that a task set can be feasibly
scheduled as long as the utilization of the task set

is no larger than)12(1
RR , where R is the

number of roots in the task set. The concept of root
is defined next [16].

Definition 2. Let
},,{ 21 n 

 be a periodic

task set. Task i is a root in  if there does not exist
any task period in  , which is larger than and

divisible by the period of the task i .

1 Two numbers a and b are relative primes if they are non-
zeros and MCD(a,b)=1

In order to explain the concept of root, we will use
the example described in the previous subsection:

Let τ be a task set where every task is defined as

i = (Ti, Ci). We have  = { 1 = (3, 1), 2 = (5,

1), 3 = (15, 2), 4 = (20, 3), 5 = (60, 8) }. Let P
be the set of periods from  , such that, P = {3, 5,
15, 20, 60}. The harmonic base of P is Γ = {{3, 15},
{5, 20, 60}}. From the harmonic base of P we can
observe that 60 is a value such that there does not
exist any task period in P, which is larger than and
divisible by 60.

The Root condition is defined in Theorem 10 [16].

Theorem 10 (Root condition). Suppose that the

task set
},,,{ 121 i 

 is schedulable. Let R be
the number of roots in the task set

},,,,{ 121 ii   
. If the total utilization

factor of  is no larger than R (21/R − 1), then 
is schedulable.

Because the number of roots could be much less
than the number of tasks, and the size of its
harmonic base, it is expected that the Root
condition improves the acceptance ratio of the LL
and HC conditions. This can be observed in
Corollaries 2, 3 and 4 [16].

Corollary 2. Let  be a set of periodic tasks. If 
is guaranteed to be scheduled according to the LL
condition, then  is guaranteed to be scheduled
according to the Root condition.

Corollary 3. Let  be a set of periodic tasks. If 
is guaranteed to be scheduled according to the HC
condition, then  is guaranteed to be scheduled
according to the Root condition.

Corollary 4. There exists a task set that is
guaranteed to be scheduled according to Root
condition, but not according to the LL and HC
conditions.

An important feature of the root condition is that it
was developed to be used incrementally for online
admission control.

48

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 421

Example 8. In this example, we will show the
performance of the root condition. As described
in the previous example, the task set from Table
1 has two harmonic chains: Γ = {{8,16},
{3,12,48}}. However, it has only one root, R=48,
as shown in Figure 5. Therefore, after applying

the root condition, we observe that tasks 1 , 2 ,

3 , 4 , and 5 are identified as schedulable,
since their total utilization is no larger than 1 (1
(21/1 − 1)).

4.9 Sr and DCT schedulability conditions

Han and Tyan [17] introduced two polynomial-
time schedulability tests that transform the task
periods into a special pattern where all the
periods belong to a single harmonic chain.
According to Theorem 9, when k=1 (which
means there is only one harmonic chain in ),

the transformed task set   is schedulable if its
total utilization is less than or equal to 1. Han

and Tyan proved that if   is schedulable under
RM, then the original task set  is also
schedulable under RM. The transformed task set
  must satisfy the Condition 1 [17].

Condition 1. ii  
, for all i = 1, 2,…, n, and i 

evenly divides 1i , denoted as ji   |
, (thus,

1 ii 
) for all i = 1, 2,…, n.

The schedulability of the transformed task set   is
defined in Theorem 11 [17].

Theorem 11. Given a task set  , if there exists
another task set that satisfies condition 1 and

  
n

i T
C

i

iU
1

1 , then  is schedulable by RM.

In order to apply the results provided by Theorem
11, the problem is, given a task set  , how to find
(in polynomial time) another task set that satisfies

condition 1 and whose utilization  U
 is as small

as possible. Han and Tyan proposed, in [12], the

Sr and DCT algorithms to find such   .

Input:
}1|),({ niTC iii  

, where  is a

periodic task set and
jiTT ji  ,

;

Output: Task set   and
)(r ;

begin

 for (i = 1 to n) do






)
1

log(
2 T

iT
iT

il
;

 sort
),,,(21 nlll 

 into nondecreasing order

 and remove duplicates, let
),,(21 ukkk 

 be
the
 resulting sequence;

 for (i=1 to n) do put i into subset il


;

 for (j=1 to u) do
 


jki i

i

j T

C
kU


)(

;

 compute
)()(1Tku  

;

 for (j=u-1 down-to 1) do

)()()(1

1

jj

j

kjk

k

j Ukk   


;

 find
*r such that

)(min)(),,,{
*

21
rr

ukkkr     ;

 for (i=1 to n) do




 







 *log* 2 r

iT

rTi ;

 return
)(*r and   ;

End

Algorithm 2 Sr Algorithm.

4.9.1 Sr Algorithm

The first algorithm proposed is called the Sr
Algorithm (Specialization operation). In this

algorithm, each period iT
 of the task set  is

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 422

transformed into another period


















r

iT

rTi

log

2 ,
where r is a real number chosen from the range

],(12
1 TT

. Because ii TT 
 for all i and ji TT |

 for all
i < j, the transformed period values belong to a
single harmonic chain. Furthermore, because

ii TT 
 for all i, we have that

  


 
n

i T
Cn

i T
C

i

i

i

i UU
11  . To minimize the total

utilization increase  UU   the value of r
should be carefully chosen. The Sr algorithm,
reproduced in Algorithm 2, finds the best value for

r, and then derives the new periods iT 
, for all i,

using the best r.

The Sr algorithm first computes  )1/log(2 TiT
iT

il 
, for

ni 1 , where 12
1 Tli

T  , naming k1 < k2 < … <
ku, u ≤ n, the sorted sequence of li’s with duplicates
removed. Because li = Ti, we know that ku = T1.
The sequence {k1, k2, …, ku} is called the special
base of  . The value of r that minimizes the total

utilization increase  , denoted by
*r , can always

be found in the special base. The total utilization of

the task set   with its periods
},,,{ 21 nTTT  

specialized from
},,,{ 21 nTTT 

 with respect to r, is

called)(r , and
)(min)(}{

**

12
1 rr

TrT  
 .

The algorithm computes
)(jk for all kj in the

special base of  , and then selects the one that

results in the minimum value of
)(jk , and uses

that kj as the value of r in the specialization
operation. This specialization operation provides
the periods for the transformed task set that
belongs to a single fundamental frequency. Then,
the utilization of the transformed task set is
computed and if it is less than or equal to 1, the
task set is schedulable. The complexity of the Sr
condition is O(n log n).

Example 9. In this example, we will show the
performance of the Sr schedulability condition. The
first step in the Sr algorithm is to find the li values
to obtain the special base of r. After computing the
li values and removing duplicates, we have k1 = 2

and k2 = 3. Next, we need to find the value of
*r

using
)(min)(}{

**

12
1 rr

TrT  
 such that

the total utilization increase is minimized. We

observe that
)(1k = 1.25 and

)(2k = 1.0417,

and therefore the value of
*r to be used is

*r = 3.
Once the r* value is found, we use it in the
specialization operation to generate the

transformed task set   , which is shown in Table

6. It can be observed from Table 6 that tasks 1 ,

2 , 3 , and 4 are identified as schedulable,
since their total utilization is no larger than 1.

However, task 5 is not identified as schedulable

by the Sr condition because
15 U

.

Input:
}1|),({ niTC iii  

, where  is a

periodic task set and
jiTT ji  ,
;

Output: Task set   ;

Begin

 min_f = -1; min_utilization= ;

 for (f=1 to n) do {

 ff TZ 

 for (i=f+1 to n)
 11 
  i

i

Z
T

ii ZZ
;

 for (i=f-1 down-to 1) do  
iT

iZ
iZ

iZ 1
1




;

 utilization  

n

i Z
C

i

i

1 ;
 if utilization < min_utilization then
 min_utilization = utilization;
 min_f = f;

 for (i=1 to n) do ii ZT 
;

 endif

end

Algorithm 3 DCT Algorithm.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 423

4.9.2 DCT algorithm

The second algorithm proposed by Han and Tyan
in [17] is called the DCT algorithm. The idea behind
the DCT algorithm is the following. For each f, 1 ≤ f

≤ n, ff TT  , and recursively, iT , for each i > f, is

transformed to the largest integral multiple of 1iT

that is less than or equal to Ti. That is,

 11 
i

i

T

T
ii TT for i=f+1, f+2,…,n (16)

Similarly, iT , for i < f, is recursively transformed to

the largest divisor of 1iT that is less than or equal

to iT . That is,








 







i

i

i
i

T

T

T
T

1

1 for i = f -1, f - 2,…, n (17)

The value of f that results in the minimum utilization

increase will be the final index of iT whose

transformed value of iT  will be fixed at iT . The

DCT algorithm is described in Algorithm 3. The
complexity of the DCT condition is O(n2).

i iT iC iT  iC iu iU 

3 3 1 3 1 0.3333 0.3333

1 8 1 6 1 0.1666 0.5000

4 12 2 12 2 0.1666 0.6667

2 16 3 12 3 0.2500 0.9167

5 48 6 48 6 0.1250 1.0417

Table 6. Sr and DCT Applied to the TS of Table 1.

Example 10. In this example, we will show the
performance of the DCT schedulability condition.
After applying the DCT algorithm to the task set
shown in Table 1, we found that when f=3, a
minimum utilization increase = 1.0417 is obtained,
which corresponds to the transformed task set  
shown in Table 6. Using Theorem 11 to verify the

feasibility of this task set, we conclude that tasks 1 ,

2 , 3 , and 4 are proved to be schedulable,

because their total utilization is no larger than 1.

However, task 5 is not identified as schedulable by

the DCT condition given that 15 U . It can be

observed that for the task set described in Table 1,
the Sr and DCT conditions produce identical results.

Han and Tyan showed in [17] that the DCT
condition provides a better performance than the Sr
condition. Han extended the DCT and Sr conditions
to be used in the multiframe task model in [31].

4.10 Chen, Mok, and Kuo Algorithms

Chen, Mok, and Kuo [20] developed three
polynomial-time algorithms with the aim to improve
the performance of the LL and HC conditions.

On Algorithm 1 (reproduced in Algorithm 4), a task
set  is transformed into another task set in which
the ratio of any Ti and Tj (for all i ≠ j) is no larger than
two. A new utilization bound U is calculated for the
transformed task set, using Theorem 12 [20]. The
task set  can be feasibly scheduled under RM if
its total utilization is less than or equal to U. The
complexity of the Algorithm 1 condition is O(n2).

Theorem 12. Let },,,{ 21 n  be a set of

periodic task. Let T


 be the array of the periods of

the task set. If 121 2TTTT n  , then the

utilization bound U for the task set is obtained when,

niTTC iii   1,1 (18)

nn TTC  12 (19)

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 424

n

n

i

ii

T
TT

n

i
T

TTU 




   11 2
1

1

 (20)

Example 11. In this example, we will show the
performance of the Algorithm 1 condition. From the
task set described in Table 1, we compute the
periods of the transformed task sets and their

respective total utilization. Therefore, 1  = [6, 8]

and 1U  = 0.8333; 2  = [8,12,12] and 2U  = 0.8333;

3  = [12,15,16,16] and 3U  = 0.8167; and 4  =

[48,48,48,48,48] and 4U  = 1. Because the

minimum of these utilization values is used as the
schedulability bound, we have U  = 0.8167;

therefore, tasks 1 , 2 , 3 , and 4 can be

schedulable. The Algorithm 1 condition fails to

identify task 5 as schedulable because UU 5 .

Input: TaskPeriod[n] in nondecreasing order;

Output: Utilization bound U;

var NewPeriod: array[1…n] of integer;

begin

 U = 1;
 for (i=2 to n) do
 begin
 for (j=1 to i) do

 NewPeriod[j] = TaskPeriod[j] *  ][
][
jTaskPeriod
iTaskPeriod

;

  



 
1

1][
][]1[' i

j jNewPeriod
jNewPeriodjNewPeriodU

][
][]1[2

iNewPeriod
iNewPeriodNewPeriod 

;

 if 'UU  then 'UU  ;

 end

 return (U);

end

Algorithm 4 Algorithm 1 of Chen, Mok, and Kuo.

The second algorithm, proposed by Chen, Mok,
and Kuo [20], is named Algorithm 2, and is not
included in our comparison. This algorithm
introduce a strategy to compute, with higher
efficiency, the size of the harmonic base from a
set of tasks, which is better than the bound
obtained using the HC condition. The complexity
of the Algorithm 2 condition is O(n2). The
Algorithm 2 condition is based on Lemma 3 and
Lemma 4 [20].

Chen et al. proved in [20] that there is a smallest

m, 1 ≤ m ≤ n, and an array],,,[21 m
m TTTT 




with total utilization U  , reduced from T


 (the array

of periods of the task set), such that UU  .

Lemma 3. Let mUU  . If iT divides

mjiTj 1, , then U of T


 equals of U of

],,,,,,[1121 nii TTTTTT 


 .

The definition of Lemma 4 is given next.

Lemma 4. Let mUU  . Consider jT and kT in

kkkjjjm
m rTtrTttT ,


. If kkjj TtTt  and

jjkk ee  , then U is equal to the minimum

utilization factor of all extreme task sets

],,,,,,[1121 nkki TTTTTT 


 .

The Algorithm 3 condition is an improvement on
the Algorithm 2 condition. In this condition,

reducedT


 is a reduced array from T


 where some

periods are deleted according to Lemma 3.

Then, all the extreme task sets of reducedT


 are

generated. The utilization bound provided by the
Algorithm 3 condition is equal to the minimum
utilization factor of all the extreme task sets of

reducedT


. The Algorithm 3 condition is described in

Algorithm 5. The complexity of the Algorithm 3
condition is O(n3).

Input: TaskPeriod[n] in nondecreasing order;

Output: Utilization bound U ;

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 425

var TaskPeriod1: array[1…n] of integer;

 [reduced task pattern]

 TaskPeriod2: array[1…n] of integer;
 [further reduced task pattern]

Begin

 1U ;

 for (i=1 to n) do

 TaskPeriod1 = reduced task pattern

 of TaskPeriod, in nondecreasing order;

 TaskPeriod2 = task pattern from TaskPeriod1

 with   TT T

Ti  for each element T,

 in nondecreasing order;

 U  = utilization factor calculated
 from TaskPeriod2 using

 Theorem 12;

 if UU  then UU  ;

 end for

 return (U);

end

Algorithm 5. Algorithm 3 of Chen, Mok, and Kuo.

Theorem-13.-Let-],,[,21 nTTTT 

 .

niUU i

n

i



1,min

1
, where iU  is the minimum

utilization factor of all extreme task sets of the

reduced array],,[,21 iTTTT 

 .

Example 12. In this example, we will show the
performance of the Algorithm 3 condition. From

the task set described in Table 1, we have T


= [3,

8, 12, 16, 48]. The reduced task set is reducedT


 =

[3, 8]. Transforming the reduced task set into a
further reduced task sets by using the Algorithm 3
and calculating its utilization using Theorem 12,

we obtain the minimum utilization factor of the
extreme task set as U = 0.8333, which means

that the task set comprised of tasks 1 , 2 , 3 ,

and 4 is identified as schedulable. However, if

task 5 is included, the task set is not

schedulable because UU 5 .

4.11 CRMB schedulability condition

Lu et al. introduced the Conditional RM Bound
(CRMB) schedulability condition in [18]. This
condition extends the results provided by Lauzac
et al. in [19] by using the relative period values in
the task set.

Lauzac et al. showed in [19] that the
schedulability bound used by the R-Bound
condition is ln r + 2/r – 1 when the number of
tasks approaches to infinity. If z1 is the smallest
period ratio in the task set and is defined as z1=
T1/Tn = 1/r, the schedulability bound can be
rewritten as 2 z1 – ln z1- 1.

Using the same worst-case scenario identified by
Liu and Layland [10], where Ti < 2T1, and defining
z2 as the largest period ratio in the task set (that is,
z2 = Tn − 1/Tn), Lu et al. [18] improved the
schedulability bound provided by Lauzac et al. to 2
z1 + 1/z2 + (ln z2 − ln z1) – 2.

In order to derive a schedulability bound for the
case when some period values are less than or
equal to Tn ⁄ 2, Lu et al. defined the virtual period of
a task [18].

Definition 3 (Virtual Period). A virtual period of i ,

denoted by iv , is the ready time of the critical job of

i . That is,   iT
T

i Tv
i

n

where a critical job is defined as

Definition 4 (Critical Jobs). The critical jobs are
defined specifically at time Tn, the largest period
in a task set. At Tn, the current jobs of all tasks,
excluding J1, n, are called the critical jobs of the

system. Note that every task except n has a

critical job, and that the critical jobs are identified
at time Tn.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 426

The smallest and the largest values among all
virtual periods, z1 and z2, respectively, must be
redefined in order to be used for the general case.
These values are defined as follows:












n

i

ni T

v
z

111 min (21)












n

i

ni T

v
z

112 max (22)

The values of z1 and z2 are then used to derive the
schedulability bound for the general case. The
CRMB schedulability condition is formally defined in
Theorem 14 [18] .

Theorem 14. (CRMB condition) Let  be a task

set with n periodic tasks. Suppose  
n

i
T

v

ni
z

111 min





and  

n

i
T

v

ni
z

112 max


 . Then  is RM schedulable if

U ≤ CB(z1,z2) = 2 z1 + 1/z2 + (ln z2 − ln z1) − 2.

The CRMB schedulability condition achieves a
higher schedulability bound if the difference
between z1 and z2 is small. For instance, when the
period values belong to a single harmonic chain, z1
= z2 = 1, the CRMB bound is 1. In [18], Lu et al.
introduced a system design methodology to explore
and adjust task periods using the CRMB
schedulability condition, in order to achieve a
higher utilization bound.

Example 13. In this example, we will show the
performance of the CRMB schedulability condition
using the task set of Table 1. First, we need to
obtain the virtual period values of the task set
described in Table 1. In this case, all tasks have
virtual periods equal to their real periods. Next, we
find the z1 and z2 values, where z1 = 1 and z2 = 1.
Using Theorem 14, we obtain that CB(z1,z2) = 1.
Therefore, the task set τ described in Table 1 can
be feasibly scheduled under RM according to the
CRMB schedulability condition, because U =
0.9375 ≤ CB(z1, z2) = 1.

Using z1 and z2 values, Lu et al. derived, in [26], an
exact test for RM on one processor. The complexity
of the CRMB schedulability condition is O(n).

4.12 LP schedulability conditions

Lee et al. [1] introduced two linear programming
formulations for calculating the utilization bounds
for a given set of period options (T1, T2, …, Tk),
where k is the number of period options (1 ≤ k ≤ n)
in the set, the periods of the tasks are (T1, T2, …,
Tn), and Ti < Tj for all i<j.

These schedulability conditions have a high
computational complexity, and therefore, are not
practical in online admission control. However,
according to Lee et al. [1], these schedulability
conditions are suitable for use in many practical
real-time applications, in which the finite set of
frequencies (periods) corresponds to the
predetermined QoS options that the applications
can choose, as in the audio and control
applications. Thus, the utilization bound can be
calculated off-line using the finite set of periods,
and then a QoS manager can use this bound
online to determine the schedulability of the
dynamically arriving task.

The first of the schedulability conditions, introduced
in [2], is called exact linear programming
formulation (LpExact condition). The second one,
called approximated linear programming
formulation (LpApprox), proposes a simpler
formulation and is almost as accurate as the exact
linear programming formulation. The experimental
evaluation conducted in [1] showed that the
LpExact condition outperforms the LpApprox
condition. The complexity of the LP schedulability
conditions is exponential [32].

4.12.1 Exact linear programming formulation
(LpExact)

In order to calculate the tight bound U*bound, the tight
level-i bounds Ui

*bound (1 ≤ i ≤ k) need to be
calculated first. U*bound provides the system-level
bound, whereas the level-i bound Ui

*bound provides

the schedulability bound of only the level-i task i

that uses the period Ti. Ui
*bound is called tight level-i

bound, that is formally defined in Theorem 15 [1].

Theorem 15. The minimum utilization

 


i

j T

C

j

jU
1

* among those of all level-i barely

schedulable task sets is the tight level-i bound
Ui

*bound .

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 427

To calculate the level-i bound, all possible
combinations of the execution times that make the
task set barely schedulable are considered. A task
set is barely schedulable if it is schedulable with the
given execution time values, but a slight increment
in any of its execution times makes the task set
unschedulable. If a task set is level-i barely

schedulable, the level-i task i is schedulable, and

the processor is fully utilized by the level-i and the
higher priority tasks during the interval [0, Ti]. It is
possible to formulate a linear programming problem
using a finite number of constraints. These
constraints check the processor time demand only
at the arrival times of the task instances (since the
demand of the processor time changes only at
those times) to determine the execution time values
that make the level-i task set barely schedulable
and to obtain its schedulability bound. The
optimization problem to calculate the level-i bound
Ui

*bound is formulated in Theorem 16 [1].

Theorem 16. The tight level-i bound Ui

*bound is the
solution for the following linear programming
problem, where Tj,  1 ≤ j ≤ i are fixed coefficients
and Cj,  1 ≤ j ≤ i are free variables,





i

j
T

Cbound
i

j

jMinimizeU
1

* (23)

Subject to

i

i

j
ij

j

i TCC
T

T


















1

1
 (24)

MatCC
T

t
aij

i

j j

a 
















1,
1

1
 (25)

Where at ,  1 ≤ a ≤ M are the series of all the arrival

instants of the higher priority tasks in [0,Ti].
Theorem 16 assures only the schedulability of the

level-i task i . The tight system-level bound U*bound

is given by the minimum of the level-i bounds, as
stated in Theorem 17 [1].

Theorem 17 (LpExact condition). The minimum of
the tight level-i (1 ≤ i ≤ k) bounds, that

is, bound
i

k
i U *

1min  , is the tight (largest sufficient)

system-level U*bound.

Example 14. In this example, we will show the
performance of the LpExact schedulability condition
using the task set of Table 1. To use these
conditions, we first sort the tasks by a
nondecreasing order of their period values. To
illustrate the LpExact condition, Figure 6 shows the
linear programming problem formulation for U3

*bound.
Using Theorem 16 we obtain all level-i bounds, that
is, U1

*bound= 1, U2
*bound= 0.9167, U3

*bound= 0.875,
U4

*bound= 0.875, and U5
*bound= 1. According to

Theorem 17, the system-level bound U*bound is
equal to 0.875. Because the total utilization of  is
greater than U*bound, the LpExact condition fails to
identify the task set  as schedulable under RM.

Minimize
 U3

*bound = C1/3 + C2/8 + C3/12;
Subject to
 4 C1 + 2 C2 + 1 C3 = 12;  (1)
 1 C1 + 1 C2 + 1 C3 >= 3; (2)
 2 C1 + 1 C2 + 1 C3 >= 6; (3)
 3 C1 + 2 C2 + 1 C3 >= 9; (4)
 3 C1 + 1 C2 + 1 C3 >= 8; (5)

Figure 6. LP Formulation Problem for U3
*bound.

4.12.2 Approximate Linear Programming
Formulation (LpApprox)

The main drawback of the exact linear
programming formulation is its complexity. With a
large number of period options, there can be a very
large number of arrival instants resulting in a huge
number of constraints.

In the LpExact condition, most of the constraints
are used to check the processor time demand at
all arrival instants to avoid the potential idle
times. However, the idle times tend to occur late
in the interval [0,Ti] when the processor is
heavily loaded. This means that checking only at
the last arrival of each task before t=Ti can avoid
most of the potential idle times. The LpApprox
condition just checks those last arrival times,
resulting in a simpler linear programming
formulation. This approximated formulation has
only one constraint at each level and thus, the

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 428

total number of constraints used to calculate the
level-i bound Ui

bound is i, as can be observed in
Theorem 18 [1].

Theorem 18. The solution for the following linear
programming problem, Ui

bound, is a sufficient level-i
bound.





i

j
T

Cbound
i

j

jMinimizeU
1

 (26)

Subject to

i

i

j
ij

j

i TCC
T

T


















1

1

 (27)

  
MaT

T

T
CC

T

T
a

a

i
ij

i

j j

aT
T

a

i



























1,
1

1

 (28)

Where   11,  iaTaT
T

a

i is the last arrival

instant of task a before Ti.

As in the tight system-level, a sufficient system-
level bound can be found by taking the minimum of
the level-i bounds, as expressed in Theorem 19 [1].

Theorem 19 (LpApprox condition). The minimum of
the sufficient level-i (1 ≤ i ≤ k) bounds, that is,

bound
i

k
ii Umin , is the sufficient system-level boundU .

Example 15. In this example, we will show the
performance of the LpApprox schedulability
condition using the task set shown in Table 1.
Figure 6 shows the linear programming problem
formulation for U3

bound. However, unlike the exact
formulation that uses all the constraints shown in
Figure 6, the LpApprox condition only uses the
constraints 1, 4, and 5. Using Theorem 16, we
obtain all level-i bounds, that is, U1

bound= 1, U2
bound=

0.9167, U3
bound= 0.875, U4

bound= 0.875, and U5
bound=

1. According to Theorem 18, the system-level
bound Ubound is equal to 0.875. because the total
utilization of  is greater than Ubound, the LpApprox
condition fails to identify the task set  as
schedulable under RM.

Condition Utilization bound Complexity
LL)12(1

 nnU)(nO

IP
1

)1(
12

)1(

1 














n

n
n n

U
u

)log(nnO

PO 12)12()1(1)1(  
nnU)log(nnO

UO, HB
  112

11

1















n

i
iuU)(nO

T-bound   nU
ni

i

T
Tn

i T
T  
 11 2

1
)log(nnO

R-bound     11)1(2)1(
1

 

r
nrnU)log(nnO

HC)12(1
 kkU)(2

5
nO

Root)12(1
 RRU)(2nO

Sr non closed-form)log(nnO

DCT non closed-form)(2nO

Alg 1 non closed-form)(2nO

Alg 2 non closed-form)(2nO

Alg 3 non closed-form)(3nO

CRMB 2)ln(ln2 21
1

1 2
 zzzU z)(nO

LpExact Linear programming exponential

LpApprox Linear programming exponential

Table 7. Comparison of the RM inexact schedulability conditions.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 429

4.13 Characteristics of the schedulability conditions

A summary of the inexact schedulability conditions
for RM on one processor, discussed in this section, is
shown in Table 7. It can be noted that the LP and
Algorithm 3 schedulability conditions have the highest
complexity, whereas the LL, UO, and CRMB
schedulability conditions have the lowest complexity.

5. Evaluation results

To evaluate the performance of the inexact
schedulability conditions discussed in this paper,
we tested every condition using a sample s of task
sets that are schedulable under rate monotonic.
We define the acceptance ratio ρ of a
schedulability condition SC for a sample s, as the
ratio of the number of tasks identified as
schedulable by the schedulability condition and the
total number of task sets:

100)( setstaskofnumbertotal
acceptedsetstaskofnumber

s SC (29)

Because all task sets in s are schedulable under
RM, an exact condition will have an acceptance
ratio equal to 100. If ρs(SC) approaches 100, then
the performance of SC approaches the
performance of the exact test for s.

With the purpose of evaluating the performance of
the schedulability conditions under different
characteristics of the task sets, we conducted our
experiments using four different schemes of
generation of the task sets in s.

The solution of the linear programming problems
formulated by the LpExact condition was obtained
using the lp_solve package [33].

5.1 Performance as a function of the number of tasks

The goal of this experiment was to evaluate the
performance of the schedulability conditions as a
function of the number of tasks. We generated
eleven samples of task sets denoted as N2, N3, …,
N12. Each sample Nm was conformed by 1,000 sets
of m tasks. The total utilization of each task set and
the periods of the tasks were uniformly distributed
in the range [0.7, 0.95] and [100, 500], respectively.
The maximum utilization of each task, denoted by
α, followed a uniform distribution in the range [0.01,

0.3]. The execution times of the tasks were
generated with values 1 ≤ Ci ≤ αTi. Figures 7, 8,
and 9 show the acceptance ratios obtained as a
function of the number of tasks for these conditions
in their respective groups.

Figure 7. Acceptance ratio of the non-period-aware
schedulability conditions.

Figure 7 shows the acceptance ratios obtained for
the closed-form non-period-aware schedulability
conditions. For these conditions, the performance
decreases rapidly as the number of tasks
increases. For each number of tasks, the
acceptance ratios always satisfy the relation
ρN(UO) > ρN(IP) > ρN(LL). This result is a
consequence of the amount of timing information of
the tasks used by each of the schedulability
conditions. It is important to note that the
improvement achieved by these conditions with
respect to the LL condition is marginal (that is,
smaller than 8%).

Figure 8. Acceptance ratio of the closed-form
schedulability conditions.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 430

Figure 8 shows the acceptance ratios obtained
for the closed-form period-aware schedulability
conditions where we also included the UO and
LL conditions.

From this experiment, it can be observed that the
PO and the CRMB are the conditions with better
performance for small number of tasks (m<4).
However, for m>4, only the PO and the UO
conditions showed some performance
improvement over the LL condition (less than 4%).
These poor results can be explained by the fact
that this experiment was designed without
considering any relationship among the periods of
the tasks, and since these conditions include the
period in their analysis, it is clear that they cannot
take advantage of this extra information.

Figure 9 shows the acceptance ratios obtained for
the non-closed-form period-aware schedulability
conditions, where we also included the PO
condition and the LL condition. Due to the
differences in the approaches used to derive their
schedulability bounds and their resulting
behaviors, these schedulability conditions can be
differentiated as follows

Figure 9. Acceptance ratio of the non-closed-form
schedulability conditions.

 Schedulability condition based on linear

programming. The LpExact schedulability
condition has the second best acceptance
ratio for very small task sets (for m < 4, only
lower than that of the DCT condition). For the
larger task sets (that is, m ≥ 4), its
performance decreases faster than the
performance of the DCT and the Algorithm 1

conditions, showing the third best acceptance
ratio among all non-closed-form period-aware
conditions. However, it is important to recall
that the computational complexity of this
condition is exponential.

 Schedulability conditions based on the
transformation of the original task set (T-
Bound, Algorithm 1, Algorithm 3 and DCT). It
can be noted from Figure 9 that for every
number of tasks, the acceptance ratio of
these schedulability conditions was
substantially better than the acceptance ratio
of the closed-form schedulability conditions.
The DCT condition showed the best
performance among all non-closed-form
period-aware conditions for m<6, with a clear
improvement over the performance of the
Algorithm 1 condition. However, for large
number of tasks, their performance tended to
be similar. On the other hand, the
performance of the Algorithm 1 was always
better than that of the Algorithm 3 and the T-
Bound conditions. The Algorithm 3 and the
T-Bound conditions always obtained very
similar performances, at least 6% better than
the LL condition for large number of tasks.

5.2 Performance as a function of the total
utilization of task sets

The goal of this experiment was to evaluate the
performance of the schedulability conditions as a
function of the total utilization of the task sets. We
generated several samples of task sets denoted as
Uυ, where the total utilization υ of each sample was
set to 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. The
maximum utilization of each task, denoted by α,
followed a uniform distribution in the range [0.01,
0.3]. Each sample Uυ was conformed by 1,000 task
sets. The periods of the tasks were uniformly
distributed in the range [100, 500] and the
execution times of the tasks were generated with
values 1 ≤ Ci ≤ αTi. The number of tasks was
uniformly distributed in the range [2,9]. Figuress
10, 11, and 12 show the acceptance ratios
obtained as a function of the utilization of the task
sets for the schedulability conditions.

Figure 10 shows the acceptance ratios obtained for
the closed-form non-period-aware schedulability
conditions. We can observe that the acceptance

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 431

ratios of these conditions satisfy the relation ρU(UO)
> ρU(IP) > ρU(LL). The performance of theUO is
clearly better than the IP and the LL conditions in
the range 0.7 < υ < 0.8.

Figure 10. Acceptance ratio of the non-period-aware
schedulability conditions.

Figure 11 shows the acceptance ratios obtained
for the closed-form period-aware schedulability
conditions, where we also included the UO and the
LL conditions. We can observe from Figure 11 that
the PO condition showed the best performance
among the closed-form period-aware conditions for
υ < 0.8, improving upon the LL condition for all
values of υ. For υ ≥ 0.75, the CRMB condition
showed an acceptance ratio similar or better than
the PO condition. However, the acceptance ratio of
the CRMB condition was poorer than that of the LL
condition for υ = 0.7. The HC and the Root
conditions showed similar acceptance ratios as
that of the LL condition for all the values of υ.

Figure 11. Acceptance ratio of the closed-form
schedulability conditions.

Figure 12 shows the acceptance ratios obtained for
the non-closed-form period-aware schedulability
conditions, where we also included the PO and the
LL conditions. We can observe from Figure 12 that all
non-closed-form conditions showed a significant
performance improvement with respect to the closed-
form conditions, and that the DCT condition yielded
the best acceptance ratio among all the non-closed-
form period-aware conditions. When compared with
the other conditions, the DCT condition showed an
increasingly better performance when the utilization
of the task sets increased.

The Algorithm 1 and the LpExact conditions also
showed a good performance, even improving on
the DCT condition for υ ≤ 0.75. However, their
performance decreased rapidly as the utilization of
the task sets increased.

The Algorithm 3 and the T-Bound conditions
showed the worst performance among all the non-
closed-form conditions, with results close to the
PO condition for υ ≥ 0.85.

Figure 12. Acceptance ratio of the non-closed-form
period-aware schedulability conditions.

5.3 Performance as a function of the period ratio

The goal of this experiment was to evaluate the
performance of the schedulability conditions as a
function of the period ratio. We define the period
ratio as the ratio of the maximum and minimum
period values in a task set. We generated several
samples Rλ, where λ is a constant with values in the
range [1, 8] used to derive the periods of the tasks.
For each task set, we randomly generated an initial
period value T1 in the range [100, 300]. After T1
was generated, the periods of the remaining tasks

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 432

were generated in the range T1 ≤ Ti ≤ λT1. The total
utilization of every sample and the maximum
utilization α of each task followed a uniform
distribution in the range [0.7, 0.95] and [0.01, 0.3],
respectively. The execution times of the tasks were
generated with values in the range 1 ≤ Ci ≤ αTi.
The number of tasks was uniformly distributed in
the range [2,9]. Every sample Rλ was composed of
1,000 task sets. Figures 13, 14, and 15, show the
performance as a function of the period ratio for the
schedulability conditions.

Figure 13 shows the acceptance ratios obtained for
the closed-form non-period-aware schedulability
conditions. It can be noted that for all the values of
λ, the acceptance ratios satisfy the relation ρR(UO)
> ρR(IP) > ρR(LL). The UO condition showed the
best acceptance ratio among these conditions, with
a small performance improvement with respect to
the IP and the LL conditions, whereas these two
conditions (IP and LL) yielded similar acceptance
ratios. It is important to note that all closed-form
non-period-aware conditions showed a constant
acceptance ratio for all the values of λ.

Figure 13. Acceptance ratio of the non-period-aware
schedulability conditions.

Figure 14 shows the acceptance ratios obtained for
the closed-form period-aware schedulability
conditions, where we also included the UO and the
LL conditions. We can observe that all the closed-
form period-aware schedulability conditions yielded
an acceptance ratio of 100 for λ = 1. In addition, all
of them decreased their performance sharply for
the interval 1 < λ < 2, and for λ > 2, their
performance was constant with the small variations.

Figure 14. Acceptance ratio of the closed-form
schedulability conditions.

The PO condition was the best or second best of
all the closed-form period-aware conditions for all
values of λ. The CRMB condition showed the best
performance among all the closed-form period-
aware conditions for λ ≤ 1.5. However, its
performance was the worst of all the closed-form
period-aware conditions for λ = 2, but improved for
λ > 2, being among the best conditions for λ ≥ 4.5.
Finally, the root and the HC conditions showed a
performance similar to that of the LL condition for
all values of λ.

Figure 15. Acceptance ratio of the non-closed-form
schedulability conditions.

Figure 15 shows the acceptance ratios obtained
for the non-closed-form schedulability conditions,
where we also included the PO and LL conditions.
From Figure 15, we can observe that all non-
closed-form conditions clearly outperformed the
remaining conditions.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 433

The DCT condition showed the best acceptance
ratio among the non-closed-form schedulability
conditions for all the values of λ. It should be noted
that for λ < 1.5, the acceptance ratio of the DCT
condition is almost equal to 100. On the other hand,
forλ > 2, its acceptance ratio is almost constant.

The Algorithm 1, the Algorithm 3, and the T-Bound
conditions showed a fairly good performance for
small λ values (λ ≤ 1.2). These three conditions
showed identical acceptance ratios for λ < 2. This
can be explained by the fact that they transform
the original task set into another task set where all
period values satisfy the relation Tmax ⁄ Tmin< 2.
However, for λ > 2, ρR(Algorithm 1) > ρR(Algorithm
3) ≥ ρR(T-Bound), and for λ > 1.5, the Algorithm 1
condition showed the second best acceptance
ratio among all the conditions.

The LpExact condition showed a good performance
for the small values of λ (λ ≤ 1.2), whereas for λ >
1.5, its acceptance ratio was the third best among
all the schedulability conditions.

It is important to note that the acceptance ratios of
all the conditions remain stable for λ > 2.

5.4 Performance as a function of tasks in the
harmonic chain

The objective of this experiment was to evaluate
the performance of the schedulability conditions as
a function of the percentage of tasks that are part
of a harmonic chain. We generated nine samples
of task sets HCk conformed by 1,000 task sets,
where k is a value in the range [20, 100] that
denotes the percentage of tasks that are part of
the harmonic chain. Only one harmonic chain in
every task set was generated. The utilization of
every sample and the maximum utilization α of
each task was uniformly distributed in the range
[0.7, 0.95] and [0.01, 0.30], respectively. The
execution times of the tasks were generated with
values 1 ≤ Ci ≤ αTi. The number of tasks was
uniformly distributed in the range [5, 9].

The period values of the tasks were generated as
follows. The initial period T1 was obtained using a
uniform distribution in the range [20, 100]. Once T1
was derived, the period of each task was
generated using Ti = Ti − 1*f, where f was randomly

generated in the range [2, 3], until the defined
percentage of tasks in the harmonic chain was
reached. If this percentage was k<100%, the
remaining period values were generated such that
they did not belong to the harmonic chain. Figures
16, 17, and 18 show the obtained acceptance
ratios as a function of the percentage of tasks that
are part of a harmonic chain.

Figure 16 shows the acceptance ratios obtained for
the closed-form non-period-aware schedulability
conditions. We can observe that their acceptance
ratios satisfy the relation ρHC(UO) > ρHC(IP) > ρHC(LL)
for every value of k. The UO condition is slightly
better than the IP and the LL conditions, whereas the
acceptance ratio of the IP and the LL conditions are
very close to each other. From these results, it is
clear that none of these conditions benefit from
including tasks that are part of a harmonic chain.

Figure 16. Acceptance ratio of the non-period-aware
schedulability conditions.

Figure 17 shows the acceptance ratios obtained
for the closed-form period-aware schedulability
conditions, where we also included the UO and the
LL conditions. We can observe that in most cases,
their acceptance ratios satisfy the relation
ρHC(CRMB) > ρHC(PO) > ρHC(Root) > ρHC(HC). It
can be observed that the CRMB condition had an
acceptance ratio significantly better than that of the
remaining closed-form period-aware conditions,
showing an excellent performance for k ≥ 60. As
discussed previously, the acceptance ratio of the
CRMB condition was equal to 100 when all the
tasks were in a harmonic chain. The HC and the
root conditions showed a very similar performance,
only lower than that of the CRMB condition. The

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 434

PO condition showed a performance similar to the
HC and the root conditions for values of k ≤ 50, but
much lower than the HC and the root conditions for
higher values of k.

Figure 17. Acceptance ratio of the closed-form
schedulability conditions.

Figure 18 shows the acceptance ratios obtained for
the non-closed-form period-aware schedulability
conditions, where we also included the CRMB and
the LL conditions. We can observe that the DCT
condition showed the best performance among the
non-closed-form period-aware conditions.
Nevertheless, its performance was not as good as
the performance of CRMB condition for k ≥ 50.

Figure 18. Acceptance ratio of the non-closed-form
schedulability conditions.

The Algorithm 1, the Algorithm 3, and the LpExact
conditions showed a similar performance for k ≥ 60.
However, the Algorithm 3 and the LpExact
conditions showed a lower acceptance ratio for
values of k smaller than 60. The T-Bound condition

showed the worst performance among these
schedulability conditions. It is interesting to poin out
that the DCT, Algorithm 1, Algorithm 3, LpExact,
and CRMB conditions yielded an acceptance ratio
equal or close to 100 for k=100.

5.5 Comparison of performances of the
schedulability conditions

A comparison of the relative performance of the
inexact schedulability conditions for RM on one
processor is shown in Table 8. The aim of this
comparison is to summarize the results of the
experiments conducted in this section. Designers of
real-time applications can use the comparison
shown in Table 8 to determine which schedulability
condition may be used in certain situations, taking
into account the characteristics of the task set.

It can be noted that the non-closed-form period-
aware conditions yield better performance than the
closed-form conditions.

6. Conclusions and future work

Many real-time applications demand efficient and
low-cost schedulability tests for online admission
control. In this paper, we surveyed the best-known
exact and inexact schedulability conditions for rate
monotonic executing on one processor. Extensive
simulation experiments were conducted to
evaluate the performance and computational
complexity of the inexact schedulability tests. In
our simulation experiments, the schedulability tests
were evaluated for different number of tasks,
utilization factors, and different period ratios.
Additional experiments were conducted
considering task sets with harmonics chains.

The comparative analysis done in this paper showed
that for all the experiments conducted, the
schedulability conditions using the non-closed-forms
schedulability tests derive a better performance than
those that use the closed-forms schedulability tests.

Among all the non-closed-form schedulability
conditions, we observed that, in general, the DCT
condition showed the best performance. This
performance can be explained by the fact that the
DCT condition transforms the period set into
another period set where all the tasks belong to a
single harmonic chain.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Journal of Applied Research and Technology 435

We believe that the decision of choosing one
schedulability test over another for a particular
real-time application should not depend only on its
performance; it should also be take into
consideration the characteristics of the tasks and
their computational complexity.

As part of our future research, we plan to extend this
study to include schedulability tests for aperiodic,
resource-sharing tasks, and multiple processors.

References

[1] C-G. Lee, L. Sha, A. Peddi. “Enhanced Utilization
Bounds for QoS Management”. IEEE Transactions on
Computers, 53(2):187—200, 2004.

[2] H. Vin, P. Goyal, A. Goyal. “A Statistical Admission
Control Algorithm for Multimedia Servers”. In Proceedings
of the 2nd ACM International Conference on Multimedia,
33—40, New York, USA, 1994. ACM.

[3] A. Banerjea, D. Ferrari, B.A. Moran Mah. “The Tenet
Real-Time Protocol Suite: Design, Implementation, and
Experiences”. IEEE/ACM Transactions on Networking,
4(8):1—10, 1994.

[4] H. Chen, B.C. Tjaden, L.R. Welch, C. Bruggeman, L.
Tong, B. Pfarr. “Monitoring Network QoS in a Dynamic
Real-Time System”. Proceedings of the 16th IEEE
International Parallel and Distributed Processing
Symposium:93—99, 2002.

[5] T.F. Atdelzater, E.M. Atkins, K.G. Shin. “QoS
Negotiation in Real-Time Systems and Its Application to
Automated flight Control”. IEEE Transactions on
Computers, 49(11):1170—1183, 2000.

 [6] L.K. Miller, A.M.K. Cheng. “Admission of high priority
real-time calls in an ATM network via bandwidth
reallocation and dynamic rerouting of active channels”.
Proceedings of the 21st Real-Time Systems
Symposium:249-258, 2000.

[7] A.M. K. Cheng, S.M. Rao. “Real-Time Traffic
Scheduling and Routing in Packet-Switched Networks
Using a Least-Laxity-First Strategy”. Journal of VLSI
Signal Processing Systems, 34(1/2):139—148, 2003.

[8] T-W. Kuo, C-H. Li. “A fixed-priority-driven open
environment for real-time applications”. Proceedings
of the 20th IEEE Real-Time Systems Symposium:
256—267, 1999.

[9] T-W. Kuo, C-H. Li, Y-C. Wang. “An Open Real-Time
Environment for Parallel and Distributed Systems”.
Proceedings of the 20th International Conference on
Distributed Computing Systems:206—213, 2000.

[10] C.L. Liu, W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”.
Journal of the ACM, 20(1):46-61, 1973.

[11] J.W.S. Liu. “Real-Time Systems”. Prentice Hall, 2000.

Characteristics of task sets Performance

 Good Average Poor

Small lumber of tasks (m ≤ 4) DCT PO, CRMB, T-Bound, Alg1, Alg3,
LpExact

LL, IP, UO, HC, Root

Large lumber of tasks (m>7) DCT, Alg1 Alg3, T-Bound, LpExact LL, IP, UO, HC, Root,
PO, CRMB

Small utilization of task sets (U
≤ 0.8)

Alg1, DCT, LpExact Alg3, T-Bound, LL, IP, UO, PO, Root,
HC, CRMB

Large utilization of task sets
(U>0.8)

DCT Alg1, LpExact LL, IP, UO, HC, Root,
PO, CRMB, Alg3

Small period ratio (λ ≤ 1.5) DCT CRMB, Alg1, Alg3, T-Bound,
LpExact

LL, IP, UO, HC, Root,
PO

Large period ratio (λ > 1.5) DCT, Alg1, LpExact Alg3, T-Bound, CRMB, PO LL, IP, UO,HC, Root

All tasks in a single hc DCT, CRMB, Alg3, Alg1,
HC, Root , LpExact

PO, T-Bound, LL, IP, UO,

Large number of tasks in hc (k
≥ 80%)

CRMB, DCT Alg3, Alg1, LpExact, HC, Root, T-
Bound, PO

LL, IP, UO,

Small number of tasks in hc
(80% > k ≥ 20%)

DCT, Alg1 Alg3, T-Bound, LpExact HC, Root ,PO, LL, IP,
UO, CRMB

Table 8. Relative performance of the RM inexact schedulability conditions.

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436

Vol. 11, June 2013 436

[12] S.K. Dhall, C.L. Liu. “On a Real-Time Scheduling
Problem”. Operations Research, 26(1):127—140, 1978.

[13] Y. Oh, S.H. Son. “Fixed-Priority Scheduling of
Periodic Tasks on Multiprocessor Systems”. Technical
Report CS-95-16. Univ. of Virginia. Dept. of Computer
Science. 1995.

[14] A. Burchard, J. Liebeherr, Y. Oh, S.H. Son. “New
Strategies for Assigning Real-Time Tasks to
Multiprocessor Systems”. IEEE Transactions on
Computers, 44(12):1429—1442, 1995.

[15] T. Kuo, A. Mok. “Load Adjustment in Adaptive Real-
Time Systems”. Proceedings of the 12th IEEE Real-
Time Systems Symposium:160—170, 1991.

[16] T. Kuo, K. Lin. “Efficient On-Line Schedulability
Tests for Priority Driven Real-Time Systems”.
Proceedings of 6th IEEE Real-Time Technology and
Applications Symposium:4—14, 2000.

[17] C.C. Han, H.Y. Tyan. “A better polynomial-time
schedulability test for real-time fixed-priority scheduling
algorithms”. Proceedings of 19th IEEE Real-Time
Systems Symposium:36—45, 1997.

[18] W.-C. Lu, K.J. Lin, H.-W. Wei, W.-K. Shih. “Rate
monotonic schedulability tests using period-dependent
conditions”. Real-Time Systems, 37(2):123—138, 2007.

[19] S. Lauzac, R. Melhem, D. Mosse. “An Improved
Rate-Monotonic Admission Control and Its
Applications”. IEEE Transactions on Computers,
52(2):337—350, 2003.

[20] D. Chen, R. Mok, T. Kuo. “Utilization Bound
Revisited”. IEEE Transactions on Computers,
53(3):351—361, 2003.

[21] D.W. Park, S. Natarajan, A. Kanevsky. “Fixed-
priority scheduling of real-time systems using
utilization bounds”. Journal of Systems and Software,
33(1): 57—63, 1996.

[22] J.P. Lehoczky, L. Sha, Y. Ding. “The Rate-
Monotonic Scheduling Algorithm: Exact Characterization
and Average Case Behavior”. Proceedings of the IEEE
Real-Time Systems Symposium:166—171, 1989.

[23] M. Joseph, P. Pandya. “Finding Response Times in
a Real-Time System”. British Computer Society
Computer Journal, 29(5):390—395, 1986.

[24] N. Audsley, A. Burns, M. Richardson, K. Tindell, A.J.
Wellings. “Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling”. Software Engineering
Journal, 8:284—292, 1993.

[25] E. Bini, G.C. Buttazzo. “Schedulability Analysis of
Periodic Fixed Priority Systems”. IEEE Transactions on
Computers, 53(11):1462-1473, Nov 2004.

[26] W.C. Lu, K.J. Lin, H.W. Wei, W.K. Shih. “Period-
Dependent Initial Values for Exact Schedulability Test of
Rate Monotonic Systems”. Proceedings of the IEEE
International Parallel and Distributed Processing
Symposium:1—8, 2007.

[27] R.I. Davis, A. Zabos, A. Burns. “Efficient Exact
Schedulability Tests for Fixed Priority Real-Time
Systems”. IEEE Transactions on Computers,
57(9):1261—1276, 2008.

[28] J.Y. Leung, J. Whitehead. “On the Complexity of
Fixed-Priority Scheduling of Periodic Real-Time
Tasks”. Performance Evaluation (Netherlands), 4(2):
237-250, 1982.

[29] E. Bini, G.C. Buttazzo, G.M. Buttazzo. “Rate
Monotonic Analysis: The Hyperbolic Bound”. IEEE
Transactions on Computers, 52(7):933-942, 2003.

[30] S. Lauzac, R. Melhem, D. Mosse. “”n Efficient RMS
Admission Control and its Application to Multiprocessor
Scheduling”. Proceedings of the IEEE 1st Merged
International Symposium on Parallel and Distributed
Processing:511—518, 1998.

[31] C.-C.J. Han. “A better polynomial-time
schedulability test for real-time multiframe tasks”.
Proceedings of the 19th IEEE Real-Time Systems
Symposium: 104—113, 1998.

[32] V. Klee, G.J. Minty. “How Good is the Simplex
Algorithm?”, In Inequalities III. O. Shisha (ed), Academic
Press Inc, New York, April 1997.

[33] Michael Berkelaar, Kjell Eikland, Peter Notebaert.
lp_solve 5.5. 2004.

