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ABSTRACT 
Schedulability conditions are used in real-time systems to verify the fulfillment of the temporal constraints of task sets. 
In this paper, a performance analysis is conducted for the best-known real-time schedulability conditions that can be 
used in online admission control on uni-processor systems executing under the Rate-Monotonic scheduling policy. 
Since Liu and Layland introduced the Rate-Monotonic scheduling algorithm, many research studies have been 
conducted on the schedulability analysis of real-time periodic task sets. However, in most cases, the performance of 
the proposed schedulability conditions were compared only against the Liu and Layland test and not against the 
remaining schedulability tests. The goal of this paper is to provide guidelines for system designers in order to decide 
which schedulability condition provides better performance under different task characteristics. Extensive simulation 
experiments were conducted to evaluate the inexact schedulability conditions and compare their performance and 
computational complexity. 
 
Keywords: real-time systems, real-time scheduling, rate-monotonic scheduling 
 
RESUMEN 
Las condiciones de planificabilidad son utilizadas en los sistemas de tiempo real para verificar el cumplimiento de las 
restricciones temporales de los conjuntos de tareas. En este artículo se presenta un análisis del desempeño de las 
condiciones de planificabilidad mas conocidas y que pueden ser usadas como control de admisión en línea en 
sistemas monoprocesador que se ejecutan con la política de planificación rate-monotonic. Desde que Liu y Layland 
propusieron el algoritmo de planificación R-M, se han llevado a cabo muchos proyectos de investigación acerca del 
análisis de planificabilidad de conjuntos de tareas periódicas de tiempo real. Sin embargo, en la mayoría de los 
casos, el desempeño de las condiciones de planificabilidad ha sido comparado tan solo con la prueba de Liu y 
Layland y no consideran al resto de las condiciones de planificabilidad. El objetivo de este artículo es el de 
proporcionar una guía a los diseñadores de sistemas para que puedan decidir qué condición de planificabilidad 
presenta un mejor desempeño con diferentes características de las tareas. Se llevaron a cabo extensos experimentos 
de simulación para evaluar a las condiciones inexactas de planificabilidad, así como para comparar su desempeño y 
complejidad computacional. 
 

 
1. Introduction 
 
In a real-time system, the scheduling algorithm 
decides an order of execution of the tasks and the 
amount of time allowed to each task in the system 
so that no task (for hard real-time systems), or a 
minimum number of tasks (for soft real-time 
systems), misses their deadlines. To verify if a 

 
 
scheduling policy guarantees the fulfillment of the 
temporal constraints of a task set, real-time systems 
designers use different exact or inexact schedulability 
conditions (also known as schedulability tests). The 
schedulability condition indicates if a given task set 
can be scheduled with a given scheduling algorithm



 

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436 

Journal of Applied Research and Technology 409

such that none of the tasks in the set miss their 
deadlines. When a new task is created in a dynamic 
real-time system, an online admission control 
mechanisms that uses a schedulability test 
guarantees predictability if the new task is admitted. 
Examples of these kind of systems are those with 
quality-of-service (QoS) requirements, such as 
multimedia systems [1] [2], communication services 
[3][4], and automated flight control [5]. Other 
examples are found on the scheduling of real-time 
traffic over networks [6][7], or in open systems 
environments [8][9].  
 
Exact schedulability tests usually have high-time 
complexities and may not be adequate for online 
admission control if the system has a large amount 
of tasks or a dynamic workload. In contrast, most 
of the inexact schedulability tests provide low-
complexity sufficient schedulability tests, which are 
suitable for using in online admission control 
mechanisms to decide the acceptance of the newly 
arrived tasks in the system.  If a task set does not 
satisfy a sufficient schedulability test, it is not 
known if the task set can be feasibly scheduled 
using a given scheduling policy. For this reason, it 
is important to determine which inexact 
schedulability test provides a better performance, 
given the specific task set parameters. 
 
The rate-monotonic scheduling algorithm assigns 
priorities proportionally to the task activation rates. 
Many other scheduling algorithms have been 
proposed, such as the earliest deadline first (EDF) 
[10] that allows a better use of the computational 
resources. However, because RM introduces low-
computational overhead, is simple to implement 
and is predictable. It is widely used on most real-
time operating systems and is supported by most 
real-time systems standards.  
 
Liu and Layland first introduced the rate-monotonic 
algorithm along with a sufficient schedulability test 
[10]. They introduced the concept of achievable 
utilization factor to derive a low complexity test that 
is used to determine the schedulability of 
independent, periodic and preemptable task sets 
executed on one processor.  
 
The schedulability test introduced by Liu and 
Layland for RM states that a task set will not miss 
any deadline if the utilization factor of the task set, 

defined as 


n

i T
C

i

iU
1 , is not greater than )12( 1

nn , 
where Ci and Ti are the computation requirement 

and period of the task i , respectively, and n is the 
number of tasks. Unfortunately, this condition fails to 
identify many schedulable task sets when the 
system is heavily loaded. 
 
After Liu and Layland’s seminal work, many 
researchers, motivated by the low overhead and 
simplicity of RM, developed new tests that 
improved the test proposed by them. The 
improvement on these new tests was due to the 
introduction of additional timing parameters in the 
schedulability analysis, and in some cases, also to 
the transformation of the task sets.  
 
When comparing the inexact schedulability 
conditions, the problem of evaluating their 
performance with respect to either the pessimistic 
Liu and Layland test or the exact schedulability 
test, becomes an important issue. The 
effectiveness of the schedulability test is measured 
in terms of the acceptance ratio. The higher the 
acceptance ratio, the better the test, which means 
that more tasks sets are schedulable. When the 
ratio is equal to one, it means that the 
schedulability condition finds as many schedulable 
task sets as those found by the exact condition.  
 
Comparing the inexact schedulability conditions, 
using a rigorous analytical approach, is not easy 
because each schedulability condition considers 
different task set parameters. Furthermore, some 
of them are based on algorithms, that is, 
transforming the original task set into an equivalent 
one. Consequently, the acceptance ratio of a given 
test is affected by the characteristics of the task set 
parameters. For these reasons, our aim is to 
evaluate the performance of the schedulability 
conditions through extensive simulations.  
 
In this paper, we surveyed the inexact 
schedulability conditions that can be used in online 
admission control when the system is comprised of 
periodic and preemptable real-time tasks, using 
the rate-monotonic scheduling algorithm. We 
analyzed the best-known inexact schedulability 
conditions for one processor that exists in the 
literature. We also conducted extensive simulation 
experiments to evaluate and compare their
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performance in terms of the acceptance ratio and 
the computational complexity. Based on the 
results provided by the experimental evaluations, 
we provided guidelines to help system designers 
to decide, given a particular task set parameters 
and load conditions, which schedulability tests 
provide better or worst performance, and how 
they compare with each other under these 
different characteristics.  
 
To the best of our knowledge, no previous 
comparative analysis of the RM schedulability 
conditions has been conducted for real-time 
scheduling on one processor. Most of the published 
schedulability conditions compared their performance 
only against the schedulability condition introduced 
by Liu and Layland, and just a few of them compared 
their performance against each other. 
 
The rest of this document is organized as follows: In 
Sections 2 and 3, an overview of the real-time 
scheduling theory and schedulability analysis of 
real-time systems is introduced. In Section 4, the 
schedulability conditions for RM on one processor 
are introduced, and in Section 5, extensive 
simulation experiments conducted to test and 
compare the performance of the inexact 
schedulability conditions are described. Finally, the 
conclusions appear in Section 6. 
 
2. Real-time systems scheduling 
 
A real-time system is composed of several 
concurrent activities that are normally implemented 
as tasks. To schedule these tasks, real-time 
operating systems use scheduling algorithms to 
decide the order of execution of the tasks and the 
amount of time assigned to each task.  
 
Scheduling algorithms of general-purpose operating 
systems are nondeterministic because the 
correctness of the system does not depend on the 
order in which every task is executed. In these 
operating systems, the scheduler is intended to 
provide optimal performance, optimal usage of 
resources, and fairness in resource assignment. In 
contrast, in real-time operating systems, the 
scheduler must restrict the nondeterminism 
associated with the concurrent system, and must 
provide the means to predict the worst-case 
temporal behavior of the task set.  
 

A real-time scheduling algorithm provides an ordering 
policy for the execution of the tasks (as in the non-
real-time scheduling algorithm). A given real-time 
scheduling algorithm may produce feasible or 
infeasible schedules. In a feasible schedule, every 
job for a given task set always completes by its 
deadline. In contrast, in an infeasible schedule, some 
jobs may miss a few of their deadlines. A set of jobs 
is schedulable according to a given scheduling 
algorithm if, when using the algorithm, the scheduler 
always produces a feasible schedule. The criterion 
used to measure the performance of the scheduling 
algorithms for real-time applications is their ability to 
find feasible schedules of the given application 
whenever such schedules exist. A hard real-time 
scheduling algorithm is optimal if, for any feasible 
task set, it always produces feasible schedules [11].  
 
The scheduling algorithms can be classified as static 
and dynamic. In a static scheduling algorithm, all 
scheduling decisions are provided a priori. For a 
given set of timing constraints, a table is constructed 
indicating the starting and completion times of each 
task, such that, no task misses its deadline. This 
approach is highly predictable, but when the 
parameters of the tasks change, the table must be 
recomputed and the system restarted.  
 
In dynamic scheduling algorithms, the scheduling 
decisions are taken at run-time based on the 
priorities of the tasks. These priority values are used 
to decide the execution order of the tasks. Priority 
values can be assigned statically or dynamically, 
depending on the dynamic scheduling algorithm. If 
static priorities are used, the priority of each task 
remains fixed during the complete execution of the 
system, whereas if dynamic priorities are used, the 
priority of a task is allowed to change at any moment.  
 
As mentioned before, Liu and Layland [10] 
introduced the first real-time scheduling algorithms for 
a single processor (rate-monotonic and earliest 
deadline first), and developed their corresponding 
schedulability analysis. RM assigns the highest 
priority to the task with the smallest period, and EDF 
assigns priorities to the tasks considering the 
proximity of each instance of a task with its deadline, 
so that the task with the closest relative deadline 
receives the highest priority. Liu and Layland 
demonstrated that RM and EDF are optimal for fixed 
and dynamic priority algorithms, respectively.  
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2.1 System model 
 
In this paper, we consider a real-time system 
composed of a set of n real-time tasks 

},,{ 21 n   on one processor under rate-

monotonic. A task is usually a thread or a process 
within an operating system. The parameters that 

define a task i  are: the execution time Ci, the 

period Ti, and the deadline Di. We will consider that 
only periodic tasks can be executed in the system, 
and we will consider that Ti = Di. Each periodic task 

i  is composed of an infinite sequence of jobs. The 

period Ti of the periodic task i  is a fixed time 

interval between the release times of consecutive 

jobs in i . Its execution time Ci is the maximum 

execution time of all the jobs in i . The period and 

execution time of the task i  satisfies that Ti > 0 

and 0 < Ci ≤ Ti = Di, (i = 1,..., n). The utilization 

factor of the task i  is defined as 
i

i
T

C
iu  . The 

utilization factor of the task set, denoted as U, is the 
sum of the utilization of the tasks in the set, that is, 




n

i T
C

i

iU
1

. We will consider that a job in i  that is 

released at time t, must complete within Di, that is, 
it must complete within the time interval (t, t+Di]; 

where Di is the relative deadline of the task i . The 

release time of the first job in each task i  is called 

the phase of i , and is denoted as θi.  
 
We use H to denote the least common multiple of 
Ti, for i = 1, 2,..., n. A time interval of length H is 
called the hyperperiod of the task set.  
 
In the model used in this paper, the following 
restrictions also apply  
 
A1 The tasks are independent. That is, the arrival 

of a job of task i  is not affected by the arrival of 

any job of the other task ij .  

 
A2 It is assumed that all tasks in the system can 
be preempted at any time.  
 
A3 The cost of the context switch of the tasks is 
considered negligible.  

A4 No resources, other than the CPU are shared 
among the tasks.  
 
3. Schedulability tests 
 
A schedulability test defines a mathematical 
condition that is used to verify whether the task set 
meets its temporal restrictions for a given 
scheduling algorithm. The inputs of the test are the 
temporal parameters of the task set.  
 
A test is said to be sufficient in the sense that a 
task set is schedulable if it satisfies the test. 
However, if the task set does not satisfy the 
sufficient test, it is not known whether the task set 
can be schedulable using that scheduling 
algorithm. A test is said to be necessary if all 
schedulable task sets satisfy the test. Otherwise, if 
a given task set satisfies the test, we cannot say 
that it is schedulable. Exact tests provide a 
necessary and sufficient condition. The inexact 
schedulability tests provide only a sufficient (but not 
necessary) schedulability condition.  
 
Schedulability tests depend on the scheduling 
algorithm chosen and the knowledge of the 
parameters of the task set. The schedulability test 
in dynamic scheduling algorithms can be performed 
off-line or online. If the test is executed off-line, 
there must be complete knowledge of the set of 
tasks that are to be executed in the system along 
with the timing constraints imposed on every task 
(e.g., deadlines, precedence restrictions, execution 
times) before the execution of the system. In this 
case, the arrival of new tasks is not allowed while 
the system is executing, and the tasks cannot 
change their timing constraints.  
 
In contrast, if the scheduling test is performed 
online, new arrivals are allowed at any time and 
the tasks can change their timing constraints 
during the execution of the system. In this test, 
the scheduler decides dynamically, by means of 
an admission control mechanism, if the 
acceptance of these new tasks will not cause 
other tasks to miss their deadlines.  
 
The utilization bound Û, for a given real time 
scheduling algorithm, is the value such that any 
task set, whose utilization factor is no larger than Û, 
is schedulable under that scheduling algorithm. 
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Utilization-based schedulability conditions verify if 
the utilization of the task set does not exceed the 
utilization bound (that is, U ≤ Û).  
 
We classify the inexact tests in accordance with the 
parameters used as follows  
 
Non-period-aware schedulability conditions. These 
schedulability conditions derive the utilization 
bound using information about the number of tasks 
or the utilization of the tasks in the system. The 
tests based on the utilization found in the literature 
are: 

 
- The Liu and Layland condition (LL) introduced in 
[10]. 
- Increasing Period condition (IP) [12]. 
- Utilization Oriented condition (UO) developed by 
Y. Oh et al. [13]. 

 
Period-aware schedulability conditions. Some 
variants of the utilization-based conditions use 
additional information from the task set in order 
to derive the utilization bound. In these 
conditions, the value of the periods of the tasks 
is included in the analysis. According to the way 
they derive their schedulability bounds, these 
conditions can be further classified as closed-
form period-aware conditions and non-closed-
form period-aware conditions: 
 
- Closed-form period-aware conditions: Period   
Oriented (PO) [14], Conditions based on Harmonic 
Chains [15-17] and CRMB [18]. 
- Non-closed-form period-aware conditions: T-
Bound and R-Bound [19], Algorithms of Chen, Mok 
and Kuo [20], Sr and DCT [17], and conditions that 
use linear programming techniques, such as the 
PSUB [21] and LP conditions [1]. 
 
4.-Schedulability conditions for fixed-priority 
scheduling on a single processor 
 
In this section, we review the best-known 
schedulability conditions found in the literature for 
rate-monotonic on one processor.  
 
4.1 Exact schedulability conditions for rate-monotonic 
 
After Liu and Layland derived the RM scheduling 
algorithm along with its inexact condition, many 
necessary and sufficient tests for RM on one 

processor have been proposed [20][22-27]. In this 
section, we will review two of them.  
 
4.1.1 Exact schedulability condition based on 
processor’s demand (LE) 
 
One of the first exact conditions was proposed by 
Lehoczky et al. [22]. In this test, the total demand of 
the processor time by a job in a critical instant is 
computed, along with the total demand of the 
processor time for all the higher priority tasks. 
Then, the test checks if this demand can be met 
before the deadline of the job. The LE scheduling 
condition is formally defined in Theorem 1 [22]. 
 

Theorem 1 (LE Condition). Let },,{ 21 n   

be a task set with n tasks and T1  ≤  T2  ≤  ...  ≤  Tn. 

i  can be schedulable under RM if and only if, 

 

  1min )(
}{   t
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The entire task set can be schedulable under RM if 
and only if  
 
L = max{1 ≤ i ≤ n} Li ≤ 1        (2) 

 
It can be observed that the computational 
complexity of the LE condition is pseudo-
polynominal [22].  
 
The function Li(t) is monotonically decreasing since 

t

t

T i 









  is strictly decreasing except at a finite set of 

values called rate-monotonic scheduling points. 
When t is a multiple of one of the periods Tj, for 1  ≤ 
j  ≤  i, the function has a local minimum [22]. 
Consequently, only a search over these local 
minimum values (the multiples of Tj  ≤  Ti, 1 ≤ j ≤ i) is 

needed, to determine if i  can meet its deadline.  
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Example 1. Table 1 shows a task set   with five 
tasks, including its timing constraints: Ci, Ti, ui and 
U = ∑{j = 1, .., i}ui. In order to verify if this task set is 
schedulable under the RM algorithm, we will use 
the exact LE condition.  
 

i  1  2  3  4  5  

Ti 8 16 3 12 48 

Ci 1 3 1 2 6 

ui 0.125 0.1875 0.333 0.1666 0.125 

U 0.125 0.3125 0.6458 0.8124 0.9374 

 
Table 1. Example task set. 

 
We first sort the task set by the ascending period 

values. Thus, 1  = (3, 1), 2   = (8, 1), 3   = (12, 2), 

4   = (16, 3) and 5   = (48, 6). To determine if the 

task set is schedulable we just need to check if 5   
fulfills its timing constraint. The set of scheduling 
points is S5 = {3, 6, 8, 9, 12, 15, 16, 18, 21, 24, 27, 
30, 32, 33, 36, 39, 40, 42, 45, 48}.  
 

Task 5   is schedulable if any of the following 

Equations hold (for Di = Ti): 
 
if W5 (3)  =  C1  +  C2  +  C3  +  C4  +  C5  ≤  T1    13  >  3 
or W5 (6)  =  2C1  +  C2  +  C3  +  C4  +  C5  ≤  2T1   14  >  6 
or W5 (8)  =  3C1  +  C2  +  C3  +  C4  +  C5  ≤  T2   15  >  8 
… 
or W5(45)  =  15C1  +  6C2  +  4C3  +  3C4  +  C5  ≤  15T1 44  ≤45 
or W5(48)  =  16C1  +  6C2  +  4C3  +  3C4  +  C5  ≤  T5   46  ≤  48 
 
From the previous analysis, note that W5(t) ≤ t ≤ 
T5 (t=45 and t=48). Therefore, we can conclude 
that the task set shown in Table 1 is schedulable 
under the RM algorithm. 
 
4.1.2 Exact schedulability condition based on the 
task’s response times 
 
Joseph and Pandya introduced an exact 
schedulability condition in [23] for fixed priority 
scheduling. In this test, the response time of each 

task ri is obtained, and if ri  ≤  Di, then task i  

meets its deadline.  

This test starts by obtaining the response time of the 
highest priority task, using the following Equation  
 

j
ihpj j

i
ii C

T

r
Cr 

 











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Where hp(i) is the set of tasks with a higher priority 

than the task i . Given that ri appears on both 

sides of the Equation, a possible solution was 
proposed by Audsley et al. in [24]. The solution is 
obtained by the following iterative process:  

 

  j
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(3) 

 
Iterations described in Equation 3 can start 
considering  


i

k ki Cr
1

0 . It is easy to note that     ri
n + 

1 ≥ ri
n. If ri

n ≥ Di, then task i  will miss its deadline. 

However, if ri
n + 1 = ri

n, the iterative process will 

conclude, meaning that i  is schedulable.  

 
The response time analysis has evolved to 
include offsets, blocking, fault tolerance, and 
release jitter [24].  
 
The exact schedulability analysis is time-consuming 
due to its high computational complexity. Therefore, 
it is not suitable for online schedulability analysis.  
 
4.2 Liu and Layland (LL) schedulability condition 
 
In [10], Liu and Layland defined the critical instant 
for a task as the instant at which a request for that 
task will have the largest response time, and 
showed that if all the tasks meet their deadlines at 
their critical instants, then the task set is feasible. 
The worst-case phasing occurs when 

n  21 (e.g. 0i for all i).  

 
Liu and Layland introduced the concept of 
utilization factor in [10] and defined it as the fraction 
of the processor time spent in the execution of the 
task set. Further, they defined that a task set is said 
to fully utilize the processor according to a given 
scheduling algorithm if the set of tasks can be 
feasibly scheduled and that any increase in the 
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execution time of any of the tasks will make the 
task set infeasible with respect to that algorithm. 
For a given fixed-priority scheduling algorithm, the 
least upper bound of the utilization factor is the 
minimum of the utilization factors over all the sets 
of tasks that fully utilize the processor.  
 
In order to derive the least upper bound for the rate 
monotonic algorithm, Liu and Layland showed that 
the worst-case situation occurs when the task set 
fully utilizes the processor, all tasks start 
simultaneously (that is, at its critical instant) and the 
relationship among the periods is such that 

11 2;,,2 TTTni i   . Under this worst-case 

scenario, Liu and Layland found the least upper 
bound by minimizing the total utilization with 
respect to the period values.  
 
The Liu and Layland condition (LL) is formalized in 
Theorem 2 [10].  
 
Theorem 2 (LL condition). A set of tasks   is 
schedulable under the RM algorithm if the following 
condition is satisfied 
 

)12(
1

 nnU       (4) 

 
If the condition of Theorem 2 is not satisfied, that is, 

)12( 1
 nnU , then it is not known whether the 

task set is schedulable under Rate-Monotonic. 
 
 It is important to note that the LL condition 
depends only on the number of tasks in the system 
[29]. The computational complexity of the LL 
condition is O(n).  
 

 
 

Figure 1. Performance of the LL condition. 

Figure 1 shows the processor utilization factor 
under the LL schedulability condition. It can be 
observed that when the number of tasks tends to 
infinity, the minimum achievable utilization factor 
tends to ln(2) = 0.6931.  
 
Leung and Whitehead, in [28], generalized the 
results provided by Liu and Layland and proved 
that the Deadline monotonic (DM) algorithm is 
optimal for the fixed-priority scheduling model. In 
the DM scheduling algorithm, task deadlines can be 
smaller than its periods (Di ≤ Ti).  
 

i  iT  iC  iu  iU  LL bound 

1  8 1 0.125 0.1250 1 

2  16 3 0.1875 0.3125 0.8284 

3  3 1 0.3333 0.6458 0.7798 

4  12 2 0.1666 0.8124 0.7568 

5  48 6 0.1250 0.9374 0.7435 

 
Table 2. LL condition applied to the TS of Table 1. 

 
Example 2. After applying the LL condition to the 
task set shown in Table 1, we can conclude that 

tasks 1 , 2 , and 3  can be feasibly scheduled, 

but adding 4  and 5  violates the LL condition, as 

shown in Table 2. 
 
4.3 Increasing period (IP) schedulability condition 
 
The IP condition was introduced by Dhall and Liu 
[12] and was proposed to be used together with the 
multiprocessor algorithms rate-monotonic next fit 
and rate-monotonic first-fit. In order to determine the 
tasks that can be assigned to each processor, the 
IP condition takes into account both the utilization of 
the task set assigned to a processor and the 
utilization of the new task. The IP schedulability 
condition is defined in Theorem 3 [12]:  
 

Theorem 3 (IP condition). Let },,{ 21 n   

be a set of n tasks with T1  ≤  T2 ...  ≤  Tn and let  
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If the following condition is met  
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

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n

n
n n

U
u    (6) 

 
Then the set of tasks can be feasibly scheduled 
under the RM algorithm. When n  →  ∞, the minimum 

utilization of task n  approaches to (2 e − u - 1).  

 
This condition requires an ordering of the periods 
of the tasks. Because of this ordering, its 
complexity is O(n log n). As it can be noticed, this 
condition is based on the utilization and the 
number of tasks in the system.  
 

 
 

Figure 2. Performance of the IP condition. 
 
Figure 2 shows the performance of the IP condition, 

where the utilization of task n  is a function of the 

(n-1) tasks already in the system. The different 
curves illustrate different values for the number of 
tasks (n). The area under the curve denotes the 
feasibility area for this test.  
 
 
 
 
 

i  iT  iC  iu  IP bound 

3  3 1 0.3333 - 

1  8 1 0.1250 0.5000 

4  12 2 0.1666 0.3238 

2  16 3 0.1875 0.1336 

5  48 6 0.1250 0.1336 

 

Table 3. IP condition applied to the TS of Table 1. 
 
Example 3. In this example, we will show the 
performance of the IP schedulability condition using 
the task set described in Table 1. To use this 
condition, tasks must be sorted in the 
nondecreasing order of their periods. After applying 
the IP condition, we note, in Table 3, that while 

tasks 3 , 1 , 4 , and 5  are identified as 

schedulable, the IP condition fails to identify task 

2  as schedulable.  
 
4.4 Period oriented (PO) schedulability condition 
 
Burchard et al. [14] introduced the period oriented 
condition to be used by the rate monotonic small 
tasks (RMST) and rate monotonic general tasks 
(RMGT) multiprocessor algorithms. To be able to 
use the PO condition, it is necessary to know the 
values of the periods of the tasks in the system. The 
PO condition is formally defined in Theorem 4 [14]:  
 
Theorem 4 (PO condition). Given a set of tasks 

},,{ 21 n  , Si and β are defined as follows:  

 

 iii TTS 22 loglog          i = 1,…,n                (7) 
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and  
 

i
ni

i
ni

SS



11
minmax

    (8) 
 
(a) if β < (1 − 1/n) and the total utilization satisfies 
that  
 

12)12()1( 1)1(   
nnU   (9) 

 
then the task set is schedulable on one processor 
under RM. 
 
(b) if β ≥ (1 − 1/n) and the total utilization satisfies 
that  
 

)12(
1

 nnU                (10) 
 
Then the task set is schedulable on one processor 
under RM.  
 
From Equation 7 it can be observed that Si is a 
function that goes from zero (when the period Ti is a 
power of two) to one (when the period Ti is the next 
power of two), and it measures the logarithmic 

distance of the period of task i  from a power of 
two (where 0.5 means that the period is 
logarithmically in the middle of two powers of two). 
Therefore, β measures how logarithmically 
equidistant the periods of all tasks are from a power 

of two. When  
niTT ii ,,2,12,0 1   

; 

and  , and 0 . 
 
As β approaches to zero, the utilization bound 
tends to one, independent of the number of task. 
On the other hand, as β approaches to one, the 
utilization bound approaches the LL condition.  
 
A simpler version of Equation 9 of the PO condition 
is defined in Corollary 1 [14].  
 
Corollary 1 (PO condition). Given a set of tasks 

},,{ 21 n 
 and given β (as defined in 

Theorem 4), if the total utilization satisfies that  
 
U ≤ max{ln 2, 1 − β ln 2}              (11) 
 
then the task set can be feasibly scheduled on one 
processor under RM.  

 
 

Figure 3. Performance of the PO condition. 
 
Figure 3 shows the performance of the PO 
condition. Each curve shows, for a given number 
of tasks, the relationship between β and the 
utilization of the task set. The area under the curve 
denotes the feasibility area for this test. It can be 
observed that when the number of tasks is large 
and the value of β = 1, then the minimum 
achievable utilization is approximately 69%, similar 
to the result provided by the LL condition.  
 
Example 4. The first step on applying the PO 
condition to the task set described in Table 1 
involves calculating the Si values using Equation 
7, and sorting them in the nondecreasing order. 
The obtained values are Si = {S1= 0, S2= 0, S3= 
0.5849, S4= 0.5849, S5= 0.5849}, and β = 0.5849 
(from Equation. 8). Because β < (1 − 1/n) (0.5848 
< 0.8), Corollary 1 can be used to check the 
schedulability of the task set. given that 0.9375 > 
0.6931, the PO condition fails to identify the task 
set as schedulable. 
 
4.5 Utilization oriented (UO) schedulability condition 
 
Y. Oh et al. [13] introduced a schedulability 
condition based on the values of tasks utilization ui. 
Oh et al. derived their schedulability condition from 
the worst-case scenario identified by Liu and 
Layland [10], but instead of minimizing the total 
utilization with respect to the period values, they 
derived their schedulability condition as a function 
of the individual task utilization [13].  
 
The UO condition was proposed to be used in the 
fate-monotonic-first-fit-decreasing-utilization (RM-
FFDU) multiprocessor algorithm and is defined in 
Theorem 5 [13].  
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Theorem 5 (UO Condition). Let 
},,{ 121  n 

 
be a task set of (n-1) tasks, feasibly scheduled 

under RM. A new task n  can be feasibly 
scheduled along with the (n-1) tasks already in the 
system (on one processor under RM), if the 
following condition is met:  
 

 

  112
11
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
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n

i
i

n

n u
T

C

             (12) 
 
Figure 4 shows the UO utilization bound for 
different values of n, where the x-axis denotes the 
utilization of the (n-1) tasks already in the system, 

and the y-axis denotes the utilization of task i . 
The area under each curve denotes the feasibility 
area for this test. Note that this condition takes into 
account the number of tasks and the individual 
utilization of the tasks. The complexity of this 
condition is O(n).  
 

 
 

Figure 4. Performance of the UO condition. 
 
Bini et al. [29] introduced the Hyperbolic Bound 
(HB) condition, a schedulability test similar to the 
one provided by the UO condition. The HB 
condition is expressed in Theorem 6 [29].  
 

Theorem 6 (HB Condition). Let 
},,{ 21 n 

 

be a set of n periodic tasks, where each tasks i  is 
characterized by a processor utilization ui.. Then, 
  is schedulable by the RM algorithm if 

 

 



n

i
iu

1

21
                       (13) 

 

i iT iC iu
 

UO bound 

3 3 1 0.3333 - 

1 8 1 0.1250 0.5000 

4 12 2 0.1666 0.3333 

2 16 3 0.1875 0.1429 

5 48 6 0.1250 0.1429 

 
Table 4. UO condition applied to the TS of Table 1. 

 
It is clear that Equation 13 can be derived from 
Equation 12. Bini et al. extended the HB condition 
to include resource sharing and aperiodic servers. 
 
Example 5. After using the UO condition to verify 
the schedulability of the task set described in 

Table 1, we find that tasks 1 ,  2 , and 3  are 
proved to be schedulable, but the UO condition 

fails to identify tasks 4  and 5  as schedulable, 
as shown in Table 4.  
 
4.6 T-Bound and R-Bound schedulability 
conditions 
 
Lauzac et al. [30] developed the T-Bound and R-
Bound schedulability conditions to be used as an 
admission control for RM scheduling on 
uniprocessor systems, and extended their results 
to be used as an admission control for the 
multiprocessor systems. While discussing the LL 
schedulability condition, we noted that the worst-
case scenario occurs when all the tasks start 
simultaneously and the relationship among the 
periods is such that the ratio between any task 
periods is less than two. Liu and Layland showed 
in [10] that under this scenario, the computation 
times used to derive the least upper bound are:  
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Ci = Ti + 1 − Ti  (i = 1, …, n − 1) and Cn = 2T1 − Tn  
 

If the total utilization 
 


n

i T

C

i

iU
1  is rewritten 

using these computation times, a new 
schedulability bound for RM can be derived. This 
bound is shown in Lemma 1 [30].  
 

Lemma 1. Given a task set   of n tasks ordered 
by increasing periods, and the restriction that the 
ratio between any task periods is less than 2   
is schedulable if 
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The T-Bound condition uses the ScaleTaskSet 
algorithm to transform the original task set into an 
equivalent task set where the ratio between the 
maximum and minimum periods is less than 2 (that 
is, r = Tmax / Tmin < 2). Using this transformed task 
set, the condition verifies its schedulability through 
Equation 14. As stated in Lemma 2 [30], if the 
transformed task set is feasibly scheduled under 
RM then the original task set is also feasible.  
 

Lemma 2. Let   be a given periodic task set, and 

let    be the transformed task set after applying 

the ScaleTaskSet algorithm to  . If    is 
schedulable on one processor under RM, then   
is also schedulable.  
 

ScaleTaskSet (In:  , Out:   ) 
 

Begin 
 

 Sort the task set in   by increasing period;for 
(i=1 to n-1) do 

 

           
 iT

nT

ii TT
log2

; 

           
 iT

nT

ii CC
log2

; 
 

    Sort the task set in    by increasing period; 

    return (  ); 
 
end        
 

Algorithm 1 ScaleTaskSet Algorithm. 

The ScaleTaskSet algorithm is defined in 
Algorithm 1 and the T-Bound condition is formally 
defined in Theorem 7 [30].  
 
Theorem 7 (T-Bound condition). Consider a 

periodic task set  , and let     be the transformed 
task set after executing the ScaleTaskSet 

algorithm to  . If Equation 14 holds for   , then 
the task set   can be feasibly scheduled on one 
processor under RM.  
 
It is important to note that the T-Bound condition 

uses the value of the periods 1T  ,…, nT 
, derived by 

the ScaleTaskSet algorithm. However, in order to 
provide an admission control criterion that does not 
depend on the periods of all the tasks, Lauzac et 
al. [30,19] derived the R-Bound schedulability 
condition, which uses the relationship between the 
largest and the smallest period values in the task 
set. The R-Bound schedulability condition is 
defined in Theorem 8 [19].  
 
Theorem 8 (R-Bound condition). Consider a 

periodic task set  , and let    be the 
transformed task set after applying the 
ScaleTaskSet algorithm to  . If,  
 

      111 2

1
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r

n

i
T
C n

i

i rn
                    (15) 

 

Where 1T
Tr n




, the task set   can be feasibly 
scheduled on one processor under RM.  
 
Because the T-Bound condition uses more 
information about the task set, it outperforms the 
R-Bound condition. However, Lauzac et al. 
showed in [19] that when r is close to one, the 
performance of the R-Bound condition is similar to 
the performance of the T-Bound condition. The 
complexity of the T-Bound and R-Bound conditions 
is O(n log n).  
 
Example 6. Before applying the T-Bound condition 
to the task set described in Table 1, we first need 
to generate a transformed task set using the 
ScaleTaskSet algorithm. Then, according to 
Theorem 7, if the transformed task set is 
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schedulable under RM, the former task set is also 
schedulable. Table 5 shows the values of the 
periods and the execution times of the transformed 
tasks. It can be noted that under the T-Bound 

condition tasks 1 , 2 , 3  and 4  are proved to 
be schedulable, whereas the T-Bound condition 

fails to identify task 5  as schedulable. 
 

i  iT
 iC

 iT 
 iC

 iU 
 

T-Bound 

3  
3 1 32 4 0.1250 - 

1  8 1 32 6 0.3125 1 

4  12 2 48 16 0.6458 0.8333 

2  16 3 48 8 0.8124 0.8333 

5  
48 6 48 6 0.9374 0.8333 

 
Table 5. T-Bound applied to the TS of Table 1. 

 
4.7 Harmonic chains (HC) schedulability condition 
 
Kuo and Mok [15] extended the results provided by 
Liu and Layland [10], by relating the achievable 
utilization factor to the number of harmonic chains 
found in a task set. A harmonic chain is a list of 
numbers (periods) wherein each number divides 
every number after it [20].  
 
Kuo and Mok [15] developed the harmonic chain 
(HC) condition, in which a periodic task set   will 
find a feasible schedule if its utilization factor is no 

larger than )12( 1
kk , where k is the size of the 

harmonic base of  .  
 
The harmonic chains found in the task set conform 
the harmonic base of a task set. The definition of 
harmonic base is described as follows:  
 
 
 
 

Definition 1 (Harmonic Base of τ). Let S be the set 
of periods (positive numbers) of a set of periodic 
tasks  . A subset H of S is said to be a harmonic 
base of the task set   if there is a partition, say Γ, 
of S into |H| subsets such that:  
 
1. Each member of H is the smallest element in 
exactly one member of the partition Γ, and  
 
2. If x and y are two elements in the same member 
of the partition Γ, then either x divides y or y 
divides x.  
 
Each subset in the partition Γ is called a harmonic 
chain [15].  
 
In order to explain the HC condition, we will use 
the following example:  
 
Let T be a task set where every task is defined as 

i  = (Ti, Ci). We have T = { 1  = (3, 1), 2  = (5, 1), 

3  = (15, 2), 4  = (20, 3), 5  = (60, 8) }. Let P be 
the set of periods from T, such that P = {3, 5, 15, 
20, 60}. The subset H = {3,5} is a harmonic base of 
P because there exists a partition Γ in |H| subsets, 
namely Γ = {{3,15}, {5,20,60}}, such that:  
 
(1) each member of H is the smallest single 
element of the partition Γ, and  
 
(2) for each par of elements within the partition Γ, 
one element divides the other.  
 
The harmonic chains condition is formally defined 
in Theorem 9 [15].  
 

Theorem 9 (HC condition). Let   be a set of 
periodic tasks and let k be the size of the harmonic 
base of  . If the utilization factor is no larger than 

)12( 1
kk , then   is schedulable by a preemptive 

fixed priority scheduler.  
 
A polynomial time algorithm can solve the problem 
of computing the harmonic base of a periodic task 
set. From Theorem 9, it can be observed that
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8 3 

when the size of the harmonic base is small, the 
utilization bound is large. For instance, for k=1, 
though the utilization may be as high as 100%, the 
task set is guaranteed to be schedulable. Note that 
the HC condition is similar to the LL condition 
when the periods of all tasks are relative primes1 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The harmonic chains in the TS of Table 1. 
 
Example 7. The task set described in Table 1 has 
two harmonic chains: Γ = {{8,  16},  {3,  12,  48}}, 
as shown in Figure 5. After applying the HC 
condition, we concluded that this condition 

identifies tasks 1 , 2 , 3 , and 4  as 
schedulable, since their total utilization is not 

higher than )12(2 2
1
 . Task 5  violates the HC 

condition because 
)12(2 2

15

1
 i iu

, therefore, 
it is not identified as schedulable.  
 
4.8 Root condition 
 
Kuo et al. [16] developed the Root condition and 
demonstrated that a task set can be feasibly 
scheduled as long as the utilization of the task set 

is no larger than )12( 1
RR , where R is the 

number of roots in the task set. The concept of root 
is defined next [16].  
 

Definition 2. Let 
},,{ 21 n 

 be a periodic 

task set. Task i  is a root in   if there does not exist 
any task period in  , which is larger than and 

divisible by the period of the task i .  
 

                                                      
1 Two numbers a and b are relative primes if they are non-
zeros and MCD(a,b)=1 

In order to explain the concept of root, we will use 
the example described in the previous subsection:  
 
Let τ be a task set where every task is defined as 

i  = (Ti, Ci). We have   = { 1  = (3, 1), 2  = (5, 

1), 3  = (15, 2), 4  = (20, 3), 5  = (60, 8) }. Let P 
be the set of periods from  , such that, P = {3, 5, 
15, 20, 60}. The harmonic base of P is Γ = {{3, 15}, 
{5, 20, 60}}. From the harmonic base of P we can 
observe that 60 is a value such that there does not 
exist any task period in P, which is larger than and 
divisible by 60.  
 
The Root condition is defined in Theorem 10 [16]. 
  
Theorem 10 (Root condition). Suppose that the 

task set 
},,,{ 121 i 

 is schedulable. Let R be 
the number of roots in the task set 

},,,,{ 121 ii   
. If the total utilization 

factor of   is no larger than R (21/R − 1), then   
is schedulable.  
 
Because the number of roots could be much less 
than the number of tasks, and the size of its 
harmonic base, it is expected that the Root 
condition improves the acceptance ratio of the LL 
and HC conditions. This can be observed in 
Corollaries 2, 3 and 4 [16].  
 
Corollary 2. Let   be a set of periodic tasks. If   
is guaranteed to be scheduled according to the LL 
condition, then   is guaranteed to be scheduled 
according to the Root condition.  
   
Corollary 3. Let   be a set of periodic tasks. If   
is guaranteed to be scheduled according to the HC 
condition, then   is guaranteed to be scheduled 
according to the Root condition.  
   
Corollary 4. There exists a task set that is 
guaranteed to be scheduled according to Root 
condition, but not according to the LL and HC 
conditions.  
 
An important feature of the root condition is that it 
was developed to be used incrementally for online 
admission control.  
 

48 
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Example 8. In this example, we will show the 
performance of the root condition. As described 
in the previous example, the task set from Table 
1 has two harmonic chains: Γ = {{8,16}, 
{3,12,48}}. However, it has only one root, R=48, 
as shown in Figure 5. Therefore, after applying 

the root condition, we observe that tasks 1 , 2 , 

3 , 4 , and 5  are identified as schedulable, 
since their total utilization is no larger than 1 ( 1 
(21/1 − 1) ).  
 
4.9 Sr and DCT schedulability conditions 
 
Han and Tyan [17] introduced two polynomial-
time schedulability tests that transform the task 
periods into a special pattern where all the 
periods belong to a single harmonic chain. 
According to Theorem 9, when k=1 (which 
means there is only one harmonic chain in  ), 

the transformed task set    is schedulable if its 
total utilization is less than or equal to 1. Han 

and Tyan proved that if    is schedulable under 
RM, then the original task set   is also 
schedulable under RM. The transformed task set 
   must satisfy the Condition 1 [17]. 
 

Condition 1. ii  
, for all i = 1, 2,…, n, and i   

evenly divides 1i , denoted as ji   |
, (thus, 

1 ii 
) for all i = 1, 2,…, n. 

 

The schedulability of the transformed task set    is 
defined in Theorem 11 [17].  
 
Theorem 11. Given a task set  , if there exists 
another task set that satisfies condition 1 and 

  
n

i T
C

i

iU
1

1 , then   is schedulable by RM.  
 
In order to apply the results provided by Theorem 
11, the problem is, given a task set  , how to find 
(in polynomial time) another task set that satisfies 

condition 1 and whose utilization  U
 is as small 

as possible. Han and Tyan proposed, in [12], the 

Sr and DCT algorithms to find such   .  

Input: 
}1|),({ niTC iii  

, where   is a 

periodic task set and 
jiTT ji  ,

; 
 

Output: Task set    and 
)(r ;  

 
begin 

 for (i = 1 to n) do 






)
1

log(
2 T

iT
iT

il
; 

 

 sort 
),,,( 21 nlll 

 into nondecreasing order 

      and remove duplicates, let 
),,( 21 ukkk 

 be 
the 
      resulting sequence;  
 

 for (i=1 to n) do put i  into subset il


;  
 

 for (j=1 to u) do 
 


jki i

i

j T

C
kU


 )(

;  
 

 compute 
)()( 1Tku  

;  
 
 for (j=u-1 down-to 1) do  

          
)()()( 1

1

jj

j

kjk

k

j Ukk   


; 

    find 
*r such that 

)(min)( ),,,{
*

21
rr

ukkkr     ; 
 

 for (i=1 to n) do 




 







 *log* 2 r

iT

rTi ;  
 

 return 
)( *r  and   ;  

 
End 
 

Algorithm 2 Sr Algorithm. 
 
4.9.1 Sr Algorithm  
 
The first algorithm proposed is called the Sr 
Algorithm (Specialization operation). In this 

algorithm, each period iT
 of the task set   is 
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transformed into another period 


















r

iT

rTi

log

2 , 
where r is a real number chosen from the range 

],( 12
1 TT

. Because ii TT 
 for all i and ji TT |

 for all 
i < j, the transformed period values belong to a 
single harmonic chain. Furthermore, because 

ii TT 
 for all i, we have that 

  


 
n

i T
Cn

i T
C

i

i

i

i UU
11  . To minimize the total 

utilization increase  UU    the value of r 
should be carefully chosen. The Sr algorithm, 
reproduced in Algorithm 2, finds the best value for 

r, and then derives the new periods iT 
, for all i, 

using the best r.  

The Sr algorithm first computes  )1/log(2 TiT
iT

il 
, for 

ni 1 , where 12
1 Tli

T  , naming k1 < k2 < … < 
ku, u ≤ n, the sorted sequence of li’s with duplicates 
removed. Because li = Ti, we know that ku = T1. 
The sequence {k1, k2, …, ku} is called the special 
base of  . The value of r that minimizes the total 

utilization increase  , denoted by 
*r , can always 

be found in the special base. The total utilization of 

the task set    with its periods 
},,,{ 21 nTTT  

 

specialized from 
},,,{ 21 nTTT 

 with respect to r, is 

called )(r , and 
)(min)( }{

**

12
1 rr

TrT  
 . 

The algorithm computes 
)( jk  for all kj in the 

special base of  , and then selects the one that 

results in the minimum value of 
)( jk , and uses 

that kj as the value of r in the specialization 
operation. This specialization operation provides 
the periods for the transformed task set that 
belongs to a single fundamental frequency. Then, 
the utilization of the transformed task set is 
computed and if it is less than or equal to 1, the 
task set is schedulable. The complexity of the Sr 
condition is O(n log n).  
 
Example 9. In this example, we will show the 
performance of the Sr schedulability condition. The 
first step in the Sr algorithm is to find the li values 
to obtain the special base of r. After computing the 
li values and removing duplicates, we have k1 = 2 

and k2 = 3. Next, we need to find the value of 
*r  

using 
)(min)( }{

**

12
1 rr

TrT  
  such that 

the total utilization increase is minimized. We 

observe that 
)( 1k = 1.25 and 

)( 2k  = 1.0417, 

and therefore the value of 
*r  to be used is 

*r  = 3. 
Once the r* value is found, we use it in the 
specialization operation to generate the 

transformed task set   , which is shown in Table 

6. It can be observed from Table 6 that tasks 1 , 

2 , 3 , and 4  are identified as schedulable, 
since their total utilization is no larger than 1. 

However, task 5  is not identified as schedulable 

by the Sr condition because 
15 U

.  
 

Input: 
}1|),({ niTC iii  

, where   is a 

periodic task set and 
jiTT ji  ,
; 

 

Output: Task set   ;  
 
Begin 
 
 min_f = -1; min_utilization= ; 
 
 for (f=1 to n) do { 

   ff TZ 
 

   for (i=f+1 to n) 
 11 
  i

i

Z
T

ii ZZ
; 

 

   for (i=f-1 down-to 1) do  
iT

iZ
iZ

iZ 1
1




;  

   utilization  

n

i Z
C

i

i

1 ; 
   if utilization < min_utilization then 
      min_utilization = utilization; 
      min_f = f; 
 

      for (i=1 to n) do ii ZT 
; 

 
   endif 
 
end  
 

Algorithm 3 DCT Algorithm. 
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4.9.2 DCT algorithm  
 
The second algorithm proposed by Han and Tyan 
in [17] is called the DCT algorithm. The idea behind 
the DCT algorithm is the following. For each f, 1 ≤ f 

≤ n, ff TT  , and recursively, iT , for each i > f, is 

transformed to the largest integral multiple of 1iT   

that is less than or equal to Ti. That is, 
 

 11 
i

i

T

T
ii TT    for i=f+1, f+2,…,n                (16) 

  

Similarly, iT , for i < f, is recursively transformed to 

the largest divisor of 1iT   that is less than or equal 

to iT . That is,  

 








 







i

i

i
i

T

T

T
T

1

1      for i = f -1,  f - 2,…, n                  (17) 

 
The value of f that results in the minimum utilization 

increase will be the final index of iT  whose 

transformed value of iT   will be fixed at iT . The 

DCT algorithm is described in Algorithm 3. The 
complexity of the DCT condition is O(n2).  
 

i  iT  iC  iT   iC  iu  iU   

3  3 1 3 1 0.3333 0.3333 

1  8 1 6 1 0.1666 0.5000 

4  12 2 12 2 0.1666 0.6667 

2  16 3 12 3 0.2500 0.9167 

5  48 6 48 6 0.1250 1.0417 

 
Table 6. Sr and DCT Applied to the TS of Table 1. 

 
 

Example 10. In this example, we will show the 
performance of the DCT schedulability condition. 
After applying the DCT algorithm to the task set 
shown in Table 1, we found that when f=3, a 
minimum utilization increase = 1.0417 is obtained, 
which corresponds to the transformed task set    
shown in Table 6. Using Theorem 11 to verify the 

feasibility of this task set, we conclude that tasks 1 , 

2 , 3 , and 4  are proved to be schedulable, 

because their total utilization is no larger than 1. 

However, task 5  is not identified as schedulable by 

the DCT condition given that 15 U . It can be 

observed that for the task set described in Table 1, 
the Sr and DCT conditions produce identical results.  
 
Han and Tyan showed in [17] that the DCT 
condition provides a better performance than the Sr 
condition. Han extended the DCT and Sr conditions 
to be used in the multiframe task model in [31]. 
 
4.10 Chen, Mok, and Kuo Algorithms 
 
Chen, Mok, and Kuo [20] developed three 
polynomial-time algorithms with the aim to improve 
the performance of the LL and HC conditions.  
 
On Algorithm 1 (reproduced in Algorithm 4), a task 
set   is transformed into another task set in which 
the ratio of any Ti and Tj (for all i ≠ j) is no larger than 
two. A new utilization bound U is calculated for the 
transformed task set, using Theorem 12 [20]. The 
task set   can be feasibly scheduled under RM if 
its total utilization is less than or equal to U. The 
complexity of the Algorithm 1 condition is O(n2).  
 

Theorem 12. Let },,,{ 21 n  be a set of 

periodic task. Let T


 be the array of the periods of 

the task set. If 121 2TTTT n  , then the 

utilization bound U for the task set is obtained when,  
 

niTTC iii   1,1                 (18) 

 

nn TTC  12                       (19) 
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n

n

i

ii

T
TT

n

i
T

TTU 




   11 2
1

1

               (20) 

 
Example 11. In this example, we will show the 
performance of the Algorithm 1 condition. From the 
task set described in Table 1, we compute the 
periods of the transformed task sets and their 

respective total utilization. Therefore, 1   = [6, 8] 

and 1U   = 0.8333; 2   = [8,12,12] and 2U   = 0.8333; 

3   = [12,15,16,16] and 3U   = 0.8167; and 4   = 

[48,48,48,48,48] and 4U   = 1. Because the 

minimum of these utilization values is used as the 
schedulability bound, we have U   = 0.8167; 

therefore, tasks 1 , 2 , 3 , and 4  can be 

schedulable. The Algorithm 1 condition fails to 

identify task 5  as schedulable because UU 5 .  

 
Input: TaskPeriod[n] in nondecreasing order; 
 
Output: Utilization bound U;  
 
var NewPeriod: array[1…n] of integer;  
 
begin 
 
 U = 1; 
 for (i=2 to n) do 
 begin 
   for (j=1 to i) do 
 

      NewPeriod[j] = TaskPeriod[j] *  ][
][
jTaskPeriod
iTaskPeriod

; 

 

               



 
1

1 ][
][]1[' i

j jNewPeriod
jNewPeriodjNewPeriodU  

 

                        ][
][]1[2

iNewPeriod
iNewPeriodNewPeriod 

; 

 

   if 'UU   then 'UU  ; 
 
  end 
 

 return (U );  
 
end  
 

Algorithm 4 Algorithm 1 of Chen, Mok, and Kuo. 
 

The second algorithm, proposed by Chen, Mok, 
and Kuo [20], is named Algorithm 2, and is not 
included in our comparison. This algorithm 
introduce a strategy to compute, with higher 
efficiency, the size of the harmonic base from a 
set of tasks, which is better than the bound 
obtained using the HC condition. The complexity 
of the Algorithm 2 condition is O(n2). The 
Algorithm 2 condition is based on Lemma 3 and 
Lemma 4 [20].  
 
Chen et al.  proved in [20] that there is a smallest 

m, 1 ≤ m ≤ n, and an array ],,,[ 21 m
m TTTT 


  

with total utilization U  , reduced from T


 (the array 

of periods of the task set), such that UU  .  

Lemma 3. Let mUU  . If iT  divides 

mjiTj 1, , then U of T


 equals of U of 

],,,,,,[ 1121 nii TTTTTT 


 .  

 
The definition of Lemma 4 is given next.  
 

Lemma 4. Let mUU  . Consider jT  and kT  in 

kkkjjjm
m rTtrTttT ,


. If kkjj TtTt   and 

jjkk ee  , then U is equal to the minimum 

utilization factor of all extreme task sets 

],,,,,,[ 1121 nkki TTTTTT 


 .  

 
The Algorithm 3 condition is an improvement on 
the Algorithm 2 condition. In this condition, 

reducedT


 is a reduced array from T


 where some 

periods are deleted according to Lemma 3. 

Then, all the extreme task sets of reducedT


 are 

generated. The utilization bound provided by the 
Algorithm 3 condition is equal to the minimum 
utilization factor of all the extreme task sets of 

reducedT


. The Algorithm 3 condition is described in 

Algorithm 5. The complexity of the Algorithm 3 
condition is O(n3).  
 
Input: TaskPeriod[n] in nondecreasing order; 
 

Output: Utilization bound U ;  
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var TaskPeriod1: array[1…n] of integer;  
 
    [reduced task pattern]  
 
  TaskPeriod2: array[1…n] of integer;  
    [further reduced task pattern]  
 
Begin 
 

 1U ; 
 
 for (i=1 to n) do  
 
   TaskPeriod1 = reduced task pattern  
 
     of TaskPeriod, in nondecreasing order;  
 
   TaskPeriod2 = task pattern from TaskPeriod1  

     with   TT T

Ti   for each element T,  

     in nondecreasing order;  
 

     U   = utilization factor calculated  
     from TaskPeriod2 using  
 
     Theorem 12;  
 

   if UU   then UU  ;  
 
 end for 
 

 return (U ); 
 
end  
 

Algorithm 5. Algorithm 3 of Chen, Mok, and Kuo. 
 

Theorem-13.-Let- ],,[ ,21 nTTTT 

 . 

niUU i

n

i



1,min

1
, where iU   is the minimum 

utilization factor of all extreme task sets of the 

reduced array ],,[ ,21 iTTTT 

 . 

 
Example 12. In this example, we will show the 
performance of the Algorithm 3 condition. From 

the task set described in Table 1, we have T


= [3, 

8, 12, 16, 48]. The reduced task set is reducedT


 = 

[3, 8]. Transforming the reduced task set into a 
further reduced task sets by using the Algorithm 3 
and calculating its utilization using Theorem 12, 

we obtain the minimum utilization factor of the 
extreme task set as U = 0.8333, which means 

that the task set comprised of tasks 1 , 2 , 3 , 

and 4  is identified as schedulable. However, if 

task 5  is included, the task set is not 

schedulable because UU 5 .  

 
4.11 CRMB schedulability condition  
 
Lu et al. introduced the Conditional RM Bound 
(CRMB) schedulability condition in [18]. This 
condition extends the results provided by Lauzac 
et al. in [19] by using the relative period values in 
the task set.  
 
Lauzac et al. showed in [19] that the 
schedulability bound used by the R-Bound 
condition is ln r + 2/r – 1 when the number of 
tasks approaches to infinity. If z1 is the smallest 
period ratio in the task set and is defined as z1= 
T1/Tn = 1/r, the schedulability bound can be 
rewritten as 2 z1 – ln z1- 1.  
 
Using the same worst-case scenario identified by 
Liu and Layland [10], where Ti < 2T1, and defining 
z2 as the largest period ratio in the task set (that is, 
z2 = Tn − 1/Tn), Lu et al. [18] improved the 
schedulability bound provided by Lauzac et al. to 2 
z1 + 1/z2 + (ln z2 − ln z1) – 2.  
 
In order to derive a schedulability bound for the 
case when some period values are less than or 
equal to Tn ⁄ 2, Lu et al. defined the virtual period of 
a task [18].  
 

Definition 3 (Virtual Period). A virtual period of i , 

denoted by iv , is the ready time of the critical job of 

i . That is,   iT
T

i Tv
i

n  

where a critical job is defined as 
 
Definition 4 (Critical Jobs). The critical jobs are 
defined specifically at time Tn, the largest period 
in a task set. At Tn, the current jobs of all tasks, 
excluding J1, n, are called the critical jobs of the 

system. Note that every task except n  has a 

critical job, and that the critical jobs are identified 
at time Tn.  
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The smallest and the largest values among all 
virtual periods, z1 and z2, respectively, must be 
redefined in order to be used for the general case. 
These values are defined as follows:  
 












n

i

ni T

v
z

111 min                  (21) 

 

 











n

i

ni T

v
z

112 max                  (22) 

 
The values of z1 and z2 are then used to derive the 
schedulability bound for the general case. The 
CRMB schedulability condition is formally defined in 
Theorem 14 [18] .  
 
Theorem 14. (CRMB condition) Let   be a task 

set with n periodic tasks. Suppose  
n

i
T

v

ni
z

111 min





 
and  

n

i
T

v

ni
z

112 max


 . Then   is RM schedulable if 

U ≤  CB(z1,z2) = 2 z1 + 1/z2 + (ln z2 − ln z1) − 2.  
 
The CRMB schedulability condition achieves a 
higher schedulability bound if the difference 
between z1 and z2 is small. For instance, when the 
period values belong to a single harmonic chain, z1 
= z2 = 1, the CRMB bound is 1. In [18], Lu et al. 
introduced a system design methodology to explore 
and adjust task periods using the CRMB 
schedulability condition, in order to achieve a 
higher utilization bound.  
 
Example 13. In this example, we will show the 
performance of the CRMB schedulability condition 
using the task set of Table 1. First, we need to 
obtain the virtual period values of the task set 
described in Table 1. In this case, all tasks have 
virtual periods equal to their real periods. Next, we 
find the z1 and z2 values, where z1 = 1 and z2 = 1. 
Using Theorem 14, we obtain that CB(z1,z2) = 1. 
Therefore, the task set τ described in Table 1 can 
be feasibly scheduled under RM according to the 
CRMB schedulability condition, because U = 
0.9375 ≤ CB(z1, z2) = 1.  
 
Using z1 and z2 values, Lu et al. derived, in [26], an 
exact test for RM on one processor. The complexity 
of the CRMB schedulability condition is O(n).  

4.12 LP schedulability conditions 
 
Lee et al. [1] introduced two linear programming 
formulations for calculating the utilization bounds 
for a given set of period options (T1, T2, …, Tk), 
where k is the number of period options (1 ≤ k ≤ n) 
in the set, the periods of the tasks are (T1, T2, …, 
Tn), and Ti < Tj for all i<j.  
 
These schedulability conditions have a high 
computational complexity, and therefore, are not 
practical in online admission control. However, 
according to Lee et al. [1], these schedulability 
conditions are suitable for use in many practical 
real-time applications, in which the finite set of 
frequencies (periods) corresponds to the 
predetermined QoS options that the applications 
can choose, as in the audio and control 
applications. Thus, the utilization bound can be 
calculated off-line using the finite set of periods, 
and then a QoS manager can use this bound 
online to determine the schedulability of the 
dynamically arriving task.  
 
The first of the schedulability conditions, introduced 
in [2], is called exact linear programming 
formulation (LpExact condition). The second one, 
called approximated linear programming 
formulation (LpApprox), proposes a simpler 
formulation and is almost as accurate as the exact 
linear programming formulation. The experimental 
evaluation conducted in [1] showed that the 
LpExact condition outperforms the LpApprox 
condition. The complexity of the LP schedulability 
conditions is exponential [32].  
 

4.12.1 Exact linear programming formulation 
(LpExact)  
 
In order to calculate the tight bound U*bound, the tight 
level-i bounds Ui

*bound (1 ≤ i ≤ k) need to be 
calculated first. U*bound provides the system-level 
bound, whereas the level-i bound Ui

*bound provides 

the schedulability bound of only the level-i task i  

that uses the period Ti. Ui
*bound is called tight level-i 

bound, that is formally defined in Theorem 15 [1].  
 
Theorem 15. The minimum utilization 

 


i

j T

C

j

jU
1

*  among those of all level-i barely 

schedulable task sets is the tight level-i bound 
Ui

*bound .  
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To calculate the level-i bound, all possible 
combinations of the execution times that make the 
task set barely schedulable are considered. A task 
set is barely schedulable if it is schedulable with the 
given execution time values, but a slight increment 
in any of its execution times makes the task set 
unschedulable. If a task set is level-i barely 

schedulable, the level-i task i  is schedulable, and 

the processor is fully utilized by the level-i and the 
higher priority tasks during the interval [0, Ti]. It is 
possible to formulate a linear programming problem 
using a finite number of constraints. These 
constraints check the processor time demand only 
at the arrival times of the task instances (since the 
demand of the processor time changes only at 
those times) to determine the execution time values 
that make the level-i task set barely schedulable 
and to obtain its schedulability bound. The 
optimization problem to calculate the level-i bound 
Ui

*bound is formulated in Theorem 16 [1].  
 
Theorem 16. The tight level-i bound Ui

*bound is the 
solution for the following linear programming 
problem, where Tj,  1 ≤ j ≤ i are fixed coefficients 
and Cj,  1 ≤ j ≤ i are free variables,  
 





i

j
T

Cbound
i

j

jMinimizeU
1

*                 (23) 

 
Subject to  
 

i

i

j
ij

j

i TCC
T

T


















1

1
                  (24) 

 

MatCC
T

t
aij

i

j j

a 
















1,
1

1
              (25) 

 
Where at ,  1 ≤ a ≤ M are the series of all the arrival 

instants of the higher priority tasks in [0,Ti].  
Theorem 16 assures only the schedulability of the 

level-i task i . The tight system-level bound U*bound 

is given by the minimum of the level-i bounds, as 
stated in Theorem 17 [1].  
 
Theorem 17 (LpExact condition). The minimum of 
the tight level-i (1 ≤ i ≤ k) bounds, that 

is, bound
i

k
i U *

1min  , is the tight (largest sufficient) 

system-level U*bound.  
 
Example 14. In this example, we will show the 
performance of the LpExact schedulability condition 
using the task set of Table 1. To use these 
conditions, we first sort the tasks by a 
nondecreasing order of their period values. To 
illustrate the LpExact condition, Figure 6 shows the 
linear programming problem formulation for U3

*bound. 
Using Theorem 16 we obtain all level-i bounds, that 
is, U1

*bound= 1, U2
*bound= 0.9167, U3

*bound= 0.875, 
U4

*bound= 0.875, and U5
*bound= 1. According to 

Theorem 17, the system-level bound U*bound is 
equal to 0.875. Because the total utilization of   is 
greater than U*bound, the LpExact condition fails to 
identify the task set   as schedulable under RM.  
 

 
Minimize 
 U3

*bound = C1/3 + C2/8 + C3/12; 
Subject to 
  4 C1 + 2 C2 + 1 C3 = 12;     (1) 
  1 C1 + 1 C2 + 1 C3 >= 3;  (2)  
  2 C1 + 1 C2 + 1 C3 >= 6;  (3)  
  3 C1 + 2 C2 + 1 C3 >= 9;  (4)  
  3 C1 + 1 C2 + 1 C3 >= 8;  (5)  

 
 

Figure 6. LP Formulation Problem for U3
*bound. 

 
4.12.2 Approximate Linear Programming 
Formulation (LpApprox)  
 
The main drawback of the exact linear 
programming formulation is its complexity. With a 
large number of period options, there can be a very 
large number of arrival instants resulting in a huge 
number of constraints.  
 
In the LpExact condition, most of the constraints 
are used to check the processor time demand at 
all arrival instants to avoid the potential idle 
times. However, the idle times tend to occur late 
in the interval [0,Ti] when the processor is 
heavily loaded. This means that checking only at 
the last arrival of each task before t=Ti can avoid 
most of the potential idle times. The LpApprox 
condition just checks those last arrival times, 
resulting in a simpler linear programming 
formulation. This approximated formulation has 
only one constraint at each level and thus, the 
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total number of constraints used to calculate the 
level-i bound Ui

bound is i, as can be observed in 
Theorem 18 [1].  
 
Theorem 18. The solution for the following linear 
programming problem, Ui

bound, is a sufficient level-i 
bound.  
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Where   11,  iaTaT
T

a

i  is the last arrival 

instant of task a  before Ti.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As in the tight system-level, a sufficient system-
level bound can be found by taking the minimum of 
the level-i bounds, as expressed in Theorem 19 [1]. 
 
Theorem 19 (LpApprox condition). The minimum of 
the sufficient level-i (1 ≤ i ≤ k) bounds, that is, 

bound
i

k
ii Umin , is the sufficient system-level boundU .  

 
Example 15. In this example, we will show the 
performance of the LpApprox schedulability 
condition using the task set shown in Table 1. 
Figure 6 shows the linear programming problem 
formulation for U3

bound. However, unlike the exact 
formulation that uses all the constraints shown in 
Figure 6, the LpApprox condition only uses the 
constraints 1, 4, and 5. Using Theorem 16, we 
obtain all level-i bounds, that is, U1

bound= 1, U2
bound= 

0.9167, U3
bound= 0.875, U4

bound= 0.875, and U5
bound= 

1. According to Theorem 18, the system-level 
bound Ubound is equal to 0.875. because the total 
utilization of   is greater than Ubound, the LpApprox 
condition fails to identify the task set   as 
schedulable under RM.  
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LpExact  Linear programming exponential 

LpApprox  Linear programming exponential 

 
Table 7. Comparison of the RM inexact schedulability conditions. 
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4.13 Characteristics of the schedulability conditions 
 
A summary of the inexact schedulability conditions 
for RM on one processor, discussed in this section, is 
shown in Table 7. It can be noted that the LP and 
Algorithm 3 schedulability conditions have the highest 
complexity, whereas the LL, UO, and CRMB 
schedulability conditions have the lowest complexity.  
 
5. Evaluation results 
 
To evaluate the performance of the inexact 
schedulability conditions discussed in this paper, 
we tested every condition using a sample s of task 
sets that are schedulable under rate monotonic. 
We define the acceptance ratio ρ of a 
schedulability condition SC for a sample s, as the 
ratio of the number of tasks identified as 
schedulable by the schedulability condition and the 
total number of task sets:  
 

100)(  setstaskofnumbertotal
acceptedsetstaskofnumber

s SC                 (29) 

 
Because all task sets in s are schedulable under 
RM, an exact condition will have an acceptance 
ratio equal to 100. If ρs(SC) approaches 100, then 
the performance of SC approaches the 
performance of the exact test for s.  
 
With the purpose of evaluating the performance of 
the schedulability conditions under different 
characteristics of the task sets, we conducted our 
experiments using four different schemes of 
generation of the task sets in s.  
 
The solution of the linear programming problems 
formulated by the LpExact condition was obtained 
using the lp_solve package [33].  
 
5.1 Performance as a function of the number of tasks  
 
The goal of this experiment was to evaluate the 
performance of the schedulability conditions as a 
function of the number of tasks. We generated 
eleven samples of task sets denoted as N2,  N3, …,  
N12. Each sample Nm was conformed by 1,000 sets 
of m tasks. The total utilization of each task set and 
the periods of the tasks were uniformly distributed 
in the range [0.7, 0.95] and [100, 500], respectively. 
The maximum utilization of each task, denoted by 
α, followed a uniform distribution in the range [0.01, 

0.3]. The execution times of the tasks were 
generated with values 1  ≤  Ci  ≤  αTi. Figures 7, 8, 
and 9 show the acceptance ratios obtained as a 
function of the number of tasks for these conditions 
in their respective groups.  
 

 
 

Figure 7. Acceptance ratio of the non-period-aware 
schedulability conditions. 

 
Figure 7 shows the acceptance ratios obtained for 
the closed-form non-period-aware schedulability 
conditions. For these conditions, the performance 
decreases rapidly as the number of tasks 
increases. For each number of tasks, the 
acceptance ratios always satisfy the relation 
ρN(UO) > ρN(IP) > ρN(LL). This result is a 
consequence of the amount of timing information of 
the tasks used by each of the schedulability 
conditions. It is important to note that the 
improvement achieved by these conditions with 
respect to the LL condition is marginal (that is, 
smaller than 8%).  
 

 
 

Figure 8. Acceptance ratio of the closed-form 
schedulability conditions. 
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Figure 8 shows the acceptance ratios obtained 
for the closed-form period-aware schedulability 
conditions where we also included the UO and 
LL conditions.  
 
From this experiment, it can be observed that the 
PO and the CRMB are the conditions with better 
performance for small number of tasks (m<4). 
However, for m>4, only the PO and the UO 
conditions showed some performance 
improvement over the LL condition (less than 4%). 
These poor results can be explained by the fact 
that this experiment was designed without 
considering any relationship among the periods of 
the tasks, and since these conditions include the 
period in their analysis, it is clear that they cannot 
take advantage of this extra information.  
 
Figure 9 shows the acceptance ratios obtained for 
the non-closed-form period-aware schedulability 
conditions, where we also included the PO 
condition and the LL condition. Due to the 
differences in the approaches used to derive their 
schedulability bounds and their resulting 
behaviors, these schedulability conditions can be 
differentiated as follows  
 

 
 

Figure 9. Acceptance ratio of the non-closed-form 
schedulability conditions. 

 
 Schedulability condition based on linear 

programming. The LpExact schedulability 
condition has the second best acceptance 
ratio for very small task sets (for m < 4, only 
lower than that of the DCT condition). For the 
larger task sets (that is, m ≥ 4), its 
performance decreases faster than the 
performance of the DCT and the Algorithm 1 

conditions, showing the third best acceptance 
ratio among all non-closed-form period-aware 
conditions. However, it is important to recall 
that the computational complexity of this 
condition is exponential.  
 

 Schedulability conditions based on the 
transformation of the original task set (T-
Bound, Algorithm 1, Algorithm 3 and DCT). It 
can be noted from Figure 9 that for every 
number of tasks, the acceptance ratio of 
these schedulability conditions was 
substantially better than the acceptance ratio 
of the closed-form schedulability conditions. 
The DCT condition showed the best 
performance among all non-closed-form 
period-aware conditions for m<6, with a clear 
improvement over the performance of the 
Algorithm 1 condition. However, for large 
number of tasks, their performance tended to 
be similar. On the other hand, the 
performance of the Algorithm 1 was always 
better than that of the Algorithm 3 and the T-
Bound conditions. The Algorithm 3 and the 
T-Bound conditions always obtained very 
similar performances, at least 6% better than 
the LL condition for large number of tasks.  

 
5.2 Performance as a function of the total 
utilization of task sets  
 
The goal of this experiment was to evaluate the 
performance of the schedulability conditions as a 
function of the total utilization of the task sets. We 
generated several samples of task sets denoted as 
Uυ, where the total utilization υ of each sample was 
set to 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95. The 
maximum utilization of each task, denoted by α, 
followed a uniform distribution in the range [0.01, 
0.3]. Each sample Uυ was conformed by 1,000 task 
sets. The periods of the tasks were uniformly 
distributed in the range [100, 500] and the 
execution times of the tasks were generated with 
values 1  ≤  Ci  ≤  αTi. The number of tasks was 
uniformly distributed in the range [2,9]. Figuress 
10, 11, and 12 show the acceptance ratios 
obtained as a function of the utilization of the task 
sets for the schedulability conditions.  
 
Figure 10 shows the acceptance ratios obtained for 
the closed-form non-period-aware schedulability 
conditions. We can observe that the acceptance 
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ratios of these conditions satisfy the relation ρU(UO) 
> ρU(IP) > ρU(LL). The performance of theUO is 
clearly better than the IP and the LL conditions in 
the range 0.7 < υ < 0.8.  
 

 
 

Figure 10. Acceptance ratio of the non-period-aware 
schedulability conditions. 

 
Figure 11 shows the acceptance ratios obtained 
for the closed-form period-aware schedulability 
conditions, where we also included the UO and the 
LL conditions. We can observe from Figure 11 that 
the PO condition showed the best performance 
among the closed-form period-aware conditions for 
υ < 0.8, improving upon the LL condition for all 
values of υ. For υ ≥ 0.75, the CRMB condition 
showed an acceptance ratio similar or better than 
the PO condition. However, the acceptance ratio of 
the CRMB condition was poorer than that of the LL 
condition for υ = 0.7. The HC and the Root 
conditions showed similar acceptance ratios as 
that of the LL condition for all the values of υ.  
 

 
 

Figure 11. Acceptance ratio of the closed-form 
schedulability conditions. 

Figure 12 shows the acceptance ratios obtained for 
the non-closed-form period-aware schedulability 
conditions, where we also included the PO and the 
LL conditions. We can observe from Figure 12 that all 
non-closed-form conditions showed a significant 
performance improvement with respect to the closed-
form conditions, and that the DCT condition yielded 
the best acceptance ratio among all the non-closed-
form period-aware conditions. When compared with 
the other conditions, the DCT condition showed an 
increasingly better performance when the utilization 
of the task sets increased.  
 
The Algorithm 1 and the LpExact conditions also 
showed a good performance, even improving on 
the DCT condition for υ ≤ 0.75. However, their 
performance decreased rapidly as the utilization of 
the task sets increased.  
 
The Algorithm 3 and the T-Bound conditions 
showed the worst performance among all the non-
closed-form conditions, with results close to the 
PO condition for υ ≥ 0.85.  
 

 
 

Figure 12. Acceptance ratio of the non-closed-form 
period-aware schedulability conditions. 

 
5.3 Performance as a function of the period ratio  
 
The goal of this experiment was to evaluate the 
performance of the schedulability conditions as a 
function of the period ratio. We define the period 
ratio as the ratio of the maximum and minimum 
period values in a task set. We generated several 
samples Rλ, where λ is a constant with values in the 
range [1, 8] used to derive the periods of the tasks. 
For each task set, we randomly generated an initial 
period value T1 in the range [100, 300]. After T1 
was generated, the periods of the remaining tasks 
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were generated in the range T1 ≤ Ti ≤ λT1. The total 
utilization of every sample and the maximum 
utilization α of each task followed a uniform 
distribution in the range [0.7, 0.95] and [0.01, 0.3], 
respectively. The execution times of the tasks were 
generated with values in the range 1  ≤  Ci  ≤  αTi. 
The number of tasks was uniformly distributed in 
the range [2,9]. Every sample Rλ was composed of 
1,000 task sets. Figures 13, 14, and 15, show the 
performance as a function of the period ratio for the 
schedulability conditions.  
 
Figure 13 shows the acceptance ratios obtained for 
the closed-form non-period-aware schedulability 
conditions. It can be noted that for all the values of 
λ, the acceptance ratios satisfy the relation ρR(UO) 
> ρR(IP) > ρR(LL). The UO condition showed the 
best acceptance ratio among these conditions, with 
a small performance improvement with respect to 
the IP and the LL conditions, whereas these two 
conditions (IP and LL) yielded similar acceptance 
ratios. It is important to note that all closed-form 
non-period-aware conditions showed a constant 
acceptance ratio for all the values of λ.  
 

 
 

Figure 13. Acceptance ratio of the non-period-aware 
schedulability conditions. 

 
Figure 14 shows the acceptance ratios obtained for 
the closed-form period-aware schedulability 
conditions, where we also included the UO and the 
LL conditions. We can observe that all the closed-
form period-aware schedulability conditions yielded 
an acceptance ratio of 100 for λ = 1. In addition, all 
of them decreased their performance sharply for 
the interval 1 < λ < 2, and for λ > 2, their 
performance was constant with the small variations.  

 
 

Figure 14. Acceptance ratio of the closed-form 
schedulability conditions. 

 
The PO condition was the best or second best of 
all the closed-form period-aware conditions for all 
values of λ. The CRMB condition showed the best 
performance among all the closed-form period-
aware conditions for λ ≤ 1.5. However, its 
performance was the worst of all the closed-form 
period-aware conditions for λ = 2, but improved for 
λ > 2, being among the best conditions for λ ≥ 4.5. 
Finally, the root and the HC conditions showed a 
performance similar to that of the LL condition for 
all values of λ.  
 

 
 

Figure 15. Acceptance ratio of the non-closed-form 
schedulability conditions. 

  
Figure 15 shows the acceptance ratios obtained 
for the non-closed-form schedulability conditions, 
where we also included the PO and LL conditions. 
From Figure 15, we can observe that all non-
closed-form conditions clearly outperformed the 
remaining conditions.  
 



 

Comprehensive Comparison of Schedulability Tests for Uniprocessor Rate‐Monotonic Scheduling, Arnoldo Díaz‐Ramírez et al. / 408‐436 

Journal of Applied Research and Technology 433

The DCT condition showed the best acceptance 
ratio among the non-closed-form schedulability 
conditions for all the values of λ. It should be noted 
that for λ < 1.5, the acceptance ratio of the DCT 
condition is almost equal to 100. On the other hand, 
forλ > 2, its acceptance ratio is almost constant.  
 
The Algorithm 1, the Algorithm 3, and the T-Bound 
conditions showed a fairly good performance for 
small λ values (λ ≤ 1.2). These three conditions 
showed identical acceptance ratios for λ < 2. This 
can be explained by the fact that they transform 
the original task set into another task set where all 
period values satisfy the relation Tmax ⁄ Tmin< 2. 
However, for λ > 2, ρR(Algorithm 1) > ρR(Algorithm 
3)  ≥  ρR(T-Bound), and for λ > 1.5, the Algorithm 1 
condition showed the second best acceptance 
ratio among all the conditions.  
 
The LpExact condition showed a good performance 
for the small values of λ (λ ≤ 1.2), whereas for λ > 
1.5, its acceptance ratio was the third best among 
all the schedulability conditions.  
 
It is important to note that the acceptance ratios of 
all the conditions remain stable for λ > 2.   
 
5.4 Performance as a function of tasks in the 
harmonic chain  

 
The objective of this experiment was to evaluate 
the performance of the schedulability conditions as 
a function of the percentage of tasks that are part 
of a harmonic chain. We generated nine samples 
of task sets HCk conformed by 1,000 task sets, 
where k is a value in the range [20, 100] that 
denotes the percentage of tasks that are part of 
the harmonic chain. Only one harmonic chain in 
every task set was generated. The utilization of 
every sample and the maximum utilization α of 
each task was uniformly distributed in the range 
[0.7, 0.95] and [0.01, 0.30], respectively. The 
execution times of the tasks were generated with 
values 1  ≤  Ci  ≤  αTi. The number of tasks was 
uniformly distributed in the range [5, 9].  
 
 
The period values of the tasks were generated as 
follows. The initial period T1 was obtained using a 
uniform distribution in the range [20, 100]. Once T1 
was derived, the period of each task was 
generated using Ti = Ti − 1*f, where f was randomly 

generated in the range [2, 3], until the defined 
percentage of tasks in the harmonic chain was 
reached. If this percentage was k<100%, the 
remaining period values were generated such that 
they did not belong to the harmonic chain. Figures 
16, 17, and 18 show the obtained acceptance 
ratios as a function of the percentage of tasks that 
are part of a harmonic chain.  
 
Figure 16 shows the acceptance ratios obtained for 
the closed-form non-period-aware schedulability 
conditions. We can observe that their acceptance 
ratios satisfy the relation ρHC(UO) > ρHC(IP) > ρHC(LL) 
for every value of k. The UO condition is slightly 
better than the IP and the LL conditions, whereas the 
acceptance ratio of the IP and the LL conditions are 
very close to each other. From these results, it is 
clear that none of these conditions benefit from 
including tasks that are part of a harmonic chain.  
 

 
 

Figure 16. Acceptance ratio of the non-period-aware 
schedulability conditions. 

 
Figure 17 shows the acceptance ratios obtained 
for the closed-form period-aware schedulability 
conditions, where we also included the UO and the 
LL conditions. We can observe that in most cases, 
their acceptance ratios satisfy the relation 
ρHC(CRMB) > ρHC(PO) > ρHC(Root) > ρHC(HC). It 
can be observed that the CRMB condition had an 
acceptance ratio significantly better than that of the 
remaining closed-form period-aware conditions, 
showing an excellent performance for k ≥ 60. As 
discussed previously, the acceptance ratio of the 
CRMB condition was equal to 100 when all the 
tasks were in a harmonic chain. The HC and the 
root conditions showed a very similar performance, 
only lower than that of the CRMB condition. The 
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PO condition showed a performance similar to the 
HC and the root conditions for values of k ≤ 50, but 
much lower than the HC and the root conditions for 
higher values of k.  

 
 

Figure 17. Acceptance ratio of the closed-form 
schedulability conditions. 

 
Figure 18 shows the acceptance ratios obtained for 
the non-closed-form period-aware schedulability 
conditions, where we also included the CRMB and 
the LL conditions. We can observe that the DCT 
condition showed the best performance among the 
non-closed-form period-aware conditions. 
Nevertheless, its performance was not as good as 
the performance of CRMB condition for k ≥ 50.  
 

 
 

Figure 18. Acceptance ratio of the non-closed-form 
schedulability conditions. 

 
The Algorithm 1, the Algorithm 3, and the LpExact 
conditions showed a similar performance for k ≥ 60. 
However, the Algorithm 3 and the LpExact 
conditions showed a lower acceptance ratio for 
values of k smaller than 60. The T-Bound condition 

showed the worst performance among these 
schedulability conditions. It is interesting to poin out 
that the DCT, Algorithm 1, Algorithm 3, LpExact, 
and CRMB conditions yielded an acceptance ratio 
equal or close to 100 for k=100. 
 
5.5 Comparison of performances of the 
schedulability conditions  
 
A comparison of the relative performance of the 
inexact schedulability conditions for RM on one 
processor is shown in Table 8. The aim of this 
comparison is to summarize the results of the 
experiments conducted in this section. Designers of 
real-time applications can use the comparison 
shown in Table 8 to determine which schedulability 
condition may be used in certain situations, taking 
into account the characteristics of the task set.  
 
It can be noted that the non-closed-form period-
aware conditions yield better performance than the 
closed-form conditions.  
 
6. Conclusions and future work 
 
Many real-time applications demand efficient and 
low-cost schedulability tests for online admission 
control. In this paper, we surveyed the best-known 
exact and inexact schedulability conditions for rate 
monotonic executing on one processor. Extensive 
simulation experiments were conducted to 
evaluate the performance and computational 
complexity of the inexact schedulability tests. In 
our simulation experiments, the schedulability tests 
were evaluated for different number of tasks, 
utilization factors, and different period ratios. 
Additional experiments were conducted 
considering task sets with harmonics chains.  
 
The comparative analysis done in this paper showed 
that for all the experiments conducted, the 
schedulability conditions using the non-closed-forms 
schedulability tests derive a better performance than 
those that use the closed-forms schedulability tests.  
 
Among all the non-closed-form schedulability 
conditions, we observed that, in general, the DCT 
condition showed the best performance. This 
performance can be explained by the fact that the 
DCT condition transforms the period set into 
another period set where all the tasks belong to a 
single harmonic chain.  
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We believe that the decision of choosing one 
schedulability test over another for a particular 
real-time application should not depend only on its 
performance; it should also be take into 
consideration the characteristics of the tasks and 
their computational complexity.  
 
As part of our future research, we plan to extend this 
study to include schedulability tests for aperiodic, 
resource-sharing tasks, and multiple processors. 
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Characteristics of task sets  Performance  

 Good Average Poor 

Small lumber of tasks (m ≤ 4) DCT PO, CRMB, T-Bound, Alg1, Alg3, 
LpExact 

LL, IP, UO, HC, Root 
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