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ABSTRACT 
IEEE 802.11e standard has been specified to support differentiated quality of service (QoS), one of the critical issues 
on the conventional IEEE 802.11 wireless local area networks (WLANs). Enhanced Distributed Channel Access 
(EDCA) is the fundamental and mandatory contention-based channel access method of IEEE 802.11e, and delivers 
traffic based on differentiated Access Categories (ACs). A general three dimensional Markov chain model of IEEE 
802.11e EDCA for performance analysis is proposed in this paper. The analytical model considers multiple stations 
with an arbitrary number of different ACs. It also differentiates the contention window (CW) sizes and the arbitration 
interframe spaces (AIFSs), and considers virtual collision mechanism. Based on the model, the saturation throughput 
of EDCA is derived, and the accuracy of the proposed model is validated via simulations. 
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1. Introduction 
 
IEEE 802.11 wireless local area networks (WLANs) 
[1] have been widely used for high speed wireless 
Internet access. However, there are many quality-
of-service (QoS) limitations in the original IEEE 
802.11 WLAN standard [1] because it was basically 
developed to serve best effort services. Its 
fundamental access mechanism for the medium 
access control (MAC) layer, Distributed 
Coordination Function (DCF) [1], cannot satisfy the 
increasing demand for real-time application support. 
Thus, a new standard amendment, IEEE 802.11e 
[2], has been specified to support differentiated QoS 
requirements over IEEE 802.11 WLANs. It provides 
differentiated service classes in the MAC layer so 
that it can deliver real-time multimedia traffic in 
addition to traditional data packets [2]. 
 
In IEEE 802.11e, a new MAC access mechansm 
named Hybrid Coordination Function (HCF) is 
defined [2]. The HCF consists of two channel 
access methods for the support of differentiated 
QoS. One of them is a contention-based channel 
access method named Enhanced Distributed 
Channel Access (EDCA), and the other one is 
HCF Controlled Channel Access (HCCA). EDCA is 
the fundamental and mandatory method of IEEE 

 
 
802.11e and delivers traffic based on differentiated 
Access Categories (ACs), while HCCA is optional 
and requires centralized polling and scheduling 
algorithms to allocate the resources. This paper 
covers the mandatory EDCA access method only. 
 
Some analytical models for IEEE 802.11e EDCA 
method have been proposed in the literature [3, 4, 
6-16]. The performance of the EDCA method has 
been explored by means of the analytical models, 
with the goal being to either predict analytically 
performance metrics or to understand the behavior 
of the EDCA method. 
 
Xiao [3, 4] enlarges Bianch’s Markovian model [5] to 
a model with differentiated contention window (CW) 
sizes, and analyzes the effects of the differentiated 
CW sizes on the throughput. However, the arbitration 
interframe space (AIFS) differentiation and the virtual 
collision mechanism specified in the IEEE 802.11e 
standard [2] are not included. Xiao assumes equal 
AIFS to all ACs and considers incorrectly that the 
collision probability controls the backoff activity, which 
is actually controlled by the channel busy probability. 
Zhang et al. [6] also assume that the collision 
probability is the same as the channel busy probability. 
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Robinson and Randhawa [7] and Hui and 
Devetsikiotis [8] propose a performance model to 
analyze the saturation throughput of EDCA by 
differentiating both the CW sizes and the AIFSs. 
However, the virtual collision mechanism is not 
included in [7], and the retry limit feature is 
neglected in [8]. Furthermore, it is assumed that 
each station has only one queue for one AC, and 
the possibility of backoff suspension is not clearly 
analyzed in their models [7, 8]. 
 
Kong et al. [9] analyze the throughput performnance 
of differentiated service traffic. They consider that 
during the AIFS period, if the channel is sensed 
busy by an AC, its remaining AIFS period is frozen 
and defrozen again when the channel is sensed idle 
again. However, the remaining AIFS period cannot 
be frozen and has to restart from the beginning. 
Furthermore, the contension zone specific 
transmission probability caused by using different 
AIFSs is not considered in [9]. 
 
Tantra et al. [10] present a three-dimensional 
Markov chain model, where each station has four 
queues for four different ACs. The model considers 
both the effect of using differentiated AIFSs and the 
effect of backoff suspension. However, they assume 
three higher priority ACs have the same AIFS value. 
Furthermore, they do not consider the possibility of 
backoff suspension for the higher priority ACs. 
 
Xiong and Mao [11] consider only two ACs for 
analytical simplicity, and limit their study to one AC 
per station. In [11], two Markov chain models are 
created for two ACs separately, and the 
transmission probability of a station in a generic 
time slot is assumed to be constant. The 
probability that a higher priority AC station sees an 
idle time slot depends which contention zone the 
time slot belongs to. Although they obtain two 
different contension zone specific probabilities, the 
Markov chain for the higher priority AC uses only 
the average probibility. The model proposed in this 
paper remove the above problem. 
 
Lee et al. [12] consider the contention zone specific 
probabilities that a station sees an idle time slot, 
which is ignored for higher priority AC in [11]. 
However, three higher priority ACs have the same 
AIFS value in [12]. In this paper, the model in [12] is 
extended to the model, where each station carries 
traffic from an arbitrary number of different ACs. 

Taher et al. [13] develop a discrete-time Markov 
chain model that takes into account most features, 
including the transmission opportunity limit (TXOP 
Limit), of the 802.11e EDCA method under both 
the non-saturation and the saturation traffic 
condition. Tursunova and Kim [14] propose a 
mathematical model for IEEE 802.11e EDCA 
under non-saturation condition. However, the 
collision probability and the channel busy 
probability are assumed to be constant in [13, 14]. 
Furthermore, virtual collision mechanism is not 
considered in [14], and it is assumed that each 
station is using only one AC. 
 
In this paper, we propose a more general three 
dimensional Markov chain model of IEEE 802.11e 
EDCA. The proposed analytic model considers 
multiple stations, each of which has an arbitrary 
number of different ACs. The model differentiates 
the CW sizes and the AIFS values of different ACs, 
and considers virtual collision mechanism. We 
assume that traffic load is saturated and only one 
frame is transmitted in each TXOP. Based on the 
proposed model, we evaluate the throughput 
performance of the EDCA with an arbitrary number 
of different ACs. The results of our analytical 
model are then verified using simulations.font. 
 
2. Enhanced distributed channel access 
 
The IEEE 802.11 DCF has no functionality to 
support QoS requirements. To overcome this 
drawback and enhance the conventional DCF, 
IEEE 802.11e EDCA has been specified. EDCA 
provides differentiated and distributed channel 
access for packets with different priorities in a 
station. EDCA handles application needs by 
mapping their traffic into four different ACs: 
AC_BK for background traffic, AC_BE for best 
effort traffic, AC_VI for video traffic, and AC_VO 
for voice. Individual AC is differentiated by a set 

of its own EDCA parameters, namely minCW , 

maxCW , and AIFS [15], where minCW  and maxCW  
are initial and maximum CW sizes of binary 
exponential backoff, respectively, and AIFS is the 
time interval a packet of a given AC has to wait 
after the channel becomes idle before it can start 
the backoff process or transmit [16]. EDCA 

assigns smaller values of minCW , maxCW , and 
AIFS to ACs with higher priorities. 
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After i , mi  , collisions, the backoff counter is 
selected uniformly from range 

]1)CW,CW2min(,0[ maxmin i , where m  is the 

maximum number of allowable retransmissions. 
When the total number of retransmissions equals 
m , no further retransmissions are attempted, and 
the packet is discarded [16]. In EDCA 
mechanism, each station implements a queue for 
each AC. Packets belonging to different ACs 
within a single station may collide with each other 
when their backoff counters decrements to zero 
simultaneously. This phenomenon is called a 
virtual collision in IEEE 802.11e EDCA and is 
prevented by letting the highest priority involved 
in the collision win the contention [16]. 
 
3. Analysis without virtual collision 
 
We model the backoff operation of each station 
with a Markov chain. Our approach is similar to 
that of [7]. In this section, we assume that each 
station implements only one of the multiple ACs in 
EDCA. Thus, we do not consider virtual collision, 
which will be handled in Section 4. 
 
This paper supports up to L  ACs from the lowest 
priority service class 0AC  to the highest one 1ACL-

. We use different Markov chains for different ACs. 
Thus, L  different Markov chains are required. For 

1 ..., ,1 ,0  Ll , the state of a given tagged station 

implementing lAC is considered at the following 

embedded point; the boundary of each slot time at 
which the backoff counter for 1ACL-  is active (see 

Figure 1). 
 
Note that, in EDCA, the backoff counter is frozen 
when a transmission is detected in the channel, and 
reactivated at the beginning of the last slot of the 
corresponding AIFS. Let )(ts  be the stochastic 

process representing the number of retransmissions 
of the tagged station at the embedded point t . The 
value of )(ts  ranges from 0 (the first backoff stage) to 

]m[ACl  (the retransmission limit) for lAC . Let )(tb  

be the stochastic process representing the value of 
the backoff counter for the tagged station at time t . 
After each packet transmission, the value of the 
backoff counter for the tagged station implementing 

lAC  is assumed to be considered from the beginning 

of the last slot of the AIFS for    1ACL-   instead of  

lAC , and remain frozen until the last slot of the 

AIFS for the tagged station, which is just for 
computational convenience and has no effect on the 
performance of EDCA. When its )( , the value of 

)(tb  ranges from 1  to 1][ACW li , where 

][ACW li  is given by ])AC[CW],AC[CW2min( maxmin ll
i . 

Note that, in EDCA, when the backoff counter of a 
station expires, the station has to wait for an extra 
idle backoff slot in order to transmit its packet. 
The value 1)( tb  represents the end of the 

extra idle slot. The stochastic process )(tr  

represents the remaining AIFS period for 0AC  at 

time t . The value of )(tr  ranges from 0  to 

1]AIFS[AC]AIFS[AC 100  LA . 

 
The process ))}( ),( ),({( trtbts  is a Markov chain 

under the assumption that ][AClgp  (the probability 

that, from the lAC  station’s point of view, at least one 

of the other stations transmit a packet during a type-
g  slot) and ][AClgq  (the probability that a packet 

from the tagged lAC  station encounters a collision 

when it is transmitted during a type- g  slot) are 

independent of the number of retransmissions, where 
type- l  slots are the slots between the end of 

]AIFS[ACl  and ]AIFS[AC 1l , and type- 0  slots are 

the slots after the end of ]AIFS[AC0 . Figure 2 shows 

the transition diagram of ))}( ),( ),({( trtbts  for the 

tagged station implementing lAC , where ba%  

denotes the remainder of the division of a  by b  and 

iW , m , gp , and gq  are used instead of ]AC[W li , 

]AC[ lm , ][AClgp , and ][AClgq , respectively. In 

Figure 2, the states t ’s, ][AC ..., ,1 ,0 lmi  , are 

introduced, which will be eliminated when the 
stationary probabilities are normalized. 
 
Let ]AC[ lib  and ]AC[,, lkjib  be the stationary 

distribution. We have 
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where 1]AIFS[AC]AIFS[AC 1  LggA  for 

1 ..., ,1 ,0 L-g   (See Figure 1). We also have the 

followings: 
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where 0]AC[],AC[, lkWi li

b  for all k  and 

0]AC[,, lkjib  for 1][ACW0 0  jAAk lil ; 
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for ][AC10 l,m,  , i  . Each of the state stationary 

probabilities can be expressed in terms of ][AC0 lb  

and obtained by imposing the normalization condition 
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For 110 , ..., L-, l  , the probabilities ][AClg  that a 

station of lAC  transmits in a type- g  slot is given by 
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The probabilities ][AClgp  and ][AClgq  are given by 
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for 110 , , ..., L-, lg  , where ][ACln  is the number 

of stations implementing lAC . The probability IP  

that a slot is idle is 
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where the probability gP  that an arbitrary slot is a 

type- g  slot is given by 
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The probability ][AClSg

P  that a slot contains a 

successful transmission of lAC  under the 

condition that the slot is a type- g  slot is given by 
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for 110 , , ..., L-, lg  . The probability CP  that a slot 

time contains a collision is 
 

'1 SIC PPP                                                    (11) 
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The saturation throughput of lAC  is given by 
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where ][PE  is the average length of packet 

payload,   is the length of a slot time, ST  is the 

average length of a successful transmission, and 

CT  is the average length of a collision. The values 

of ST  and CT  are given in [7]. 
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4. Analysis with virtual collision 
 
We consider the case that each station runs an 
arbitrary number of different queues with different 
ACs. [7]. Owing to virtual collision, when two or 
more queues of a station have backoff counters of 
zero, the highest priority queue is favored and is 
given the chance to access the medium. The lower 
priority ones still see the collision, and they will 
increase their backoff stages and choose other 
backoff counters [7]. 
 
For the virtual collision case, we use the same 
approach as in Section 3 with the following 
differences [7]. Firstly, since each station now has 
multiple queues, a Markov chain is used to model 
each queue instead of each station. Secondly, the 
virtual collision changes the collision probabilities 
seen by individual queues because the highest 
priority queue will not see the collision with the 
lower priority queues of the same station [7]. The 
collision probability ][AClgq  is now given by 
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Then, if we want to see the throughput of lAC  in 

a station, the station can be viewed as one with a 
single lAC  and the above collision probability 

][AClgq . Accordingly, all analytic results in 

Section 3 can be used even when we consider 
the virtual collision. 
 
5. Numerical results 
 
In order to evaluate the throughput performance of 
ACs in IEEE 802.11e EDCA, we use the values of 
system parameters shown in Table 1 for both 
analytical and simulation results. 
 
 
 
 
 
 
 

Common Parameters Values 

payload size 8192 bits 

PHY header 192 bits 

MAC header 272 bits 

RTS frame PHY header + 160bits 

CTS frame PHY header + 112bits 

ACK frame PHY header + 112bits 

time slot( ) 6109   sec 

SIFS 61016   sec 

data rate 6101  bits/sec 

]AC[ lm  for all l  5 

input parameter set Ⅰ for four different ACs 
l

l
 

]AC[CWmin l  ]AC[CWmax l  ]AC[AIFS l  

0 8 256 SIFS 5  

1 8 256 SIFS 4  

2 8 256 SIFS 3  

3 8 256 SIFS 2  

input parameter set Ⅱ for four different ACs 

l
 

]AC[CWmin l  ]AC[CWmax l  ]AC[AIFS l  

0 64 1024 SIFS 5  

1 32 1024 SIFS 4  

2 16 512 SIFS 3  

3 8 256 SIFS 2  

 
Table 1. Examples of the System Parameters. 

 
 
 
 
 
 
 
 



 

Throughput Analysis Model for IEEE 802.11e EDCA with Multiple Access Categories, Y. Lee / 612‐621

Journal of Applied Research and Technology 619

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Saturation throughput: input parameter set I. 
 

 
 

Figure 4. Saturation throughput: input parameter set II. 
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Figures 3 and 4 show the saturation throughput of 
four ACs in EDCA for basic access and RTS/CTS 
exchange methods. From the figures we see the 
differentiation in saturation throughput of four ACs 
due to the CW size, the AIFS value, and the virtual 
collision in IEEE 802.11e EDCA. In order to 
validate our model, we have conducted 
simulations, and simulation results are also plotted 
in Figs. 3 and 4. The figures indicate that the 
analytic results of our proposed model are closely 
matched with the simulation results for both basic 
access and RTS/CTS exchange methods. This 
means that our new proposed model for the 
analysis of EDCA can show faithfully the 
performance of the EDCA mechanism. 
 
From Figures 3 and 4 we can also investigate the 
followings. In Figure 3, we investigate the impact of 
the AIFS parameter and the virtual collision on the 
performance differentiation among stations of 
various ACs. Figure 3 shows the saturation 
throughput as a function of the number of stations 
with different AIFS parameters and the same CW 
size as in the input parameter set I. Since it is 
reported that the virtual collision has little effect on 
the performance [10], Figure 3 reveals that AIFS 
has a pronounced effect on service differentiation. 
Figure 4 shows the saturation throughput as a 
function of the number of stations for the input 
parameter set II with the same AIFS parameter set 
as in Figure 3. In this case the performance 
differentiation is introduced due to different values 
of ]AC[CWmin l  and ]AC[CWmax l  for the various 

AC queues as well as the different values of AIFS. 
 
The numerical results indicate that EDCA can 
provide rate differentiation among stations of 
various ACs. The higher the priority of AC is, the 
higher the throughput for the AC due to smaller 
CW sizes and smaller AIFS values. In addition, as 
expected, the performance of EDCA with 
RTS/CTS enabled shows better throughput over all 
ACs than that of EDCA for basic access method, 
because the RTS/CTS exchange method reduces 
a waste of resource due to collisions. 
 
6. Conclusions 
 
In this paper, a more general three dimensional 
Markov chain model to analyze IEEE 802.11e 
EDCA protocol under saturated traffic load was 
proposed. The proposed analytic model 

considered multiple stations with an arbitrary 
number of different ACs. It also differentiated the 
CW sizes and the AIFS values of different ACs 
and considers virtual collisions. Based on the 
proposed model, we analyzed the saturation 
throughput of different ACs in EDCA. The results 
of our analytical model were then verified using 
simulations. The analytical results are very 
accurate, compared with the simulation result for 
various EDCA parameters. 
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