

Vol. 11, June 2013 360

Computing the Euler Number of a Binary Image Based on a Vertex
Codification

J. H. Sossa-Azuela1, R. Santiago-Montero2, M. Pérez-Cisneros3, E. Rubio-Espino1

1 Centro de Investigación en Computación-Instituto Politécnico Nacional
Av. Juan de Dios Bátiz s/n, Mexico, DF, México
2 Instituto Tecnológico de León
Av. Tecnológico S/N, Frac. Julián de Obregón, León, Guanajuato, México
3 Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI
Av. Revolución 1500, Guadalajara, Jalisco, México

ABSTRACT
We describe a method to compute the Euler number of a binary digital image based on a codification of contour pixels
of the image’s shapes. The overall procedure evolves from a set of lemmas and theorems, their demonstration and
their numerical validation. The method is supported through an experimental set which analyzes some digital images
and their outcome to demonstrate the applicability of the procedure. The paper also includes a discussion about
present and futures steps on this research.

Keywords: binary shape description, Euler number, topological descriptor, topological invariant

RESUMEN
Se describe un método para el cálculo del número de Euler de una imagen digital binaria basado en una codificación
del contorno de las formas en la imagen. El procedimiento tiene su base en un conjunto de lemas y teoremas, su
demostración y su validación numérica. El método se soporta a través de una experimentación que analiza varias
imágenes digitales para demostrar la aplicabilidad del procedimiento. El artículo incluye también una discusión acerca
de pasos presentes y futuros de investigación.

1. Introduction

Shape classification is one of the main problems in
pattern recognition. In the particular case of
bidimensional shapes, many methods have been
developed. The interested reader may refer, for
example, to [25].

A digital binary image is a two-dimensional array
that has been obtained from a gray-level image
that has been discretized at two levels, say 0 and
1. An image like this is composed of all the flat
connected regions representing projections of
perceived objects onto the discrete plan. The
elements or cells that compose the regions are
labeled with level 1, whereas the background is
labeled with level 0. From the projected region of
each observed object several describing geometric
and topological features can be computed. The
Euler number is one of these features.

Mathematically, the Euler number of a binary
image is defined as

ܧ = ܰ − (1) ܪ

where ܰ is the number of regions of the image
(number of connected components of the object)
and ܪ is the number of holes in the image
(isolated regions of the image’s background).

1.1 Applications of the Euler number

The Euler number has been successfully applied
for image analysis and visual inspection over
binary images, as reported in [23].

In [2], the Euler number has been used to
automatically recognize the numbers and
characters in Malaysian car license plates.

In [18], the so-called fast Euler numbers are
applied to automatically threshold a binary image.
The proposal computes Euler numbers in just one
single image raster scan.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Journal of Applied Research and Technology 361

In [20], Euler numbers have been employed to
analyze textural and topological features of
benchmark images. Likewise, the same feature
has been used to describe structural defects upon
binary images that have been affected by noise in
[26]. In short, the Euler characteristic has also
been used to extract lung regions from gray-level
chest X-ray images in [21].

1.2 Implementations and patents

Several implementations to speed up the
computation of the Euler number to make it useful
in real time applications have been reported in
literature, even related patents have been found.

In [12], for example, a fast algorithm for computing
the Euler number of an image and its VLSI
implementation is presented. Likewise, novel
pipeline architecture is comprehensively described
in [7]. The on-chip computation of a binary image
Euler number with applications to efficient
database searching is presented in [6].

A modification to the algorithm presented in [18], in
order to allocate its execution over a Field
Programmable Gate Array with a pipelined
architecture is described in [3].

Finally, one of the first patents about the Euler
number computation for binary images is
described by Acharya et al. in [1].

1.3 Methods

Several methods to compute the Euler number of a
binary image have been reported in literature. For
instance, the Euler characteristic is obtained by
means of a quad-tree representation of the image
under scrutiny [14]. In [17], linear quad-trees are
used to perform the same task, whereas in [5] a
bin-tree representation is employed. In [4], the
Euler number is considered as the value of a
certain additive functional which belongs to the so-
called Quermass-integrals family.

The Euler number can be also defined in term of
vertices, basic square faces and edges from the
binary image squared-graph [10]. The so-called
connectivity image graph has been analyzed in [9],
whereas an integral geometric approach is studied
in [13] with a full proof about the Euler number

equation in [22]. In [11], the Euler number is
computed by means of the so-called connectivity
image graph. In [16] an integral geometric
approach for the Euler feature is computed upon
spatial images. In [27], the authors use the notion
of the algebraic topology complex to compute the
Euler number of a given object. In [24],
mathematical morphology operations and the
additive property of this feature are adopted to
calculate Euler number of binary objects.

The Euler characteristic of discrete objects and
discrete quasi-objects is computed in [15a] in
terms of the so-called vertex angles of the
discrete surfaces. These vertex angles are
defined in terms of the curvature indices of the
discrete contour of a discrete object. The authors
prove the relation between the number of point
indices, the numbers of holes, genus, and cavities
of an object. This is the angular Euler
characteristic of a discrete object.

In [15b] the number connected components (first
planar Betti number) and the number of holes
(second planar Betti number) are estimated by
approximating the digital image by polygonal sets
derived from its digitalization. As stipulated by
Equation (1) the estimation of the Euler number of
the shape is given by the difference of these two
Betti number estimators.

In [16a] the Euler characteristics of a digital image
composed of ݇ connected shapes are computed in
terms of the so-called Morse operators. Morse
operators form a powerful topological tool to
handle object classification. Both the 4 and 8
connected cases are considered in this reference.

The study in [13] presents the Euler number
computation for binary images in terms of the
number of terminal points, that is, number holding
only one neighbor and the number of three-edge
points, that is, points which have been linked to
three neighboring others over skeleton regions
within the image.

The contact perimeter for “unit-with” shapes is
used in [9] to compute the Euler number. Two
variants of such proposal for the case of region-
based shapes are described in [19a] and [19] for
the cases of shapes composed of square and
hexagonal cells, respectively.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Vol. 11, June 2013 362

1.4 Contribution of the paper

In this paper, the Euler number of an object is
computed in terms of the number of cell faces that
each shape’s contour corner touches at that
position. Results in the case of objects composed
of square and hexagonal cells are given. The
method is supported through an experimental set
which analyzes some digital images and their
outcomes to demonstrate the applicability of the
procedure. Also, the set of formal propositions that
support the operation of the proposed method are
both demonstrated and numerically validated.

1.5 Organization of the paper

The paper is organized as follows: Section 2 is
devoted to provide basic concepts and required
definitions. Sections 3 and 4 develop key material
on the paper as the fundamental propositions
supporting the methodology. All the propositions
are demonstrated and numerically validated. In
Section 5 we give a unifying corollary that
integrates the main results introduced in Sections
3 and 4. In Section 6 we develop several examples
considering several digital binary images showing
to verify the robustness of the proposal. Finally,
Section 7 discusses some conclusions and future
directions for research work.

2. Basic definitions

In this section we present the definitions and basic
results that will allow us to derive the method to
compute the Euler number of a binary shape. Only
the case of shapes composed of square cells will
be touched in this section. The corresponding
results related to shapes composed of hexagonal
will be provided in Section 4.

Definition 1. A binary shape ܵ௡ is a k-connected
region composed of ݊ square cells. In the case
of square cells, ܵ௡ can be four-connected or
eight-connected.

As is known when using pixels to represent shapes,
a structural problem called connectivity paradox
appears. As already mentioned, there are two ways
of connecting pixels: four connectivity and eight
connectivity. In the content of this paper, four

connectivity is considered. In other words, if ݌ and ݍ
are any two pixels belonging to shape ܵ௡, then ݌
and ݍ will appear connected by one of their sides.

Definition 2. Let a shape ܵ௡ with ݌ being one of its
cells and ݌ representing one contour element
having at least one neighbor pixel belonging to the
shape’s background.

Figure 1. (a) A Shape Composed Of 17 Pixels. (b) The

Shape and Corner Codes of its Contour Corners. (c) The
Shape and Corner Codes of its Contour Corners When a

Hole is Added to the Shape. (d) The Shape With the
Corner Codes of its Contour Corners When a Pixel is

Four Connected to the Shape.

In this paper, both shape classes are considered:
those including holes and those with no holes at
all. Therefore the shape’s contour is built by the
bounding contour plus the bounding hole contours,
if they are actually present.

According to [8], each exterior corner of a contour
cell (when it is in direct contact with the shape’s
background) can be coded by the number of cell
vertices it touches at that position. Considering
such a fact, Figure 1(a) presents a discrete shape
composed of 17 pixels. Figure 1(b) shows the
numbered corners of the shape presented in
Figure 1(a). As it is shown by Figure 1(b), there are
only three different numbers of cell vertices for the
bounding contour: 1, 2 and 3. In this paper, such a
corner code can be denoted as variable ܸܥ.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Journal of Applied Research and Technology 363

Definition 3. Let ܵ௡௖ represent the set of contour
cells of a shape ܵ௡. Let ܰ1 be the number of
vertices of ܵ௡௖ for which ܸܥ = 1, and let ܰ3 be the
number of vertices of ܵ௡௖ for which ܸܥ = 3.

For example, considering the shape in Figure 1(b), ܰ1 = 9 and ܰ3 = 5.

Now, for a given shape, numbers ܰ1 and ܰ3,
change by deleting or by adding cells to the shape.
Considering the shape of Figure 1(a), in case one
interior pixel is extracted following Figure 1(c), a
hole would emerge with ܰ3 = 9. If the
corresponding pixel is added to the same shape as
shown by Figure 1(d), ܰ1 = 8 and ܰ3 = 4.

(a)

(b)

Figure 2. (a) Deleting a Pixel, First Case.

(b) Adding a Pixel, Second Case.

Lemma 1. Adding a hole to one shape composed
of square cells is done as follows:

a) By deleting interior pixels of the shape. In this

case note that ܰ3 is increased by 4, each time
a pixel is deleted, whereas ܰ1 remains
unchanged. Refer to Figure 2(a).

b) By adding as many exterior cells in such a

way that a hole is formed. In this case note
that ܰ3 is increased by 2, whereas ܰ1 is
decreased by 2, refer to Figure 2(b).

3. The novel proposal for computing the Euler
number of a binary shape

In this section, numbers ܰ1 and ܰ3 are used to
derive two topological features of a binary shape:
its number of holes and its Euler number. Only the
case of shapes composed of square cells is faced

in this section. Results concerning shapes
composed of hexagonal and triangular cells will be
given in Section 4.

Figure 3. Shapes Used to Numerically Validate
Theorems 1 and 2(a).

Theorem 1. Let ∆ܰ1 be the number of ܰ1 and ∆ܰ3 be the number of ܰ3 which are added to the
interest shape. The number of added holes is
always equal to
ܪ∆ = −∆ேଵି∆ேଷସ .

Proof. Following Lemma 1, a hole is generated when ∆ܰ1 − ∆ܰ3 = −4. If ∆ܪ holes are generated, then
 ∆ܰ1 − ∆ܰ3 = ܪ∆ Thus .ܪ∆4− = −∆ேଵି∆ேଷସ .

To numerically validate Theorem 1, let us use the
shapes of Figures 3(a) and 3(c). As we can see,
both shapes have no holes. For the first one: ܰ1 = 7 and ܰ3 = 3, whereas for the second
shape: ܰ1 = 8 and ܰ3 = 4. Now, if we add holes
to these shapes (one hole to the first shape and
two holes to the second shape) as stated by
Lemma 1, we have the images shown in Figures
3(b) and 3(d). In both cases, according to Theorem
1, we should have that ∆ܪ = 1 for the first shape
and ∆ܪ = 2 for the second shape. Let us verify
this. For the shape of Figure 3(b): ∆ܰ1 = 0 and ∆ܰ3 = 4, and ∆ܪ = −∆ேଵି∆ேଷସ = − ଴ିସସ = 1, as

expected. For the shape of Figure 3(d): ∆ܰ1 = 0

and ∆ܰ3 = 8 and ∆ܪ = −∆ேଵି∆ேଷସ = − ଴ି଼ସ = 2. This

numerically validates Theorem 1.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Vol. 11, June 2013 364

Theorem 2(a). The number of holes ܪ of a binary
shape is always given as follows:
ܪ = −ேଵିேଷସ + 1. (2)

Proof. By construction, beginning from a minimal
shape, such shape is thus composed by one
pixel, then:

ேଵ೔ିேଷ೔ସ = 1, where suffix i means

initial. Now if a pixel is chosen as to append to
such initial shape, it is easy to verify that: ேଵିேଷସ = 1. By continuously adding pixels, a hole

will be eventually generated. Following Theorem
1, it yields:
ܪ∆ = −∆ேଵି∆ேଷସ = .ܪ

However, ܰ1 = ܰ1௜ + ∆ܰ1 and ܰ3 = ܰ3௜ + ∆ܰ3,
then
ܪ = −ேଵିேଵ೔ିேଷାேଷ೔ସ = −ேଵିேଷସ + ேଵ೔ିேଷ೔ସ =−ேଵିேଷସ + 1.

To numerically validate Theorem 2(a), let us use the
shapes of Figures 3(b) and 3(d). As we can see, the
first shape has one hole, whereas the second one
has two holes. Let us verify this by applying
Theorem 2(a). For the first shape: ܰ1 = 7 and ܰ3 = 7 and ܪ = −଻ି଻ସ + 1 = 1. For the second

shape: ܰ1 = 7 and ܰ3 = 11 and ܪ = −଻ିଵଵସ + 1 =1 + 1 = 2. This numerically validates Theorem 2(a).

Theorem 2(b). The number of holes ܪ of ݊ binary
shapes is always given as follows:
ܪ = −ேଵିேଷସ + ݊. (3)

Proof. Starting from n minimal shapes, then ேଵ೔ିேଷ೔ସ = ݊. When adding ∆ܰ1 and ∆ܰ3 we have:

ܪ = ܪ∆ = −∆ேଵି∆ேଷସ = −ேଵିேଵ೔ିேଷାேଷ೔ସ = −ேଵିேଷସ +ேଵ೔ିேଷ೔ସ = −ேଵିேଷସ + ݊.

Figure 4. Shapes Used to Numerically
Validate Theorem 2(b).

To numerically validate Theorem 2(b), let us use
the set of three shapes shown in Figure 4. As we
can see, the total number of holes is seven. Let us
verify this by applying Theorem 2(b). From Figure
4 we can easily verify that that ܰ1 = 21 and ܰ3 = 37 and ܪ = −ଶଵିଷ଻ସ + 3 = 7. This numerically

validates Theorem 2(b).

At this moment we can derive the main result
concerning the computation of the Euler number of a
shape or a set of shapes composed of square cells.
For this, we use the number of holes of a shape.

Theorem 3. The Euler number ܧ of ݊ binary
shapes is always given as follows:
ܧ = ேଵିேଷସ . (4)

Proof. From Equation (1) and by Theorem 2(b)
ܧ = ݊ − ܪ = ݊ − ቀ−ேଵିேଷସ + ݊ቁ = ேଵିேଷସ .

To numerically validate Theorem 3, let us use again
the set of three shapes shown in Figure 4. As we can
see, the Euler number for this set of shapes is -4. Let
us verify this by applying Theorem 3. We have seen

that ܰ1 = 21 and ܰ3 = 37 and ܧ = ଶଵିଷ଻ସ = −4. This

numerically validates Theorem 3.

Figure 5. The Euler Number of a Shape Remains
Unchanged if its Topology Does not Change.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Journal of Applied Research and Technology 365

Notice that numbers ܰ1 and ܰ3, the overall
number of holes and the Euler number depend
solely on the shape’s topology. In other words, the
shape’s geometry is irrelevant as long as its
topology remains unchanged. For instance,
consider the example portrayed in Figure 5 and
Table 1 which shows how this fact could be used
for shape differentiation.

Position ܰ1 ܰ3 Euler number
(a) 18 18 0
(b) 17 17 0
(c) 16 16 0

Table 1. Euler Number of the Little

Man in Different Postures.

4. Results related to regions composed of
hexagonal cells

In this section we present the main results that
support the computing of the Euler number of
regions composed of hexagonal cells. In all cases
we formally demonstrate and numerically validate
the propositions.

Figure 6. In the Case of a Shape Composed of
Hexagonal Cells, a Contour Vertex Touches

One or Two Cells.

Following Figure 6, it can be seen that there are
only two different kinds of cell vertices for the
bounding contour: 1 and 2. Notice that in this case,
cells do not present the problem of being
connected by their corners. For ܶ = 6, cells always
will appear connected by their sides to other cells.
Now, if ܰ1 and ܰ2 are, respectively, the number of
cells touched by a contour vertex, then we have

Figure 7. (a) Deleting a Pixel, First Case.
(b)-(c) Adding a Pixel, Second and Third Cases.

Lemma 2. Adding a hole to one shape composed
of hexagonal cells is done as follows:

a) By deleting interior cells of the shape. In this

case note that ܰ2 is increased by each time a
cell is deleted, whereas ܰ1 remains
unchanged. Refer to Figure 7(a).

b) By adding as many exterior cells in such a

way that a hole is formed. In this case note
that ܰ2 is increased by 4, whereas ܰ1 is
decreased by 2, refer to Figure 7(b). We can
have also that ܰ2 is increased by 3, whereas ܰ1 is decreased by 3, refer to Figure 7(c).

Theorem 4. Let ∆ܰ1 be the number of ܰ1 and ∆ܰ2 be the number of ܰ2 which are added to the
interest shape composed of hexagonal cells. The
number of added holes is always equal to
ܪ∆ = −∆ேଵି∆ேଶ଺ .

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Vol. 11, June 2013 366

Proof. Following Lemma 2, a hole is generated when ∆ܰ1 − ∆ܰ2 = −6. If ∆ܪ holes are generated, then
 ∆ܰ1 − ∆ܰ2 = ܪ∆ Thus .ܪ∆6− = −∆ேଵି∆ேଶ଺ .

Figure 8. Shapes Used to Numerically
Validate Theorem 4.

To numerically validate Theorem 4, let us consider
the shapes of Figures 8(a) and 8(c). As we can
see, both shapes have no holes. For the first
shape: ܰ1 = 14 and ܰ2 = 8, whereas for the
second shape: ܰ1 = 21 and ܰ2 = 15. Now, if we
add one hole to both shapes as stated by Lemma
2, we have the images shown in Figures 8(b) and
8(d). In both cases, according to Theorem 4 we
should have that ∆ܪ = 1 for both shapes. Let us
verify this. For the shape of Figure 8(b): ∆ܰ1 = 0

and ∆ܰ2 = 6, and ∆ܪ = −∆ேଵି∆ேଶ଺ = − ଴ି଺଺ = 1, as

expected. For the shape of Figure 8(d): ∆ܰ1 = −3

and ∆ܰ2 = 3 and ∆ܪ = −∆ேଵି∆ேଶ଺ = −ିଷିଷ଺ = 1.

This numerically validates Theorem 4.

Theorem 5(a). The number of holes ܪ of a binary
shape composed of hexagonal cells is always
given as follows:
ܪ = −ேଵିேଶ଺ + 1. (5)

Proof. By construction, beginning from a minimal
shape, such shape is thus composed by one pixel,
then:

ேଵ೔ିேଶ೔଺ = 1, where suffix i means initial. Now if

a pixel is chosen as to append to such initial shape,
it is easy to verify that:

ேଵିேଶ଺ = 1. By continuously

adding pixels, a hole will be eventually generated.
Following Theorem 4, it yields:
ܪ∆ = −∆ேଵି∆ேଶ଺ = .ܪ

However, ܰ1 = ܰ1௜ + ∆ܰ1 and ܰ2 = ܰ2௜ + ∆ܰ2,
then
ܪ = −ேଵିேଵ೔ିேଶାேଶ೔଺ = −ேଵିேଶ଺ + ேଵ೔ିேଶ೔଺ =−ேଵିேଶ଺ + 1.

To numerically validate Theorem 5(a), let us use
the shape of Figure 9. As we can see, this shape
has five holes. Let us verify this by applying
Theorem 5(a). For this shape we have that ܰ1 = 41 and ܰ2 = 65 and ܪ = −ସଵି଺ହ଺ + 1 = 5.

This numerically validates Theorem 5(a).

Figure 9. Shape Used to Numerically
Validate Theorem 5(a).

Theorem 5(b). The number of holes ܪ of ݊ binary
shapes composed of hexagonal cells is always
given as follows:
ܪ = −ேଵିேଶ଺ + ݊. (6)

Proof. Starting from n minimal shapes, then ேଵ೔ିேଶ೔଺ = ݊. When adding ∆ܰ1 and ∆ܰ2 we have

ܪ = ܪ∆ = −∆ேଵି∆ேଶ଺ = −ேଵିேଵ೔ିேଶାேଶ೔଺ = −ேଵିேଶ଺ +ேଵ೔ିேଶ೔଺ = −ேଵିேଶ଺ + ݊.

To numerically validate Theorem 5(b), let us use
the set of two shapes shown in Figure 10. As we

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Journal of Applied Research and Technology 367

can see, the total number of holes is eight. Let us
verify this by applying Theorem 5(b). From Figure
10 we can easily verify that that ܰ1 = 53 and ܰ2 = 89 and ܪ = −ହଷି଼ଽ଺ + 2 = 8. This numerically

validates Theorem 5(b).

Figure 10. Shapes Used to Numerically
Validate Theorem 5(b).

The main result concerning the computation of the
Euler number of a shape or a set of shapes composed
of hexagonal cells can be stated as follows:

Theorem 6. The Euler number ܧ of ݊ binary
shapes composed of hexagonal cells is always
given as follows:
ܧ = ேଵିேଶ଺ . (7)

Proof. From Equation (1) and by Theorem 5(b):
ܧ = ݊ − ܪ = ݊ − ቀ−ேଵିேଶ଺ + ݊ቁ = ேଵିேଶ଺ .

To numerically validate Theorem 6, let us use
again the set of two shapes shown in Figure 10. As
we can see, the Euler number for this set of
shapes is -6. Let us verify this by applying
Theorem 6. We have seen that ܰ1 = 53 and ܰ2 = 89 and ܧ = ହଷି଼ଽ଺ = −6. This numerically

validates Theorem 6.

5. Unifying result

Equations (4) and (7) can be unified into one sole
equation as follows:

Corollary 1. Let ܶ denote the number of sides of
a composing cell (ܶ = 4, for objects composed of
square cells and ܶ = 6, for objects composed of
hexagonal cells). The Euler number ்ܧ of ݊
binary shapes composed of cells with ܶ sides is
given as follows:
்ܧ = ௉ଵ∙ேଵା௉ଶ∙ேଶା௉ଷ∙ேଷ் . (8)

The value of ܶ determines the values of the
weights: ܲ1, ܲ2 and ܲ3. Thus, if
 ܶ = ൜4 ℎ݁݊ݐ ܲ1 = 1, ܲ2 = 0, ܲ3 = −16 ℎ݁݊ݐ ܲ1 = 1, ܲ2 = −1, ܲ3 = 0

Proof. From Theorems 3 and 6.

6. Examples with images

This section discusses the computation of the
Euler number on some images. For this, the 10
binary images of 128 × 128 pixels shown in Figure
11 are used.

To appreciate the robustness of the proposal, the
number of objects and the number of holes, as can
be seen, are different from image to image.
Equation 4 has been applied to each image. To
compute Equation 4 on each image, the algorithm
shown in the Appendix was used.

Figure 11. Images Used to Test the Proposal.

Table 2 summarizes the computation results. Note
that in all cases, as predicted by Equation 4, the
right value for the Euler number of each image has
been obtained.

Image 1 Image 2 Image 3 ܰ1 ܰ3 ܧ 3ܰ 1ܰ ܧ 3ܰ 1ܰ ܧ
371 359 3 164 168 -1 330 314 4

Image 4 Image 5 Image 6 ܰ1 ܰ3 ܧ 3ܰ 1ܰ ܧ 3ܰ 1ܰ ܧ

290 250 10 408 432 -6 503 499 1

Image 7 Image 8 ܰ1 ܰ3 ܧ 3ܰ 1ܰ ܧ

765 745 5 542 530 3

Image 9 Image 10 ܰ1 ܰ3 ܧ 3ܰ 1ܰ ܧ

507 459 12 561 541 5

Table 2. The Euler Number of Different Test Images.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Vol. 11, June 2013 368

7. Conclusions

This paper has introduced a very simple method to
calculate the Euler number of a binary shape
following its contour description. The numbers of
faces touched by a contour vertex have been
employed as a fundamental element in the
method. The new method features simplicity and
originality. The Euler number computation for a
digital shape or a digital binary image is very easy
to compute through Equation 4.

The formal support of the proposal is based on four
main theorems. Examples with simple shapes and
with several real binary images have been provided
to visually appreciate the robustness of the method.

As a supplement, equations are provided for
computing the Euler number of a binary image
composed of hexagonal cells. In these cases,
simple examples have been given to verify the
overall operation of these equations.

A unifying result has been also provided that
allows seeing that when choosing the appropriate
weights, the corresponding equation for the case
of shapes composed of squared of hexagonal cells
can be selected.

Finally, for a given image ܾ, because the
computations are independent from pixel to pixel,
the computation of the Euler number can be done
in two phases by using a parallel architecture, such
as a GPU machine. During the first phase numbers ܰ1 and ܰ3 for each pixel are computed. During
this same phase, each partial value is next divided
by ܶ. Finally, during the second phase, both results
are subtracted to get the desired value for ܧ.

Acknowledgements.

R. Santiago and M. Pérez thank the ITL and the UDEG,
respectively, for the support. H. Sossa thanks SIP-IPN
and CONACYT for the economical supports under
grants 20121311, 20131182 and 155014, respectively.
E. Rubio thanks SIP-IPN for the support under grant
20131505. We all thank the reviewers for their
comments on the improvement of this paper.

References

[1] T. Acharya, B. B. Bhattacharya, A. Bishnu, M. K. Kundu,
Ch. A. Murthy. “Computing the Euler Number of a Binary
Image”. United States Patent 7027649 B1. April 11, 2006.

[2] W. Al Faqheri and S. Masho-hor (2009). “A Real-Time
Malaysian Automatic License Plate Recognition (M-ALPR)
Using Hybrid Fuzzy”, International Journal of Computer
Science and Network Security, 9(2):333-340, 2009

[3] J. Athow, N. Abbasi and A. Amer. “A Real-Time FPGA
Architecture of a Modified Stable Euler-Number Algorithm
for Image Binarization”. Technical Report 2009-1-
ATHOW Department of Electrical and Computer
Engineering, Concordia University. January 2009.

[4] H. Beri and W. Nef. “Algorithms for the Euler
characteristic and related additive functionals of digital
objects”, Comput. Vision, Graphics Image Process. 28,
166-175, 1984.

[5] H. Beri. “Computing the Euler characteristic and
related additive functionals of digital objects from their
beentree representation”, Comput. Vision, Graphics
Image Process. 40, 115-126, 1987.

[6] A. Bishnu, B. B. Bhattacharya, M. K. Kundu, C.A.
Murthy, T. Acharya.. “On chip computation of Euler
number of a binary image for efficient database search”,
Proc. of the International Conference on Image
Processing (ICIP), Vol. III, pp. 310-313, 2001.

[7] A. Bishnu, B. B. Bhattacharya, M. K. Kundu, C.A.
Murthy, T. Acharya. “A pipeline architecture for
computing the Euler number of a binary image”. Journal
of Systems Architecture 51(8):47-487, 2005.

[8] E. Bribiesca. “A new chain code”. Pattern Recognition
32:235-251, 1999.

[9] E. Bribiesca. “Computation of the Euler number using
the contact perimeter”. Computers & Mathematics with
Applications 60(5):364-1373, 2010.

[10] M. H. Chen and P. F. Yan. “A fast algorithm to
calculate the Euler number for binary images”, Pattern
Recognition Letters 8(12):295-297, 1988.

[11] F. Chiavetta and V. Di Gesú. “Parallel computation of
the Euler number via connectivity graph”, Pattern
Recognition Letters 14(11):849-859, 1993.

[12] S. Dey, B. B. Bhattacharya, M.K. Kundu, T. Acharya. “A
fast algorithm for computing the Euler number of an image
and its VLSI implementation”, in Proc. 13th International
Conference on VLSI Design, pp. 330–335, 2000.

[13] J. L. Díaz de León S. and H. Sossa. “On the
computation of the Euler number of a binary object”.
Pattern Recognition, 29(3):471-476, 1996.

[14] Ch. R. Dyer. “Computing the Euler number of an
image from its quatree”. Comput. Vision, Graphics Image
Process. 13, 270-276,l 1980.

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Journal of Applied Research and Technology 369

[15a] A. Imiya, U. Eckhardt (1999). “The Euler
Characteristics of Discrete Objects and Discrete Quasi-
Objects”. Computer Vision and Image Understanding,
75(3): 307-318.

[15b] M. Kiderlen. “Estimating the Euler Characteristic of
a planar set from a digital image”. Journal of Visual
Communication and Image Representation, 17(6):1237-
1255, 2006.

[16] W. Nagel, J. Ohser and K. Pischang. “An integral-
geometric approach for the Euler-Poincare characteristic
of spatial images”. Journal of Microsc, 189:54-62, 2000.

[16a] L. G. Nonato, A. Castelo Filho, R. Minghim, and J.
Batista. “Morse Operators for Digital Planar Surfaces and
their Application to Image Segmentation”. IEEE Trans.
On Image Proc. 13(2):216-227, 2004.

[17] H. Samet et al. “Computing Geometric Properties of
Images Represented by Linear Quadtrees”. IEEE Trans.
PAMI, 7(2):229-240, 1985.

[18] L. Snidaro and G. L. Foresti. “Real-time Thresholding
with Euler Numbers”. Pattern Recognition Letters 24(9-
10):1533-1544, 2003.

[19] H. Sossa, E. Cuevas and D. Zaldivar. “Computation
of the Euler Number of a Binary Image Composed of
Hexagonal Cells”. Journal of Applied Research and
Technology 8(3):340-351, 2010.

[19a] H. Sossa, E. Cuevas and D. Zaldivar. “Alternative
Way to Compute the Euler Number of a Binary Image”.
Journal of Applied Research and Technology 9(3):335-
341, 2011.

[20] M. Vatsa, R, Singh, P. Mitra and A. Noore. “Signature
Verification using Static and Dynamic Features”. LNCS
3316. Springer-Verlag, Pp. 350-355, 2004

[21] L. P. Wong and H. T. Ewe. “A Sutdy of Nodule
Detection using Opaque Object Filter”. Biomed 06.
IFMBE Proceedings 15. Pp. 236-240, 2007.

[22] L. Xiaozhu, Sh. Yun, J. Junwei and W. Yanmin. “A
proof of image Euler Number formula”. Science in China:
Series F Information Sciences 49(3):364-371, 2006.

[23] H. S. Yang and S. Sengupta. “Intelligent shape
recognition for complex industrial tasks”, IEEE Control
Systems Magazine 8(3):23-29, 1988.

[24] Z. Zhang, R. H. Moss and W. V. Stoecker. “A Novel
Morphological Operator to Calculate Euler Number”.
International Workshop on Medical Imaging and
Augmented Reality (MIAR 2001). Shatin, N.T., Hong
Kong. June 10-June 12, 2001.

[25] D. Zhang and G. Lu. “Review of shape
representation and description techniques”. Pattern
Recognition, 37:1-19, 2004.

[26] Ch. Zhang, Z. Qiu and D. Sun and J. Wu. “Euclidean
Quality Assessment for Binary Images”. 18th
International Conference on Pattern Recognition, ICPR
2006. Pp. 300-303, 2006.

[27] D. Zioua and M. Allilib. “Generating cubical
complexes from image data and computation of the”
Euler number. Pattern Recognition 35:2833-2839, 2002.

Appendix

The following algorithm in Java has been used to
compute numbers ܰ1 and ܰ3 from a binary image. From
these numbers, the Euler number of a binary image can
be thus obtained.

private void count(int [] unosTres) {

int points1 = 0;

int points3 = 0;

for (int i = 1; i < (image.length - 1); i++) {

 for (int j = 1; j < (image[0].length - 1); j++) {
 if (image[i][j] == 0) {

 if ((image[i][j - 1] != 0) && (image[i - 1][j] != 0)) {
 points1++;
 }

 if ((image[i - 1][j] != 0) && (image[i][j + 1] != 0)) {
 points1++;
 }

 if ((image[i][j + 1] != 0) && (image[i + 1][j] != 0)) {
 points1++;
 }

 if ((image[i + 1][j] != 0) && (image[i][j - 1] != 0)) {
 points1++;
 }
 }

 else {

 if ((image[i][j - 1] != 255) && (image[i - 1][j] !=
255)) {
 points3++;
 }
 if ((image[i - 1][j] != 255) && (image[i][j + 1] !=
255)) {
 points3++;

Computing the Euler Number of a Binary Image Based on a Vertex Codification, J. H. Sossa‐Azuela et al. / 360‐370

Vol. 11, June 2013 370

 }

 if ((image[i][j + 1] != 255) && (image[i + 1][j] !=
255)) {
 points3++;
 }

 if ((image[i + 1][j] != 255) && (image[i][j - 1] !=
255)) {
 points3++;
 }
 }
 }
}

unosTres[0]= points1;

unosTres[1]= points3;

return;

} // End

