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ABSTRACT 
When developing a gait cycle on a low-friction surface, a biped robot eventually tends to slip. In general, it is common 
to overcome this problem by means of either slow movements or physical adaptations of the robot at the contact point 
with the walking surface in order to increase the frictional characteristics. In the case of slipping, several types of 
sensors have been used to identify the relative displacement at the contact point of the supporting leg with the walking 
surface for control purposes. This work is focused on the experimental implementation of a low-cost force sensor as a 
measurement system of the slipping phenomenon. It is shown how, supported on a suitable change of coordinates, 
the force measurement at the contact point is used to obtain the total displacement at the supporting point due to the 
low-friction conditions. This is an important issue when an accurate Cartesian task is required. 
 
Keywords: biped robot, slipping, walking cycle. 
 
RESUMEN 
Cuando un robot bípedo desarrolla ciclos de marcha en una superficie con baja fricción, eventualmente tiende a 
patinar; sin embargo es común evitar este problema mediante ejecuciones de movimientos de baja velocidad o bien, 
mediante adaptaciones físicas en el punto de contacto con la superficie para aumentar las caractersticas de fricción. 
Cuando este fenómeno se presenta, la existencia y magnitud del desplazamiento relativo en el punto de contacto 
puede ser identificada a partir de una gran variedad de sensores. Este trabajo se enfoca en la medición del patinado 
descrito anteriormente a través de un sensor de fuerza de bajo costo. Se muestra además cómo, a través de un 
cambio de coordenadas, la lectura de la fuerza en el punto de contacto es utilizada para conocer la magnitud del 
desplazamiento en el apoyo debido al patinado. 
 

 
1.  Introduction 
 
In the large and increasing variety of works that 
deal with biped locomotion, there are some 
dynamic characteristics that have not been widely 
studied since they do not represent critical 
conditions on a specific task. However, there exist 
some cases in which those dynamics must be 
considered. In particular, the slipping phenomenon 
describes one of these situations that, in general, 
is avoided by providing a suitable environment. 
Nevertheless, if the circumstances are such that 
the walking surface has low-friction characteristics, 
then the slippage becomes substantial and this 
situation implies a challenge in the measurement 
of the resulting displacement that provides crucial 
information for control tasks. 
 

 
 
There are some works in the literature that 
consider the slipping phenomenon as a 
fundamental dynamics in their analysis. In [5], the 
frictional characteristics are regulated by following 
a previously calculated walking pattern, which 
considers safety conditions for not falling down. In 
[2] and [9], it is implemented a feedback control 
that allows the robot to modify its posture from an 
undesired movement due to an undesirable skid; 
this control strategy has the advantage of fast 
convergence to stable trajectories. In [6], it is 
implemented an observer scheme that compares a 
reference force profile with a measured one in 
order to obtain an estimated slip force and, in this 
way, determine a possible slip condition for a biped
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 robot in a low-friction surface. In order to obtain 
the magnitude of the displacement produced by 
the slip, in [7], the relative movement between two 
bodies is measured by means of an integrated 
device constituted by multiple force/torque and 
tactile sensors. 
 
The knowledge of a slide due to a slipping condition 
is crucial in control schemes where Cartesian based 
evolution is very important and, in more complex 
situations, where the slipping effects imply an 
unstable condition that could lead the robot to fall 
down. When the friction conditions are low, it is 
important to know how a robot can develop a 
correct and stable walking trajectory in order to 
avoid falls; for doing this, the measurement of the 
slipping motion is a critical requirement. 
 
A simple low-cost way to measure the slippage is 
addressed in this work by considering a particular 
resistive force sensor. This approach considers the 
incorporation of an additional degree of freedom 
that takes into account this type of movement at the 
end of the stance leg. In this way, the slipping 
dynamics is characterized in terms of forces acting 
at the contact point, involving the frictional and 
tangential forces that result from the evolution of the 
robot posture during the gait cycle. The analysis and 
experiments carried out in this work show how the 
displacement and velocity due to the slipping 
phenomenon can be obtained. This information 
could eventually be taken into account in a 
corrective control action in order to preserve the 
stability of the walking cycle in the Cartesian space. 
 
The rest of the paper is organized as follows: In 
Section 2, the dynamic model of the biped robot 
under study is described together with the main 
hypotheses that are considered in the rest of the 
work. The conditions for the existence of the 
slipping phenomenon are also stated taking into 
account the friction force described by a simple 
Coulomb model and the resulting tangential force 
due to the articular dynamics. The system is 
represented in a suitable error coordinates in 
Section 3 and the system in closed loop with a 
particular feedback law is analyzed in Section 4. 
The physical platform and the experimental results 
are described in Section 5 and finally, some 
general conclusions are presented in Section 6. 
 
 

2. Class of underactuated biped robot 
 
The considered biped robot that is subject of 
analysis consists of four articular and actuated 
degrees of freedom. However, in order to analyze 
the slipping dynamics, an additional prismatic and 
nonactuated degree of freedom is incorporated at 
the contact point of the stance leg with the walking 
surface, characterizing an under-actuated system. 
Preliminary considerations assume that )i the robot 

evolves in the single-support phase; the double-
support phase is assumed to be instantaneous and 
can be treated as an external perturbation; )ii the 

robot dynamics is defined in the sagittal plane with 
punctual contact with the ground; )iii there is 

neither rebound nor penetration in the normal 
direction of the walking surface. 
 
The dynamic model is obtained by means of the 
Euler-Lagrange formulation [12]. It is first assumed 
that the robot can freely move on the plane and 
has the representation, 
 

eeeeeeeeee uBqGqqqCqqD =)(),()(             (1) 

 

where T
e qqqqq ],,,,,[= 1142413231   is the 

generalized coordinates vector. 66 RD e
 and 

66 RCe
 represent the inertia and coriolis 

matrices, respectively, while 16 RGe
 

corresponds to the gravity force vector. 66 RBe
 

is the input matrix and 16
12 ],0[= 

  Ru TT
e   with 

14 R  is the input signal vector. Figure 1 
describes this configuration. The right-hand side of 
Equation 1 acts as the control action and it is 
defined by considering independent actuators. 
Taking into account the choice of the generalized 
coordinates eq , the torque influence on these 

coordinates is expressed by means of matrix 
eB  

that can be obtained as [14] 
 

T

e

B
e q

q
B )(=


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where .],,,,,[= 11324231413231

T
B qqqqqqq   
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Figure  1. Description of the General Model 
of The Biped Robot. 

 
By restricting the robot to be always in contact with 

the ground, that is, by considering 0=1 , model 

(1) can be reduced to obtain the single-support 
dynamics as 
 

,=)(),()( extR FuBqGqqqCqqD              (2) 

 

where now, 
Tqqqqq ],,,,[= 142413231  , Tu =  

and T
extext qfF )](ˆ,[0= 14  . Vector extF  represents 

the external forces acting on the supporting point 
in the tangential direction. The involved matrices in 
model (2) are given as  
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where, in order to simplify the notation, it was 

defined )(cos=)( c  and )(sin=)( s ; and  
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=,=,=
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(3) 

 
Being g  the gravity constant, the parameters of 

the above matrices are given in Table 1.   
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Table  1. Structural Parameters of The Model. 

 
The actuated coordinates vector is defined as 

T
A qqqqq ],,,[= 42323231  and the nonactuated 

coordinate, the translational one is denoted as 
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1= NAq . In addition, it is possible to consider a 

block decomposition for the inertia, coriolis and 
gravity matrices from model (2) as 

],;,[=)( 22211211 DDDDqD  , ,0];,0[=),( 211411 CCqqC   

and TGGqG ],[=)( 21  such that 44
11

RC , 
41

21
RC , 44

11
RD , 41

1221 = RDD T , 

RMD T =22 , 14
1

RG  and 0=2G . 

Correspondingly, input matrix RB  is also 

decomposed as T
R BB ]0,[= 41 , where .44 RB  

Under these conditions, model (2) can be rewritten 
as   
 

BGhqDqD NAA =111211                 (4a) 

 

,ˆ=22221 extNAA fhqDqD  
                    

      (4b) 

 

where AqCh 111 = , AqCh 212 = . The input signal   

is defined as 
T],,,[= 42413231  . 

 
2.1  Conditions for the existence of slipping motion 
 

From Equation 4, it is clear that external force extf̂  

plays a very important role since the nonactuated 
coordinate is directly affected by its magnitude. In 

this work, extf̂  is defined as the total force acting 

at the contact point in the horizontal direction when 
the robot develops a gait cycle. This force involves 

friction force Ff  as a restrictive one and tangential 

force Tf  which is generated at the support point 

as a consequence of the articular and actuated 

dynamics. Under these considerations, force extf̂  

is defined as  
 

.=ˆ
TFext fff 

                                  
                  (5) 

 
Forces in Equation 5 interact in such a way that 

when the magnitude of friction force Ff , a force 

that does not produce any work is larger than Tf , 

there is not any slipping and, therefore, the robot 
becomes four dimensional and completely 
actuated as in the case that the stance leg is 

attached to the ground. This is a nonslip condition 
and it is expressed as 
 

.||<|| FT ff                          (6) 

 
Friction force Ff  is described by means of a 

simple Coulomb component, that is, 
 

),(= AeNF qff                                 (7) 

 
where   is the friction coefficient and 

eNf  is the 

current normal force acting at the supporting point. 

Force Tf  acts always in opposite direction to the 

friction and it is produced because of inertial and 
postural components of the robot during the 

execution of the walking cycle. Force Tf  is a 

component of force SF  along the line that connects 

the center of mass CM  of the robot and the 
supporting point, as shown in Figure 2. This figure 
shows the acting forces at the supporting point. 
 

 
  

Figure  2. Tangential Forces at 
the Support Point. 
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When the articular dynamics is such that the 

magnitude of Tf  increases and it eventually 

overpasses friction force Ff , relation (6) is 

violated and a slippage begins. Such a situation 
makes the overall system underactuated. In 
general, this condition is more susceptible to 
appear at the beginning and the end of the step, 
depending on the dynamic requirements for the 

center of mass ),( CMCM yx  at any time of the 

walking cycle, which causes changes on angle   

and on SF  magnitude. 
 
3.  Error coordinates representation 
 
From the general representation of the biped robot 
(4), it is not an easy task to determine the influence 

of external force extf̂  over the possible slipping 

dynamics due to the coupling between the 
actuated and the nonactuated dynamics of the 
system. In order to overcome this problem, in what 
follows, a new system representation will be 
considered by taking into account a set of desired 
trajectories that are required to be tracked in a 
walking cycle. As a first step, a "collocated 
linearization" [13] together with a change of 
coordinates will be used in order to get a 
decoupled subsystem that will allow analyzing the 
required slipping phenomenon. 
 
3.1  Partial linearization 
 
In order to decouple the dynamics of the 
actuated (4a) and nonactuated (4b) subsystems, 
an input-output feedback linearization is 
proposed by considering  
 

 DGhfhDDB ext  
112

1
2212 }ˆ{=          (8) 

 

where 21
1

221211= DDDDD   and   describes a 

new input signal. Remember that matrix TDD 1221 =  

is derived from the last row in matrix D  from 
model (2) and depends on the articular coordinates 

Aq . The closed-loop system (4)-(8) produces  
 

=Aq                 (9a) 

 

0.=ˆ
22221 extNA fhqDD                      (9b) 

System (9) is the result of the "collocated 
linearization" [13], which refers to a feedback that 
linearizes the equations associated with the 
actuated coordinates. 
 
In order to express system (9) in state space form, 
consider the set of coordinates 
 

.=,=,=,= 2121 NANAAA qqqzqz    
 
Then, system (9) can be expressed as 
 

=
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21
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             (10b) 

 
where the z  subsystem (10a) represents the linear 
and completely actuated articular dynamics, whereas 
the   subsystem (10b) determines the evolution of 

the slipping dynamics. Notice that in Equation 10, the 
new input   appears in both z  and   subsystems, 

a situation that complicates the control design for the 
entire system. To overcome this problem, it is 
possible to rewrite (10) in a particular form such that 
the nonactuated coordinates can be decoupled with 
respect to input  . 
 
3.2  Decoupling of the control input 
 
Subsystem (10b) can be decoupled with respect to   
by considering the global change of coordinates [8],    
 

11 = z                                      (11a) 
 

22 = z                                   (11b) 
 

)(= 111 z                                (11c) 
 

2212222 = zDD                         (11d) 
 

where 121
1

221 =)( dzDDz  . It can be shown, by 

developing the integral, that )( 1z  describes the 

horizontal position )(txCM  of the center of mass of 

the robot with respect to frame }{A  (see Figure 1); 
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hence, the new coordinate 1  defines the position 

of the center of mass with respect to the inertial 
frame {0} . Applying this change of coordinates, 

system (10) becomes   
 

).(=
=
=
=
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2
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2
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TF ff

D
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                       (12) 

 

By considering a particular desired trajectory d
Aq , 

based on the error coordinates:   
 

d
Aq11 =                           (13a) 

 
d
Aq22 =                         (13b) 

 

,= d
Aq                         (13c) 

 
system (12) takes the following form:    
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Notice that the second equation of the   

subsystem (14b) describes exactly the force 

Newton law given that a specific force extf̂  

modifies the rate of movement through 

acceleration changes that are implicit in 2 . 

 
Depending on the initial conditions, a high demand 
of torque signals could appear at each joint in 
order to get the convergence of subsystem   
given in (14a); this situation causes an increment 

in force Tf  and eventually a slippage. When this 

situation occurs, subsystem (14b) evolves 
according to the induced effects from the articular 
performance and consequently of the   

subsystem behavior. Therefore, although the 
articular and slipping dynamics seem to be 
decoupled, there is a direct influence of the 
articular behavior on the slipping phenomenon. In 
general, an articular movement with specific 
conditions of velocity and posture could eventually 
produce a slippage, however, the analysis of the 
slipping phenomenon is naturally developed during 
stable walking cycles, thus it is meaningless to 
analyze a slippage produced from random articular 
movements. The following section is focused on 
the tracking of a reference trajectory, assuring a 
desired performance that could eventually imply 
the existence of realistic slides. 
 
4.-Closed-loop analysis and finite-time 
convergence 
 
With the consideration of a feedback law already 
used in the biped robots literature [4], in what 
follows, a brief analysis of the closed-loop 
dynamics is presented. 
 
4.1 Single-support phase 
 
Notice that the   subsystem (14a) is a double 
integrator that can be easily stabilized with a 
specific feedback  . Because of the nature of the 
robot dynamics with respect to the walking cycle, it 
is necessary to ensure the error convergence 
before the step ends in order to guarantee a 
desired behavior. A finite-time convergence has 
already been implemented for biped robots, see for 
instance [4, 10]. In this work, the feedback law 
used in [4] is considered and originally defined in 
[1] for a double-integrator system. Regarding 
Equation 13(c), the auxiliary input   is given by  
 









 


 


 2

22 ||)(||)(1= signsign   

(15) 
 
where 
 

,||)(
2

1= 2
221




 


 sign for (0,1)

and 0> . Equation 15 corresponds to a 

continuous feedback which renders the closed 
loop (14)-(13c)-(15) globally finite-time stable. As it 
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has been proved in [1], the global stability of (13c)-
(15) in closed loop with a double-integrator system, 
as the one of the  subsystem (14a), can be 
stated by using a suitable Lyapunov function. 
 

In general, the rate of convergence of error   in 
subsystem (14a) determines the evolution of the   

subsystem (14b). Notice that, for the double-
integrator subsystem (14a), a critical situation 
appears at the transient response, where the 
evolution of the error   is different from zero and 
depends on the initial conditions; however, when 

  converges to the origin, external force extf̂  is 

only influenced by means of suitable references 
d
Aq  and d

Aq  which could avoid critical postures and 

dangerous velocities that eventually may induce a 
nondesired slipping motion. 
 

It can be inferred from Equation 5 that term extf̂  

never grows up indefinitely because of the bounded 

nature of Ff  and Tf . Friction force Ff , modeled 

as in (7), takes its maximal value when the center of 
mass of the robot is located on the vertical axis, that 
is, when 0=CMx  and 0=  (see Figure 2). At this 

position, a maximal supporting force 
maxeN Ff =  

appears and the tangential force Tf  becomes null. 

In any other situation, the normal force 
eNf  is lower 

than maxF  and the friction force is reduced; 

consequently, Tf  tends to increase. This is the 

reason why the desired trajectory should be 

designed in order to limit the magnitude of Tf . It is 

then clear that the robot does not slip over the 

complete step given that force Tf  does not always 

overpass the friction force magnitude. An external 
perturbation could also imply variations in the forces 
at the contact point, nevertheless, if the closed-loop 
system remains stable, the feedback law will 
indirectly compensate this disturbance. For the 
expressed reasons, it is possible to state from 

Equation 14(b) that 2  remains bounded and, 

consequently, 2  is bounded too. As a direct 

consequence of this fact, the displacement of 

contact point 1  will never grow indefinitely. 

4.2  Double-support phase: impact dynamics 
 
In general, the slipping phenomenon could not only 
appear at the single-support phase, but also the 
double-support phase could produce slip 
conditions because of the impact forces at the end 
of the step. Nonetheless, given that the double 
support is assumed as an instantaneous event, it 
is only characterized by an isolated and resetting 
map that allows to define the initial condition for a 
new step. This map is defined by a coordinate 
swapping such that the stance leg becomes the 
swing leg and vice versa and it is done once the 
impact has occurred, which in turns produces a 
natural discontinuity in the velocities. For the 
considered approach, the impact dynamics and the 
described map define the double-support phase. 
The conditions for the existence of slipping at the 
double-support phase can also be determined in 
terms of the impact forces and friction 
characteristics as in (6). However, a non slipping 
condition can be assured by considering a specific 
behavior such that, at the end of the step, the robot 
hit the ground with sufficiently slow velocity. This 
implies that the tangential forces at the impact 
point are lower than the friction force. 
 
In a general case where the robot slips, according 
to the instantaneous assumption, the slippage in 
the double-support phase could be considered as 
the one at the beginning of the single-support 
phase. This implies that the eventual slippage will 

correspond to an initial condition for 1  and 2 . In 

this case, it can be shown that the boundedness of 
the closed-loop system holds even when the 
slipping at the impact point is produced. A critical 
situation arises when the velocity is such that the 
impact produces a high discontinuity at the joint 
velocities, nevertheless, based on [3], it can be 
shown that they are expressed as 
 

,][= 1   qELDDq T                        (16) 
 

where D  is given in Equation 2, 52RL  is a 

bounded matrix, and 52RE  is a Jacobian such 

that 
q
P

E

 2= , being 2P  the Cartesian position of 

the end point of the swing leg. Regarding the 
boundedness property of these matrices, the 
impulse generated by the discontinuity of velocities 
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is also bounded and, consequently, the double-
support phase can be considered a perturbation 
that eventually is absorbed by the control strategy. 
 
5.  Experimental results 
 
Before presenting the experimental results of the 
work, a general description of the biped robot 
laboratory prototype is given. 
 
5.1  Experimental platform 
 
The biped robot prototype has been designed in 
order to be dynamically analyzed only in the sagittal 
plane. This is done by means of an external and 
restrictive frame which allows only translational free 
movements along vertical and horizontal axes. The 
biped robot is fixed to the exostructure at the hip, 
allowing a simple and noninvasive support. Figure 3 
shows the physical platform. 
 

 
  

Figure 3. Physical Platform. 
 
Based on [11], the biped robot is built with a 
special actuator mechanism which allows 
generating the high-torque requirements at the 
joints from a low-torque actuator; however, it has 
an important drawback: the high-velocity demand 
for the same actuator. The actuation method 
consists basically on a linkage mechanism, where 
the main input is provided by a brushed DC motor 
producing a translational movement through a ball-
bearing screw which results in the required 
rotational movement for the knee and hip joints. 

This mechanism is depicted in Figure 4 for the 
knee joints. 
 

 
  

Figure 4. Detail of the Linkage Mechanism. 
 
The mechanical advantage of the transmission is 
determined by gain factors that are directly related 
with the current state of each joint. The input-
output torque and velocity relations can be 
manipulated by changing the mechanical 
parameters of the mechanism. 
 
The proposed mechanical interface limits the 
working space because of the admissible 
displacement of the nut along the screw as well as 
the length of the involved elements. Because of 
this, the resulting bounds for the joints can be 
described as 
  

maxkmaxhkminkminh

maxhhminh

qqqqq

qqq




        (17) 

 
where hq  and kq  are the hip and knee joint 

angles respectively, measured with respect to the 
absolute vertical axis according to the generalized 

coordinates in Figure 1. Notice that 
minhq  and 

maxhq , that define the rotation of the femur, are 

defined with respect to the hip, which is assumed 
to be always aligned with the absolute frame {0} ; 

while 
minkq  and 

maxkq , the tibia rotation, are 

defined with respect to the femur. 
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As mentioned before, the contact with the walking 
surface is designed to be punctual and at the end 
of each leg a pressure mechanism has been 
implemented such that, at each contact point with 
the ground, the measurement of the contact force 
is obtained by means of a strategically located low-
cost resistive sensor. This implementation is 
depicted in Figure 5. A Flexiforce sensor is used 
that has an approximate linear resistive response 
to an applied force. 
 

 
 

Figure  5. Pressure Mechanism 
at the End of Each Leg. 

 
In order to compute the articular position, an 
optical encoder is installed at each joint. There is 
also an inclinometer at each tibia to sense an 
eventual fall of the robot. In addition, limit switches 
are used to prevent a mechanical damage as a 
consequence of displacements out of the ranges 
previously defined. 
 
It is clear that the complexity of the mechanical 
prototype is not totally described by the 
mathematical model (2), obtained in Section 2, 
because it does not consider the auto-lock 
characteristic induced by the type of actuation, that 
is, the model assumes that the motor acts directly 
at the joint, a fact that actually does not happen. 
Nonetheless, it is possible to add the effect of the 
actuation mechanism as a gain factor )(q  for the 

control input, in this way, the actual input motor 

torque m , is expressed as 

 
 )(= qjm                               (18) 

 
where subscript j  defines the hip joint ( hj = ) or 

the knee joint ( kj = ) and   is the control signal 

for each joint derived from the closed-loop system. 

5.2  Experimental slip estimation 
 
To carry out the experiments, feedback law (13c)-
(15) is implemented in a Matlab-Simulink platform 
supported on a DSP system DS1104 from DSpace. 
This board acts as real-time interface for the four 
1000cpr optical encoders, the two Flexiforce 
resistive force sensors, the two axes and 9000cpr 
inclinometers at each tibia and the limit switches. 
Also, the DSP system provides the analog output 
torque signals for driving the DC motors. A general 
scheme of the experimental platform is depicted in 
Figure 6. For all the experiments it was considered 
a sampling time of 5 ms. 
 

  
 

Figure  6. Experimental Platform. 
 
The slipping motion at the supporting point of the 
biped robot can be induced by developing one 
step. The slip estimation will be obtained by 
processing the information provided by the force 
sensor that measures the actual force at the 
contact point. This force is split in tangential and 
normal components, according to angle   that 
describes the position of the center of mass as 
depicted in Figure 2. Once the tangential force is 
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known, a preliminary analysis is implemented in 
order to obtain the   coordinates evolution and 

then, with the help of map (11), to obtain the real 

displacement 1  at the base of the stance leg. 

 
Figure 7 shows the articular performance for the 
experiment during one step. The reference 
parameters are such that the step length is set to 
10 cm to be executed in two seconds. The height 
of the hip is defined as cmy

rH 44=  and the 

maximal elevation of the free leg is cmy
r

2=2 . 

These requirements are attained by means of 
suitable polynomial functions which, after an 
inverse kinematic mapping, describe the articular 
reference. For the experiment, the initial conditions 
are close enough to the reference. 
 

  
 

Figure 7. Position Articular Coordinates. 
 
Tangential forces acting at the contact point, that 

is, friction Ff  and the resulting tangential force Tf  

due to the articular dynamics, are depicted in 
Figure 8. Notice that in this particular case, it is at 
the end of the step where the nonslipping condition 

is violated, being || Tf  larger than || Ff . 

 

Figure 9 shows displacement 1  due to the 

slipping phenomenon. In order to satisfy (11c), 
the effective displacement of the contact point is 
affected by an offset defined by the horizontal 

position of the center of mass CMx  and the 1  

coordinate. A representative effective 
displacement is indicated in Figure 9 at the end of 

the step, with an approximate magnitude of 4 mm 
in the opposite direction to the advance. 

 
 

Figure 8. Tangential Forces at the Contact Point. 
 

 
 

Figure 9. Relative displacement at the support point. 
 
Notice that the offset, that appears to be of 4.8 
cm, is mainly dominated by the position of the 
CM at the beginning of the slippage. 
 

The evolution of the auxiliary coordinates 1  and 

2  are shown in Figures 10 and 11, respectively. 

Notice that these coordinates are active only in the 
case that the nonslipping condition is violated; 
before this, the value of both coordinates is 
irrelevant and does not mean anything. However, 

when slipping occurs, the 1  coordinate describes 

a displacement, which results from the definition of 

Equation 11(c), whereas both slide 1  and   

evolve. The case of 2  has a similar active 

dynamics, but the coordinate represents a 
momentum according to Equation 11(d). 
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Figure 10. Auxiliary Coordinate 1 . 
 

 

  
 

Figure 11.  Auxiliary Coordinate 2 . 

 
The Cartesian components for the center of mass are 
depicted in Figure 12, whereas the evolution of the 
swing leg and the hip are shown in Figures 13 and 
14, respectively. Notice that the magnitude of the X
-coordinate of the CM at the beginning of the slip 
mainly corresponds to the offset shown in Figure 9. 
 

  
 

Figure 12. Position of the Center of Mass. 

  
Figure 13. Position of the End Point of. the Swing Leg. 

 

Figure 14. Cartesian Coordinates of the Hip. 
 
6. Conclusions 
 
This work has addressed a simple and low-cost 
method to measure the relative displacement of 
the contact point between the supporting leg of a 
biped robot and the walking surface. Such a 
displacement is due to the slipping dynamics 
produced as a consequence of a performance 
under low-friction conditions together with high-
control actions required to achieve an adequate 
error convergence to desired articular trajectories. 
The implementation of this estimation strategy is 
based on a low-cost force sensor that supported 
on a suitable change of coordinates allows 
obtaining a good estimation of the actual 
displacement that takes place at the support point. 
The information obtained from the force sensors 
identifies all the forces involved not only as a 
consequence of the posture of the robot, but also 
of the inertial components which are not explicitly 
taken into account in a theoretical development. 
The magnitude of the displacement is obtained 
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while the biped robot is driven along a walking 
cycle produced by a specific set of desired 
trajectories. As a second stage of our research, it 
is intended to use the estimated sliding 
measurement directly on the control feedback law 
in order to compensate the slipping phenomenon 
on a particular gait. 
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