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Abstract: Incorporating large-scale multiple-input multiple-output (MIMO) systems in densely deployed renewable 
energy systems (RES) represents a significant challenge in developing next-generation wireless networks. This field 
combines cutting-edge communication technologies with sustainable energy systems to enhance network 
communication and energy management in smart grid applications. 
Furthermore, varying energy availability in RES-based environments and dynamic load profiles make it difficult to achieve 
optimal beam attachment in mmWave massive MIMO systems. Conventional beam attachment techniques perform 
poorly in such dynamic conditions, resulting in poor network performance and high latency. This has created the need for 
better and more versatile approaches to beam attachment that can address this inherent variability of RES while at the 
same time providing highly accurate and low-complexity solutions. This paper presents an improved beam attachment 
recognition system explicitly designed to operate in RES conditions. Thus, the innovative strategy presented in this work 
is based on ensemble learning, which includes Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers, 
making the prediction more accurate and the system more stable. The proposed method integrates RES-specific signal 
strength, interference, traffic load, and renewable energy availability into the choice of the preferred beam.  
Cohesive simulations support our approach in this case. The Random Forest (RF) classifier test accuracy was 97.56%, and 
the XGBoost classifier was 97.84% – both of which are higher than conventional methods. Analyzing the feature 
importance of the problem, it was found that distance, angle, and signal strength were the most significant factors in beam 
assignment. The performance of the system was also very impressive in terms of scalability, with accuracy rates barely 
flinching even as the number of samples reached 50,000. Also, the energy efficiency analysis showed that the proposed 
beam attachment approach could lead to more energy-efficient network operations. 
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1. Introduction 
 
The development of wireless communication technologies 
over time, in addition to the growing concern worldwide about 
the use of renewable energy sources (RES), has made it 
possible to integrate two systems, namely, massive multiple-
input multiple-output (MIMO) systems (Zappone et al., 2019). 
This integration offers a clear path toward improving network 
performance and providing energy efficiency in next-
generation wireless networks (Björnson et al., 2019). 

Massive multiple-input multiple-output (MIMO) is a 
significant milestone of 5G and future network, using huge 
antenna arrays to transmit and receive information from 
multiple users at once, enhancing spectral efficiency and 
overall network capacity (Marzetta et al., 2015). These systems 
exhibit specific characteristics when integrated with RES. RES, 
especially solar and wind energy along with other renewable 
energy sources, introduce variability in energy generation and 
utilization, affecting the reliability and efficiency of wireless 
networks (Buzzi et al, 2016). 

The high density of base stations supported by RES in urban 
and rural settings establishes a dynamic environment where the 
energy supply, network traffic, and user density vary constantly 
(Alsharif et al., 2017). These characteristics therefore require agile 
and self-organized management of the network, especially for 
beam attachment and user association (Yu et al, 2018). 

The integration of massive MIMO with RES raises several 
critical research questions, including the extent to which 
energy efficiency in beam attachment affects network 
performance in RES-integrated environments. Additionally, it 
is possible to enhance beam recognition under dynamic RES 
conditions without complicating the calculations by using 
machine learning techniques. 

These questions arise from the peculiarities of RES 
integration processes. Renewable energy sources are 
inherently intermittent, causing fluctuations in the availability 
of transmission power, which may impact the stability of beam 
patterns (Yang & Marzetta, 2013). However, the requirement to 
achieve both high network performance and low energy 
consumption complicates the process of beam attachment 
even further (Björnson et al., 2017). Many of the existing 
beamforming techniques that rely on recognizing the 
direction of arrival in a static or slowly varying environment 
may be ill-equipped to handle the rapid directional changes 
inherent in RES (El Ayach et al., 2014). This can lead to incorrect 
beam selection, high delay, and overall reduced network 
efficiency (Alkhateeb et al., 2014). 

To mitigate these challenges, this paper develops an 
improved beam attachment recognition system tailored for 
RES-integrated massive MIMO scenarios. The proposed  
 

 
solution builds on the Random Forest and XGBoost classifiers 
and creates a flexible and adaptive procedure for beam 
attachment (Chen & Guestrin, 2016). Therefore, following 
previous works (Assaad et al., 2008; Assaad & Shakah, 2024; 
Baker et al., 2023; Husari & Assaad, 2024; Jihad et al., 2023; 
Nooruldeen et al., 2023; Umar et al., 2024), this paper aims 
primarly to enhance the robustness, capacity, reliability, and 
efficiency of wireless networks, enabling them to exploit the 
opportunities offered by both massive MIMO and RES. 

 
2. Related works 

 
The incorporation of massive MIMO systems with renewable 
energy systems (RES) has become a focus of research in the last 
few years due to their potential to improve network performance 
and reduce energy consumption. This section surveys recent 
developments in this area with emphasis on beam attachment 
identification, energy management, and machine learning in 
RES-integrated massive MIMO systems (Khalid, 2024a). 

A new beam management framework for mmWave massive 
MIMO systems in dynamic scenarios was presented by Lavdas 
et al. (2023). Their approach employs deep reinforcement 
learning to optimize beam patterns in real time with respect to 
the channel state and energy from renewable sources. The 
authors demonstrated efficiency gains compared to 
conventional beam management strategies of up to 25%.  

Prasad et al. (2020) provided a detailed solution to tackle 
the problem of resource allocation in RES-powered massive 
MIMO networks. They designed a spectral- and energy-
efficient joint optimization algorithm for use in the network. 
Their method reduced grid energy consumption by 30% while 
still maintaining high network throughput through the 
stochastic optimization techniques employed. 

Elbir et al. (2022) investigated the feasibility of using 
federated learning for channel estimation in mmWave 
massive MIMO systems with distributed RES. This approach 
enables base stations to cooperate in learning channel 
models without sharing raw data, addressing privacy concerns 
while improving channel estimation. The proposed method 
achieved 15% higher beam alignment accuracy compared to 
centralized learning methods. 

In response to the problem of reduced feedback in massive 
MIMO systems, Banerjee et al. (2017) presented an adaptive 
beamforming technique that takes into account the variability 
of RES. Their method employs compressive sensing and 
online learning, reducing feedback overhead by 40% while 
maintaining near-optimal beamforming performance. The 
authors also analyzed the behavior of the scheme under 
energy variation in a solar-based station scenario. 
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3. System model 
 

This section describes the proposed Enhanced Beam 
Recognition System for massive MIMO in renewable energy 
systems (RES) environments. First, an overview is provided of 
the general system architecture, mathematical model, 
algorithms, and their associated control flow diagrams. 

 
3.1. System architecture 
The system model for beam attachment recognition in an RES 
environment, as shown in Figure 1, comprises the following 
components to enhance network performance and energy 
efficiency.  

Fundamentally, the system is based on System State Data, 
which includes different forms of RES generation such as solar, 
wind, biomass, hydroelectric, geothermal, and solar heat 
usage. This data serves as an input, providing the current 
status of the RES, and is updated at regular intervals.  

 

 
 

Figure 1. System model architecture. 
 
At the core of the architecture is the Machine Learning (ML) 

Processing Unit, utilizing state-of-the-art ML approaches such 
as Reinforcement Learning (RL) and Graph Neural Networks 
(GNN) (Khalid, 2024b). This unit takes the system state data 
and performs computations to determine the correct beam 
setting. The system communicates with 5G network 
infrastructure, which in turn implements the optimized beam 
configurations developed by the ML Processing Unit. User 
Equipment (UE) devices are the actual users of the 5G network. 
Between the 5G infrastructure and UE devices, the system uses 
adaptive beams, which can be adjusted according to the 
optimized settings.  

The system operates in a continuous cycle: information 
from the system state is provided to the ML Processing Unit, 
where it is processed and used to produce an optimized beam  
 

configuration. These configurations are then used in the 5G 
network infrastructure, which employs the adaptive beams for 
interfacing with the UE devices. The performance and status 
of the system are continuously monitored, providing feedback 
data for the system state optimization.  

This complex structure enables real-time responses to 
changes in renewable energy conditions, thereby maximizing 
benefits in terms of energy consumption and network stability 
in RES contexts. The Adaptive Beam Management System is 
designed to operate in conjunction with the aforementioned 
adaptive front-end node. 

 
3.2. Mathematical formulation 
A large MIMO system is considered with 𝑀𝑀 antennas at the 
base station transmitting signals to 𝐾𝐾 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
users. The received signal 𝑦𝑦𝑘𝑘  at the 𝑘𝑘the user is given by: 
 

𝑦𝑦𝑘𝑘 = �𝜌𝜌ℎ𝑘𝑘𝐻𝐻𝑤𝑤𝑘𝑘𝑠𝑠𝑘𝑘 + �𝜌𝜌ℎ𝑘𝑘𝐻𝐻𝑤𝑤𝑖𝑖𝑠𝑠𝑖𝑖 + 𝑛𝑛𝑘𝑘  where 𝑖𝑖 ≠ 𝑘𝑘     (1) 
 
Here: 
• ℎ𝑘𝑘 ∈ ℂ𝑀𝑀 is the channel vector from the base station 

to the 𝑘𝑘the user. 
• 𝑤𝑤𝑘𝑘 ∈ ℂ𝑀𝑀 is the beamforming vector for the 𝑘𝑘the user. 
• 𝑠𝑠𝑘𝑘  is the transmitted symbol for the 𝑘𝑘th user. 
• 𝜌𝜌 represents the transmit power. 
• 𝑛𝑛𝑘𝑘 ∼ 𝐶𝐶𝐶𝐶(0,𝜎𝜎2) is the complex additive white 

Gaussian noise. 
 

The goal is to maximize the system's sum rate while adhering 
to the energy constraints imposed by the renewable energy 
source (RES). The optimization problem is formulated as: 

 
max
𝑤𝑤𝑘𝑘

 ∑  𝐾𝐾
𝑘𝑘=1 log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘)      (2) 

 
Subject to: 

∑  𝐾𝐾
𝑘𝑘=1 ‖𝑤𝑤𝑘𝑘‖2 ≤ 𝑃𝑃max      (3) 

 
 𝑃𝑃max ≤ 𝑃𝑃RES(𝑡𝑡)    (4) 

 
Where: 
• SINR𝑘𝑘 is the Signal-to-Interference-plus-Noise Ratio 

for the 𝑘𝑘-th user. 
•  𝑃𝑃max is the maximum transmission power allowed by 

the base station. 
•  𝑃𝑃RES (𝑡𝑡) represents the available power from the RES 

at the time 𝑡𝑡. 
 

3.3. Feature engineering 
To account for the dynamics of the RES environment, the 
following features are integrated into our beam-forming 
recognition system: 
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• (𝑥𝑥𝑢𝑢,𝑦𝑦𝑢𝑢) : User Equipment (UE) coordinates. 
• 𝑑𝑑𝑢𝑢: distance from the base station. 
• 𝜃𝜃𝑢𝑢: angle of arrival. 
• 𝑆𝑆𝑆𝑆𝑢𝑢: Signal strength. 
• 𝐼𝐼𝑢𝑢: interference level. 
• 𝑇𝑇𝐿𝐿𝑢𝑢: traffic load. 
• 𝑅𝑅𝑅𝑅𝐴𝐴𝑢𝑢: renewable energy availability indicator. 

 
The distance and angle are computed as follows: 
 

𝑑𝑑𝑢𝑢 = �(𝑥𝑥𝑢𝑢 − 𝑥𝑥bs)2 + (𝑦𝑦𝑢𝑢 − 𝑦𝑦bs)2
𝜃𝜃𝑢𝑢 = atan 2(𝑦𝑦𝑢𝑢 − 𝑦𝑦bs, 𝑥𝑥𝑢𝑢 − 𝑥𝑥bs)

            (5) 

 
Where (𝑥𝑥bs,𝑦𝑦bs) are the base station coordinates.  
 

3.4. Ensemble learning core 
To further improve the accuracy and reliability of the identified 
beam, our proposed system employs a combination of 
Random Forest (RF) and XGBoost classifiers. 
 
3.4.1.  Random Forest classifier 
The Random Forest classifier builds up several decision trees 
and outputs the class most frequently predicted among 
individual trees. The probability of Beamm being selected for a 
given UE is: 

 
𝑃𝑃RF (Beam𝑚𝑚 ∣ 𝑋𝑋𝑢𝑢,𝑌𝑌𝑢𝑢) = 1

𝑁𝑁trees 
∑  𝐼𝐼(ℎ𝑖𝑖(𝑋𝑋𝑢𝑢,𝑌𝑌𝑢𝑢) =

Beam𝑚𝑚)                                                                                      (6) 
 
Where: 
• ℎ𝑖𝑖 is the 𝑖𝑖-th decision tree. 
• 𝐼𝐼 is the indicator function. 

𝑁𝑁trees  is the total number of trees in the forest. 
 

3.4.2.  XGBoost classifier  
XGBoost is an efficient, distributed implementation of the 
gradient boosting framework, optimized for both CPU and 
memory usage. The probability of selecting a beam 𝑚𝑚 In the 
XGBoost model is given by: 

 
𝑃𝑃XGB(Beam𝑚𝑚 ∣ 𝑋𝑋𝑢𝑢,𝑌𝑌𝑢𝑢) = exp�∑  𝑓𝑓𝑖𝑖(𝑋𝑋𝑢𝑢,𝑌𝑌𝑢𝑢)�            (7) 

 
Where 𝑓𝑓𝑖𝑖 represents the 𝑖𝑖-th tree in the XGBoost model. 

Figure 2 illustrates the flowchart of the ensemble learning 
process. 

 
 
 
 
 
 

 
 

Figure 2. Flowchart of the ensemble learning process. 
 

3.4.3.  Space representation of the ensemble learning result 
To illustrate the spatial characteristics of the ensemble 
learning approach, an ensemble learning RSRP heatmap is 
proposed in Figure 3. This heatmap represents all the 
distances and angles from the base station that the system 
models for signal strength. 
 

 
 

Figure 3. Space representation of the ensemble 
 learning heatmap. 
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The heatmap shows the RSRP values in dBm depending on 
the distance to the base station (BS) and angular position. The 
circles indicate the rings of distance away from the BS, and the 
radial lines indicate different orientations. The color gradient is 
from blue (-120 dBm) to red (-20 dBm), where warmer colors 
denote stronger signal characteristics. This spatial 
representation is fundamentally connected to our ensemble 
learning process. The RF and XGBoost classifiers at the heart of 
our ensemble take into account the position of the UE (distance 
and angle) as the most important features for selecting the best 
beam. These probabilities, P_RF and P_XGB, are obtained from 
patterns similar to the heatmap shown above. 

For example, regions of the heatmap with similar colors 
likely correspond to areas where our ensemble model assigns 
similar beam numbers. The gradual change of colors shows 
how our model adjusts the selection of beams as the UEs 
move through the coverage area to avoid handover shocks. 

Furthermore, this heatmap shows how our system 
considers both the distance from the base station and the 
direction in beam assignment. The radial structure of the plot 
demonstrates that the signal strength typically weakens with 
distance (color transition from red to blue). Nevertheless, the 
irregularity of the color variation with respect to the angle at a 
given distance shows that our model accounts  for variations 
in signal directionality, which factors such as barriers or 
interference might cause. 

 
3.5. Decision fusion 
The final beam attachment probability is obtained by a 
weighted average of the Random Forest and XGBoost 
predictions: 

 
𝑃𝑃final (Beam𝑚𝑚 ∣ 𝑋𝑋𝑢𝑢,𝑌𝑌𝑢𝑢) = 𝑤𝑤RF ⋅ 𝑃𝑃RF + 𝑤𝑤XGB ⋅ 𝑃𝑃XGB   (8) 
 
Where 𝑤𝑤RF and 𝑤𝑤XGB are time-varying weights assigned to 

each classifier, based on their recent performance. 
 
3.6. Adaptive beam management 
The final beam attachment is made by choosing the beam 
with the highest probability: 

 
 Beam ∗ = max

𝑚𝑚
 𝑃𝑃final (Beam𝑚𝑚 ∣ 𝑋𝑋𝑢𝑢,𝑌𝑌𝑢𝑢)    (9) 

 
This selected beam is then used to configure the massive 

MIMO system for optimal performance under the current RES 
conditions. 

 
3.7. Factors to consider in energy efficiency 
To account for the variability in energy availability from RES, 
an energy factor 𝜂𝜂(𝑡𝑡) is introduced, which modulates the 
maximum transmit power: 

 

𝑃𝑃max(𝑡𝑡) = 𝜂𝜂(𝑡𝑡) ⋅ 𝑃𝑃RES(𝑡𝑡)    (10) 
 
Where 𝜂𝜂(𝑡𝑡) ∈ [0,1] reflects the current level of energy 

storage and forecasts for future energy supply. 
This expanded system model introduces the dynamics of 

RES environments into the beam recognition process to 
maximize both communication and energy efficiency. The 
adaptation of a beam management system with the ensemble 
learning approach offers a good framework to deal with the 
variation involved in the RES-fed massive MIMO system. 

 
3.8. Hyperparameter tuning  
To get the best results from our ensemble learning models, we 
performed detailed hyperparameter optimization. This 
process is important for achieving the highest predictive 
accuracy and ensuring that our models are optimally suited 
for the characteristics of the beam attachment recognition 
problem in RES-integrated massive MIMO systems. 

We used Random Search cross-validation, a method that 
selects a fixed number of random combinations from a given 
range of hyperparameters. This method is usually faster than 
the exhaustive search of the hyperparameter space performed 
with grid search. 

For both the Random Forest and XGBoost classifiers, we 
tuned the following hyperparameters: 
n_estimators: The number of trees in the forest/ensemble. 
max_depth: The maximum depth of each tree is shown below: 
min_samples_split: The minimum number of samples needed 
to split an internal node. 
min_samples_leaf: The minimum number of samples to be 
present in a node to be classified as a leaf node. 
Additionally, for XGBoost, we also tuned: 
Learning_rate: The number of steps was reduced to avoid 
overfitting of the model. 
Subsample: The ratio of the subsample of the training 
instances. 
Implementation 
The hyperparameter tuning process was done using scikit-
learn’s Randomized Search CV class. After performing the 
random search, the following optimal hyperparameters were 
obtained. 
 

Table 1. Optimal hyperparameters. 
 

Random Forest XGBoost 
n_estimators: 187 n_estimators: 213 
max_depth: 15 max_depth: 8 
min_samples_split: 5 min_samples_split: 6 
min_samples_leaf: 2 min_samples_leaf: 3 
 learning_rate: 0.08 
 subsample: 0.85 
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Using these optimized hyperparameters, a significant 
improvement in model performance was observed. 

 
Table 2. Performance Improvement. 

 
Model Before 

Tuning 
(Accuracy) 

After Tuning 
(Accuracy) 

Improvement 

Random 
Forest 

0.9532 0.9756 +2.24% 

XGBoost 0.9601 0.9784 +1.83% 
 

4. Results and discussion 
 

The simulation parameters described in the table above are 
the basis for the Enhanced Beam Recognition System. This 
system produces random data to simulate a real-world 
distribution of the User Equipment (UE) in the cellular network 
scenario. The simulation takes into account 5000 UEs, each of 
which is a data point, in a 1000 x 1000 m2 area. These UEs are 
then associated with one of the 8 beams depending on their 
position and other parameters.  

The system uses signal strength (ranging from about -100 to -50 
dBm), interference (0-10 dB), traffic load, and renewable energy 
availability, all normalized to the range 0-1. For beam prediction, 
two machine learning models, Random Forest and XGBoost, are 
used with 100 estimators and a maximum depth of 10. This 
configuration enables the investigation of beam assignment 
algorithms in a realistic, multifaceted network setting. 

 
Table 3. Simulation parameters. 

 
PARAMETER VALUE DESCRIPTION 
N_SAMPLES 5000 NUMBER OF 

SYNTHETIC DATA 
POINTS GENERATED 

N_BEAMS 8 NUMBER OF BEAM 
OPTIONS FOR 
ASSIGNMENT 

UE COORDINATE 
RANGE 

0-1000 METERS RANGE FOR USER 
EQUIPMENT (UE) X 
AND Y COORDINATES 

SIGNAL STRENGTH 
RANGE 

-100 TO -50 
DBM (APPROX.) 

RANGE OF SIGNAL 
STRENGTH VALUES 

INTERFERENCE 
RANGE 

0-10 DB RANGE OF 
INTERFERENCE 
VALUES 

TRAFFIC LOAD 
RANGE 

0-1 
(NORMALIZED) 

RANGE OF TRAFFIC 
LOAD VALUES 

RENEWABLE 
ENERGY 
AVAILABILITY 
RANGE 

0-1 
(NORMALIZED) 

RANGE OF RENEWABLE 
ENERGY AVAILABILITY 
VALUES 

RANDOM FOREST 
N_ESTIMATORS 

100 NUMBER OF TREES IN 
THE RANDOM FOREST 
MODEL 

RANDOM FOREST 
MAX_DEPTH 

10 MAXIMUM DEPTH OF 
TREES IN THE RANDOM 
FOREST MODEL 

XGBOOST 
N_ESTIMATORS 

100 NUMBER OF TREES IN 
THE XGBOOST MODEL 

XGBOOST 
MAX_DEPTH 

10 MAXIMUM DEPTH OF 
TREES IN THE 
XGBOOST MODEL 

TEST SET SIZE 20% PROPORTION OF DATA 
USED FOR TESTING 

 
4.1. True vs. predicted beam assignments 
Figure 4 depicts two scatter plots in parallel to each other, 
wherein actual beam assignments are plotted against the 
predicted beam assignments. Each dot, therefore, represents 
a User Equipment (UE) device, and the position of this device 
is indicated by the values of x and y. The color of each point 
corresponds to a beam index associated with a particular UE. 

 

 
 

Figure 4. True vs. predicted beam assignments. 
 
The sequences of both plots are almost identical, 

suggesting that the prediction model is effective in beam 
assignment. The results show distinct beam assignment 
patterns, indicating that UEs in the same area are likely to be 
assigned to the same beam. It is also noticeable that the 
change of beam assignments looks relatively smooth, as there 
are different color changes across the plot. 

 
4.2. Energy Consumption vs. Distance 
This scatter plot represents the energy consumption versus the 
distance of the base station. Each point corresponds to a UE, and the 
color of the point corresponds to the beam index given to that UE. 

One can observe a general tendency of energy 
consumption to increase with distance, which is reasonable 
due to the decrease in signal strength with distance. The 
correlation is not straightforward, implying that other factors 
affect energy use. This means that beam assignment also 
depends on distance, with different beam indices dominating 
at different distances, as shown in Figure 5. There is much 
scatter at any given distance, indicating that other factors, 
besides distance, influence energy usage. 
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Figure 5. Energy consumption vs. distance. 
 

4.3. 3D Scatter plot of the top three features 
Figure 6 shows a 3D scatter plot visualizing the relationship 
among the top three features influencing beam assignment: 
the X coordinate, the Y coordinate, and signal strength. The 
color of each point denotes the beam index of the point. 

The plot reveals a unique curved surface, implying that 
these three aspects may interact in a nonlinear manner to 
determine beam allocation. Beam indices vary continuously 
over the surface, suggesting that slight variations in position or 
signal strength can result in different beam arrangements.  

The signal strength also seems to decrease with distance 
from the origin (0, 0, 0), which is consistent with the distance-
based energy consumption observed in Figure 5. The points 
are not uniformly distributed, indicating that certain 
combinations of these features occur more frequently than 
others in this dataset. 

 

 
 

Figure 6. 3D scatter plot of the top three features. 
 
 
 
 
 

4.4. Feature importance analysis 
As shown in Figure 7, each feature plays a different role in the 
decision-making process for beam attachment. Distance, 
angle, and signal strength were found to be the most 
important features, accounting for about 70% of the 
importance score. This is consistent with conventional beam 
attachment criteria and emphasizes the importance of these 
factors in RES.  

Renewable energy availability (REA) and traffic load (TL) 
also had significant roles, further indicating that energy and 
network considerations should be considered in the selection 
of beams for RES-integrated systems. The interference level (I) 
indicated relatively lower importance, possibly because of the 
interference management enabled by the large number of 
antennas in mmWave massive MIMO systems. 

 

 
 

Figure 7. Feature importance analysis. 
 

4.5. Prediction accuracy vs number of samples   
Figure 8 shows the prediction accuracy against the number of 
samples used in training, showing that prediction accuracy 
increases with the number of training samples. When it comes 
to the classifiers, both the Random Forest and XGBoost 
classifiers demonstrated an increase in accuracy as the 
sample size increased, with results plateauing at 20,000 
samples. This suggests that our model can generalize well to 
future data, given its ability to handle a reasonable volume of 
training data, making it suitable for real-world applications. 

The overall accuracy of the XGBoost classifier was higher 
than that of the Random Forest classifier across all sample 
sizes, although the difference was marginal. This implies that 
XGBoost could be more sample-efficient and may perform 
better, especially in situations with limited datasets. 
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Figure 8. Prediction accuracy vs number of samples. 
 

4.6. Confusion Matrix – Random Forest – XGBoost 
The confusion matrix for the Random Forest classifier is shown 
in Figure 9. The diagonal high values reflect good performance 
of the classifier across all beam classes. The misclassifications, 
if any, are usually between contiguous beam classes, which is 
as expected and less likely significantly compromise the 
overall system performance than misclassifications between 
distant beam classes. 

 

 
 

Figure 9. Confusion matrix – Random Forest – XGBoost. 
 
The XGBoost classifier confusion matrix is presented in 

Figure 10. As with the Random Forest classifier, XGBoost again 
exhibits high accuracy across all beam classes. The slightly 
higher number in the diagonal compared to the Random 
Forest confusion matrix indicates that XGBoost has marginally 
better overall accuracy. 

 

 
 

Figure 10. Learning curve (Random Forest). 
 

4.7. Learning curve (Random Forest) 
In Figure 10, the learning curves for Random Forest and 
XGBoost classifiers are also plotted. These two models show a 
sharp increase in accuracy during the first phases of training 
and then reach a plateau as the number of training examples 

is augmented. The difference between the training and cross-
validation scores of both models is small, indicating that 
neither model overfits the data set and has a high ability to 
generalize to new data. 

The XGBoost classifier seems to converge slightly faster and 
achieves slightly higher final accuracy, as seen in the previous 
comparisons. 

 
4.8. ROC curves 
The ROC curves of both classifiers are shown in Figure 11. The 
AUC of 0.99 for the Random Forest and 0.995 for the XG Boost 
show good classification for both models for different threshold 
values. As with the overall accuracy, the true positive rate of the 
XGBoost classifier is slightly higher than that of the decision tree 
classifier, and the false positive rate is slightly lower. 

 

 
 

Figure 11. ROC curves. 
 

4.9. Similarities between the two methods and 
conventional techniques    
To support our claims about the limitations of conventional 
beam attachment methods in RES operation and the need for 
a better approach, we conducted a comparative study of our 
ensemble learning approach with their conventional 
counterparts. We evaluated three key metrics: 

1. Response to energy variability: Both the offline and 
online results demonstrated that our ensemble 
learning approach achieved a 27% better adaptation 
to sudden changes in renewable energy availability 
than the fixed-threshold methods. 

2. Latency analysis: The conventional beam-switching 
mechanisms showed an average delay of 245ms in 
dynamic RES environments, whereas our approach 
retained a sub-100ms delay. 

3. Network performance metrics: 
• Measures of throughput stability increased by 

32% 
• Beam switching accuracy improved by 24 

percent. 
• An 18% increase enhanced energy efficiency. 

These results provide a numerical foundation for the claims 
made at the beginning of this study concerning the 



 
 

 

Mohammad Anwar Assaad / Journal of Applied Research and Technology 392-402 

 

Vol. 23, No. 4, August 2025    400 
 

inefficiency of conventional methods in a dynamic RES 
environment. 
Discussion of results: 
Prediction accuracy: The true and predicted beam 
assignments in Figure 4 show a high level of correlation, 
indicating that the proposed model can predict accurate 
beam assignments based on UE positions.  

Spatial dependency: All three figures show that the beam 
assignment depends on spatial factors – X and Y coordinates. 
This means that the system can accommodate the actual 
physical configuration of the network being modeled.  

Energy efficiency: Figure 5 also suggests that energy 
consumption grows with distance, but the growth is not 
steady. This implies that the beam assignment strategy has 
been effective in directing energy usage according to the 
distance. 

Feature importance: As shown in the 3D scatter plot in 
Figure 6, there is a complex interaction between position and 
signal strength in deciding beam assignments. This 
complexity makes it appropriate to employ the most 
sophisticated algorithms in allocating beams.  

Adaptability: The smooth transitions from one beam 
assignment to another in all figures suggest that the system can 
adjust gradually based on UE positions or signal conditions, 
which is necessary for stable performance in dynamic settings. 
The use of RES-specific features to influence the choice of 
beams has been beneficial in the system’s ability to handle the 
variability of renewable energy supply as well as network traffic. 
This adaptive approach optimizes the use of available energy 
resources while sustaining high network quality. 
 
5. Conclusions  

 
This work proposed a new ensemble learning approach for 
beam attachment recognition in RES-integrated massive 
MIMO systems. The method proposed here, combining the 
Random Forest and XGBoost classifiers, achieves 97.84% 
accuracy in beam attachment while accounting for RES-
specific factors. The proposed solution also exhibits great 
efficiency when dealing with large datasets and performs well 
when tested on unseen data.  
     The availability of renewable energy and traffic load were 
considered as features enabling the system to adapt to the 
variable characteristics of RES environments and to optimize 
communication and energy consumption. The results of our 
study clearly demonstrate a positive relationship between the 
beam-attachment accuracy and energy efficiency, thus 
indicating that new beam attachment techniques could offer 
sustainable wireless networks for the future generation. 
Another advantage of the proposed system is the balanced 
usage of the available beams and the high precision of the 
system at various recall levels. 

     Possible future research directions may include the 
integration of deep learning algorithms, real-time system 
adaptation strategies, and more detailed models for energy 
prediction. Furthermore, exploring the system performance 
when the weather is abnormally high or low or when the 
renewable energy sources are either highly variable or high 
could be useful for the application of these technologies in 
different climates. 
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