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ABSTRACT 
Measurements are required to maintain the consistent quality of all finished and semi-finished products in a production 
line. Many firms in the automobile and general precision industries apply the TS 16949:2009 Technical Specifications 
and Measurement System Analysis (MSA) manual to establish measurement systems. This work is undertaken to 
evaluate gauge repeatability and reproducibility (GR&R) to verify the measuring ability and quality of the measurement 
frame, as well as to continuously improve and maintain the verification process. Nevertheless, the implementation of 
GR&R requires considerable time and manpower, and is likely to affect production adversely. In addition, the evaluation 
value for GR&R is always different owing to the sum of man-made and machine-made variations. Using a Monte Carlo 
simulation and the prediction of the repeatability and reproducibility of the measurement system analysis, this study aims 
to determine the distribution of %GR&R and the related number of distinct categories (ndc). This study uses two case 
studies of an automobile parts manufacturer and the combination of a Monte Carlo simulation, statistical bases, and the 
prediction of the repeatability and reproducibility of the measurement system analysis to determine the probability density 
function, the distribution of %GR&R, and the related number of distinct categories (ndc). The method used in this study 
could evaluate effectively the possible range of the GR&R of the measurement capability, in order to establish a 
prediction model for the evaluation of the measurement capacity of a measurement system. 
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1. Introduction 
 
A number of different measurement methods have 
been developed to assess the precision and 
quality of products, and these mainly focus on the 
total variation of measurement, generally called 
measurement uncertainty [1]. In many 
manufacturing processes, parts are measured to 
ensure certain specifications are met. However, 
these measurements might be misleading if the 
measurement system itself is not adequate [2]. 
Measurement errors can be caused by the 
measurement instruments, appraisers, objects 
measured, or the measuring environment. In this 
context, gauge variability plays a key role in quality 
improvement because only with a gauge that has 
acceptable repeatability and reproducibility can the 
adequacy of a product’s measurement process be 
determined. Therefore, a sound measurement 
system is an essential part of the total quality 
assurance programs used by many companies [3]. 
Evaluating a measurement system is an important 
aspect of many quality and process improvement 
activities [1], and in recent years, following the 
introduction of QS 9000/TS 16949 and the Six 

 
 
Sigma program, quality control personnel have 
begun to focus more heavily on the measurement 
systems they use, as well as on the problems of 
repeatability and reproducibility [4]. Repeatability is 
defined as the “variation in measurements 
obtained with one gauge being used for several 
times by one appraiser while measuring a 
characteristic on one part”. Reproducibility is 
defined as the “variation in the average of the 
measurements made by different appraisers using 
the same gauge when measuring a characteristic 
on one part” [5]. 
 
Montgomery and Runger [6] indicated that a 
measurement system should play an active role in 
the actions for quality improvement carried out by 
organizations, and that GR&R analysis should be 
used to identify the sources of variations within 
measurement processes and to quantify these 
variations. In order to reduce uncertainties, 
ISO/IEC 17025 [7] was formulated to evaluate 
Type I errors (α), which are the risk of 
manufacturers judging qualified products as 
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defective ones, and Type II errors (β), which are 
the risk of consumers judging defective goods as 
qualified ones. In practice, a measurement system 
does not always obtain the exact dimensions of the 
part, but gives measurements that deviate to some 
extent from the true value [1]. In addition, there is 
also some uncertainty about inaccuracies in the 
measurements, because accurate measurements 
of these errors are also difficulty to obtain [3]. Type 
II errors require particular attention, because they 
could affect directly subsequent manufacturing 
processes and cause customer complaints or 
increase quality failure costs. AIAG [8] indicated 
that Statistical Process Control (SPC) is normally 
used to monitor the measurement capability of a 
process, and that SPC is not merely a useful tool, 
but an essential part for quality assurance, 
because without good evaluation of measurement 
capability and reliability, the measured data cannot 
be considered unreliable [9]. 
 

Previous research on this topic has examined 
mainly how firms undertook analyses of their 
measurement systems [3,4,10] or presented 
comparisons of various measurement evaluation 
methods. For instance, statistical methods have 
been used to predict how to apply an evaluation 
method or whether there were any interactions 
between researchers and products [1,2,11]. Using 
the medium, ‘Average and Range’ analysis in the 
MSA Reference Manual [12] to evaluate the 
statistical requirements of GR&R, the current study 
applies a Monte Carlo simulation to predict the 
repeatability and reproducibility of the measurement 
system analysis. It does this by judging the 
distribution of %GR&R and ndc, determining the 
possible distribution area and evaluating its 
probability with statistical data, as well as predicting 
the measurement uncertainty. The results of this 
analysis could serve as the foundation for the 
evaluation and continuous improvement of a 
company’s measurement systems, enabling more 
effective monitoring of products and the 
achievement of better quality specifications and 
thus, greater customer satisfaction. 
 

2. Literature review 
 
2.1 Measurement system analysis 
 

Measurement system analysis (MSA) is a systematic 
procedure that identifies the components of variations 
in the precision and accuracy assessments of the 

measuring instruments used in a measurement 
system [13]. The aims of MSA are to: (1) determine 
the extent of the observed variability caused by a test 
instrument, (2) identify the sources of variability in a 
testing system, and (3) assess the capability of a test 
instrument [14]. 
 
MSA is an important element both of Six Sigma and 
of the ISO/TS 16949 standards [15]. It is used to 
evaluate the reliability of some important input and 
major output data in the manufacturing process, 
understanding the variations caused by people, 
machines, materials, methods, or the environment, 
and then using the analyzed data as a reference for 
improvements [1]. 
 
Since the adoption of MSA by three major Northern 
American automobile manufacturers in 1991, the 
entire industry has also begun to use this approach. 
In addition, with the various problems that could arise 
during the manufacturing of high-technology, 
function-oriented, and ultra-precision products, the 
precision of measuring instruments has received 
increased attention in the literature [2]. If the 
measurement results are not accurate, then it is more 
likely that poor quality products will be supplied to 
customers. For this reason, manufacturing and 
examination processes both require a precise 
measurement system in order to maintain product 
quality and to enhance a firm’s reputation. General 
evaluations of measurement systems include 
calibration, MSA, and correlation, and a summary of 
these methods is presented in Table 1. 
 
MSA applies statistics and charts to implement a 
simple experimental design and statistical analyses 
of measurement system errors, and assesses 
variations in the measuring instruments and the work 
of on-site inspectors [10]. If the errors that occur with 
the measuring instruments and the inspectors are 
significant, then the reliability of the data recorded in 
the measurement process will be in doubt. The ideal 
measurement system should have statistically zero 
mistakes with regard to the measured product [1], 
although this is not possible in practice. 
 
Three basic statistics arise from measurement. 
First, the measurement system should have an 
appropriate degree of discrimination with the best 
discrimination showing 1/10 of the total process 6σ, 
not 1/10 of the traditional tolerance. Second, the 
measurement system should have statistical 
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evaluation stability at a specific time, and this 
applies not only to the stability of the measuring 
instruments, but also to reproducibility. Third, the 
statistical generalization of the measurement error, 
or the variation, should achieve consistency within 
the expected range, which could then be used in 
the process analyses or control. The measurement 
system error for variable instruments is classified 
with regard to accuracy and precision. Here, 
accuracy refers to the difference between the 
measured value and the real value of the sample, 
whereas precision is the measurement variation 
resulting from the same equipment repeatedly 
measuring the same sample. In any measurement 

system, one or two errors are likely to appear. 
Furthermore, precision is divided into two elements: 
repeatability and reproducibility. The former is the 
variation caused by a measurement instrument, 
whereas the latter is the variation resulting from a 
measurement system. The MSA manual [12] 
proposes three variable gauges to confirm 
repeatability and reproducibility: the Range, the 
Average and Range, and ANOVA (Analysis of 
Variance) methods. Barrentine [16] presented a 
complete introduction of the Average and Range 
method to observe the composition of the process 
variations, as summarized in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method 
Item 

Calibration 
Measurement system 

analysis (MSA) 
Correlation 

Sample selection 
Standard item could refer to 

international standard. 
Sampling the actual product

Customer specified or 
customer and manufacturer 

agreed standard items 

Measured result 
International standard is 

available 
Acceptable deviation and 

variation 

Measurement consistency of 
the same sample with 
different measuring 

instruments 

Measuring environment Controlled laboratory Manufacturing environment Manufacturing environment

Method of judgment 
Errors within 1/10 of 

measurement tolerance 
Based on the AIAG MSA 

manual 

Customer specified error 
range or 1/10 of 

measurement tolerance 
 

Source: Barrentine [16] 
 

Table 1. Evaluation methods of measurement systems. 

 
 

Source: Barrentine [16] 
 

Figure 1. Analyses of process variation.
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2.2 GR&R studies 
 
Measurement errors could be caused by the 
measurement instruments, measuring personnel, 
measured objects, and the measuring environment. 
Measurement data become inaccurate without a 
precise measurement system for assessment, 
evaluation, and monitoring, leading to inaccurate 
calculations of process capabilities [9]. GR&R studies 
are performed according to the QS 9000 standards. as 
stated in MSA [17], in order to assess the suitability of 
a gauge. Both QS 9000 and ISO/TS16949 in MSA 
define GR&R as acceptable criteria. 
 
Pan [4] indicated that there were three evaluation 
methods commonly used to study GR&R in industry 
and academia. First, Mandel [18] used the 
expected mean squares to find the total variation of 
measurement based on the concept of ANOVA. 
Second, Montgomery and Runger [19] proposed 
Classical GR&R. This uses the mean and range to 
estimate the total variation of measurement of 
GR&R, which obtains an estimate of the standard 
deviation for GR&R. Third, three major American 
automobile companies, GM, Ford, and Chrysler, 
developed the Long Form approach introduced in 
the MSA manual [12]. This method is used to 
estimate the total measurement variation of GR&R 
and the precision value to tolerance (P/T) ratio, and 
it was designed especially for use by quality 
practitioners without a statistical background. 
 
Feng et al. [11], Mandel [18], and McNeese and Klain 
[20] also mentioned the concepts of repeatability and 
reproducibility. Repeatability is defined as repeatedly 
measuring the same product in the same laboratory 
and measuring the variation in the results, whereas 
reproducibility is defined as repeatedly measuring the 
same product in different laboratories and measuring 
the variation in the results. Tsai [21] defined 
repeatability variation as the same appraiser 
repeatedly measuring the same sample in the same 
environment and obtaining the measurement 
variation, which is the variation produced by the 
gauge in the process of measuring. He further 
defined reproducibility variation as different 
appraisers measuring the same sample in the same 
environment and acquiring the measurement 
variation. Comparing Mandel [18] and Tsai [21], the 
reproducibility variation in the former was caused by 
different appraisers, whereas it was caused by 
different laboratories in the latter. McNeese and Klain 

[20] stated that the variation analyses and sampling 
techniques in measurement systems are the 
elements that could be used to improve measurement 
capability, and that product and measurement 
variation are the two factors that make up the overall 
variation. In this case, changes in variation should be 
emphasized in the measuring process. They also 
stated that a capable measurement system, as 
defined by Ford, should emphasize the statistical 
control of the mean value and variance.  
 
Here, the observed mean value in the process 
should approach the true value of the product, 
while the measurement variation should be less 
than 10% of the total process variation. The 
capability of precision (CP) is shown in formula (1), 
in which tolerance is the specification limit and the 
standard deviation (σ) is the process standard 
deviation of the observed value. 
 

σTolerance/CP 6                                          (1) 

 
The three major US automobile companies, 
Chrysler, Ford, and GM, published the MSA 
Reference Manual in 1991, which set out the 
Average and Range method, which has since 
become widely accepted by academia and industry. 
However, there are a number of problems with this 
approach, such as a lack of charts in the evaluation 
formula for part variation, and no measurement 
capacity indicators. Therefore, James and Finderne 
[22] proposed a mean graph, range graph, and 
scatter plot to improve the Average and Range 
method. Barrantine [16] presented a complete 
introduction of the Average and Range method in 
the MSA manual, where four or more appraisers 
could be used, and GR&R analysis of a 
measurement system could be carried out with less 
than ten sample parts or only one appraiser. He 
also proposed an acceptable value to judge a 
gauge system when measuring precision, namely 
%GR&R, as shown in formula (2). In this system, 
value < 10% is defined as an excellent system for 
the gauge, values of between 10% and 20% are 
deemed as an appropriate measurement, values of 
between 20% and 30% are at the edge of 
acceptance, and values > 30% are seen as 
unacceptable, and thus, requiring readjustment. 
 

100
ˆ

ˆ
&% 

Total

gauesRGR
σ

σ
                                    (2)
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Montgomery and Runger [19] stated that ANOVA is 
more accurate than the Average and Range 
method because it takes the interaction between 
the operator and the sample part into account. 
However, although either the Average and Range 
method or ANOVA can be utilized when choosing 
MSA GR&R, the standard values for accuracy need 
to be the same. The acceptable general proportions 
for Precision Width Error mentioned in the MSA 
manual [12] are shown in Table 2. These suggest 
that the number of distinct categories (ndc) could 
distinguish the largest number of categories when 
choosing the measurement system to process the 
data, and that this should be greater than five for 
the analyzed data to be considered reliable. The 
calculation formula for ndc is described in the 
following research methods. 
 
2.3 Monte Carlo simulation 
 
The Monte Carlo simulation, which originated from 
statistical sampling, was first presented by 
Metropolis and Ulam [23]. It has been widely used 
to model complex systems [24] with several authors 
adopting it to measure system reliability owing to its 
advantages of convenience and accuracy [25]. A 
Monte Carlo simulation requires the following 
elements [26]: (1) a probability density function 
(p.d.f.); (2) a random number generator to provide 
random numbers; (3) a sampling prescription, 
sampled from a specified p.d.f. with an available 
unit interval random number; (4) calculation, in 
which the output results need to be given as a total 
value; (5) miscalculation, in which the relationship 
between the number of times statistical errors occur 
and the functions of other numbers needs to be 
confirmed; (6) a variation reducing technique, to 
reduce the time needed to calculate the Monte Carlo

 
 
 
 
 
 
 
 
 
 
 
 
 
 
simulation; and (7) horizontal and vertical integration, 
to apply the Monte Carlo simulation effectively to an 
advanced computing system structure. 
 
The Monte Carlo simulation is a method for 
evaluating iteratively a deterministic model using sets 
of random numbers as inputs. This method is often 
used when the model is complex, nonlinear, or 
involves more than just a couple of uncertain 
parameters [26]. The Monte Carlo simulation is 
categorized as a sampling method because the 
inputs are generated randomly from probability 
distributions to simulate the process of sampling from 
an actual population. Therefore, we try to choose a 
distribution for the inputs that matches most closely 
the data we already have, or best represents our 
current state of knowledge. The data generated from 
the simulation can be represented as probability 
distributions (or histograms) or converted to error 
bars, reliability predictions, tolerance zones, and 
confidence intervals (See Figure 2) [27]. 
 

 
 

Source: Wittwer [27] 
 

Figure 2. Output reliability, tolerance, and confidence 
interval in a Monte Carlo simulation. 

GRR Judgment Evaluation 

Less than 10% 
It is generally considered as an 

acceptable measurement system.
It is recommended when process reinforcement is required 

for arranging or classifying parts. 

10%-30% 
It is considered acceptable in some 

applications. 

The corresponding importance, cost of measuring devices 
and maintenance are taken into account for accepting the 

error; or, it should be agreed by the customer. 

More than 30% It is considered unacceptable. 

Efforts should be made to promote the selection of the 
measurement system. Some appropriate measuring 

strategies can be applied to solve the problems, such as 
utilizing the average eigenvalue to lower the final change in 

measurement. 
 

Source: AIAG MSA Manual [11] 
 

Table 2. Acceptable general proportions for precision width error. 
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The basic principle of a Monte Carlo simulation lies 
in defining p.d.f. with the probability of all possible 
results. The p.d.f. then becomes the cumulative 
probability function, the value of which is adjusted 
to the maximum level of 1, called normalization. 
This also shows that the total probability of all 
events is 1, which means that the simulation could 
be used for both random sampling and real 
problems. Using the simulation with the p.d.f. input, 
the reliability, tolerance, and confidence interval of 
real problems can be simulated. Five basic steps 
are needed to carry out a Monte Carlo simulation, 
as follows [28]: 
 
Step 1: Generate a model with parameter y = f(x1, 

x2, ..., xq) 
 
Step 2: Generate a set of random number inputs 

xi1, xi2, ..., xiq 
 
Step 3: Evaluate the model with the saved result yi 
 
Step 4: Repeat Steps 2 and 3, i = 1 to n 
 
Step 5: Analyze the statistical results and 

confidence intervals 
 
Random numbers are required at the beginning of 
a Monte Carlo simulation, and while these used to 
be generated by physical methods, such as dice, 
playing cards, and roulette wheels, these had the 
drawbacks of being slow and non-reproducible. The 
Rand Corporation developed a random number 
table in 1955, which was composed of millions of 
numbers. Although these random numbers could 
be reproduced, the process was slow, and when 
more simulation events were required, this method 
was insufficient. In contrast, the Mid-Square 
Method calculates the square of a four-figure 
number, or even a six- or two-figure number, 
although the numbers generated from this method 
can only be called pseudo-random or quasi-
random, because they are fixed numbers 
generated from a certain function (without 
randomness). Chaitin [29] indicated that random 
numbers should satisfy the requirements of being: 
(1) uniformly distributed, (2) statistically 
independent, and (3) reproducible. The Linear 
Congruential Method (LCG), first proposed in 
Lehmer [30], is presently the most commonly 
utilized method to achieve this. The basic principle 
of LCG can be seen in formula (3). The initial x of 

the random number generator requires a “seed 
value”. Using formula (3) for the calculation, it then 
becomes the new ISEED with the random number, 
and uniform random numbers between (0,1) can be 
acquired by continuing this process. In this study, 
Crystal Ball (CB) software is used for to undertake 
the Monte Carlo simulation, as shown in formula 
(4). There is no “seed value” used for the 
multiplicator at the beginning of this process 
because the LCG generator utilizes an iteration 
equation, and because the length period of the 
generator is 2,147,483,646, showing that the 
number could be reproduced after several billions 
of tests. Law and Kelton [31] presented a detailed 
explanation of this method. 
 

cbaxx nn mod)(1   for cba ,,  are “magic 

numbers”                                                              (3) 

 

)12mod()6208991( 31  rr                          (4) 

 
Most software applies a combination of two or more 
random number generators to produce a new 
random number generator [32]. Using the LCG 
method (or another method) to generate numbers 
between 0 and m-1, the numbers are then divided 
by m to become random numbers between 0 and 1. 
This is similar to the random variable of U(0,1), and 
the other distributed random numbers generated by 
U(0,1) are uniform to ensure that the random 
numbers have the characteristic of U(0,1). The 
results are then tested using the goodness of fit, 
including the Chi-square goodness of fit and 
Kolmogorov-Smirnov tests. The Chi-square test is 
mainly used for dealing with the test of the 
categories, and this study applied the Chi-square 
goodness of fit to ensure the %GR&R probability 
distribution, as shown in formula (5). 
 

 





k

i i

ii

e

eo
x

1

2
2  Test Square-Chi                    (5) 

category ingcorrespond the infrequency  Expected:

category each infrequency  Observed:

i

i

e

o

 
Furthermore, the Monte Carlo numerical integration 
can be used for the calculation of numerical 
integration, and the probability distribution area can 
be calculated using random numbers. When 
integrating a number, the [0,1] interval can be 
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simply divided [33]. M parts can be evenly divided 
to compose the area with the total being 1, i.e., 
100%, as in formulae (6) and (7). In other words, 
Xn can be divided evenly into n = 1, 2, ..., M parts 
with a random generator. When M is large enough, 
Xn is the set with evenly divided parts in [0,1], as in 
formulae (8) and (9), and the Xn wave-constructed 
area is as shown in Figure 3. As a result, it is 
considered complete and accurate to apply a 
Monte Carlo simulation to predict or evaluate 
random numbers. 
 


1

0
)( dxxfS                                                       (6) 

 

)/1()(
1 2

1
MOxf

M
S

M

n n   
                            (7) 
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


M

n
nn xf

M
fS

1

)(
1

                                        (8) 

 

M

ff
S

nn

22 
                                                (9) 

 

 
 

Figure 3. f(x) area divided by M equal parts. 
 
3. Research method 
 
Based on the Average and Range analysis in the 
MSA manual [12], 90 data with ten sample parts, 
three appraisers, and three measuring events were 
computed using a Monte Carlo simulation. Pen [3, 
4] noted that the Average and Range analysis is 
widely applied in industry, and thus, this study uses 
the same approach to evaluate GR&R, in order to 
verify the measurement capability and quality of the 
measuring instrument, as well as to evaluate the 
acceptability of the measurement system. 
 

The research procedure is as follows: 
 
1. Select ten sample parts, numbered 1 to 10, 

which must completely represent the range of 
the process variation. 
 

2. Select three appraisers, known as A, B, and C. 
 
3. The appraisers randomly and repeatedly 

measure the sample parts three times. The 
measurement results cannot be seen by the 
personnel. Thirty sets of data are generated 
from each appraiser, generating 90 data sets in 
total. 

 
4. Having completed the measurement, the three 

values from measuring each sample are 
calculated to produce the average and the 
range, such that ten averages and ten ranges 
are generated by each appraiser. 

 
5. The values from each appraiser measuring each 

sample part are the sample averages, and ten 
of these are averaged as Rp. 

 
6. Each appraiser generates ten averages, for 

which the average is obtained as AAverageX , 

BAverageX , and CAverageX . The average of 

ten ranges generated by each appraiser is 

acquired as aR , bR , and cR . 

 

7. Calculate R  and DIFFX , as in formulae (10) 
and (11). 

 

  3cba RRRR                                       (10) 
 

XMinXMaxX DIFF                                        (11) 
 
8. Repeatability is the equipment variation (EV), 

which is determined by multiplying the average 

range (R ) by a constant (K1). K1 depends upon 
the number of trials used in the gauge study, 
and is equal to the inverse of d2

*, which is 
obtained from the MSA manual [12] Appendix C, 
page 187. d2

* is dependent on the trial number 
(m) and the part number multiplied by the 
appraiser number (g). Therefore, EV is 
calculated using formula (12). In this research,
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the measurement is carried out three times. 
According to the MSA manual, K1 is equal to 
0.5908, and reproducibility is the appraiser 
variation (AV), which is determined by 
multiplying the maximum average appraiser 

difference ( DIFFX ) by a constant (K2). K2 
depends upon the number of appraisers used in 
the gauge study, and is the inverse of d2,

 which 
is obtained from the MSA manual [12] Appendix 
C, page 187. d2

* is dependent on the appraiser 
number (m) and g = 1 because there is only one 
range calculation. As the appraiser variation is 
contaminated by the equipment variation, it 
must be adjusted by subtracting a fraction of this 
variation, and thus, AV is calculated by formula 
(13). There are three appraisers in this 
research, and based on the MSA manual, K2 is 
equal to 0.5231, sample “n” is 10, and 
measurement “r” is 3. 
 

EV= 1KR                                                            (12) 

 

AV= )/()()( 22
2 rnEVKX DIFF                   (13) 

 
9. The GR&R of the measurement system 

calculated by repeatability and reproducibility is 
shown as formula (14). 
 

GR&R= 22 )()( AVEV                                    (14) 

 
10. Calculate the process variation (PV) by 

multiplying the average of the sample parts by a 
constant (K3). K3 is determined by the number 
of the sample parts in the measurement, and is 
the inverse of d2

*, which can be obtained from 
the MSA manual. d2* is determined by the 
number of appraisers and the number of sub-
sets, as in formula (15). There are ten sample 
parts in this study, such that K3=0.3146, and 
from the MSA manual:  
 

3KRpPV                                                    (15) 

 
11. Add the square of GR&R and the square of PV. 

The total variation (TV) is the square root of the 
sum, as in formula (16). 
 

TV= 22 )()&( PVRGR                                     (16) 

12. %GR&R is the percentage of GR&R in the total 
variation, as in formula (17). 
 

%GR&R=GR&R/TV×100                                    (17) 
 
13. Finally, confirm the reliable ndc of the 

measurement system. Wheeler and Lyday [34] 
indicated that ndc is the number covering the 
97% reliable interval that is not overlapped by 
expected product variation, as in formula (18). 
ndc must be rounded as an integer.  
 

ndc=1.14×(PV/GR&R)                                        (18) 
 
With regard to the measurement uncertainty 
mentioned in the MSA manual, it is the degree of 
scatter of the measured results, and is normally 
shown by the standard deviation after several 
repeated measurements. Using statistical methods, 
some of the results can be estimated from the 
standard deviation calculated using the real data, 
whereas others are estimated from the standard 
deviation calculated using the assumed probability 
distribution based on experience or other information. 
 
The basic formula is shown as (19), where U is the 
expanded uncertainty between the measured 
object and the measured result. Expanded 
uncertainty is the distribution coefficient (K) with a 
normal distribution, such that the standard deviation 
of the combined standard error (Uc) or combined 
error is multiplied by an expected reliability range in 
the measuring process. ISO/IEC Guide 98-3 [35] 
states that the distribution coefficient (K = 2) 
represents 95% uncertainty of the normal 
distribution. Formula (20) shows that the measured 
value is located in the interval ±2σ away from the 
average, i.e., the 95% reliability interval. The 
collaborative assessment experiment in ISO 5725-
1:1994 [36] further notes that the probability 
standard approaches 95% when many experiments 
are used in a precision test. Consequently, 
assuming the defined range for the measured value 
is ±2σ, the basic statistical model used to estimate 
the precision of the measurement is shown as 
formula (21). This shows that with the sum of the 
total average and repeatability, and the sum of the 
deviated values in the laboratory and repeatability, 
the random errors generated from each 
measurement can rationally result in numerical 
dispersion, and that the random error can be 
combined with the Monte Carlo simulation to 
determine the probability. 
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True measurement = observed measurement 
(result) ± U                                                          (19) 
 
U = KUc                                                                                                  (20) 

 
・・eBmy                                                   (21) 

 

conditionsity repeatabil under error random :
conditionsity repeatabil     

 under bias the of component laboratory:
mean general:

  

e

B
m

for

 

 

 
Combining the Average and Range analysis in 
MSA with a Monte Carlo simulation, ten sample 
parts were selected and each sample part was 
measured three times by three appraisers to obtain 
nine measurements. There was no variation for the 
single parts, but different variation values appeared 
for each measurement. Based on measurement 
uncertainty, rational numerical dispersion could 
result from the measurement. In this case, the 
average and the standard deviation of the nine 

measurements of each part were calculated. Based 
on the results of measurement uncertainty, the 
measurement was normally distributed in the 95% 
reliable interval (±2σ). In addition, the nine 
measurements also defined the distribution 
probability of the Monte Carlo simulation as being 
±2σ away from the normal distribution interval. The 
relevant normal distribution can be seen in Table 3. 
Substituting the p.d.f. of the normal distribution, as 
in formula (22), the results are shown in formula 
(23) and Figure 4. When calculating AV, the setting 
restriction, as in the MSA manual, is that AV is 0 
when the square root value is negative. With the 
Crystal Ball software, a total of 90 measurements 
with ten sets and nine data for each set were used 
to generate random numbers with a Monte Carlo 
simulation. Furthermore, with the 10,000 tests 
defined in probability theory applied to formulae 
(17) and (18), the cumulative probability 
distributions of %GR&R and ndc were obtained. 
The analysis and the evaluation obtained from this 
process are used as a reference later in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Operator A B C Monte Carlo Simulation Spec. 
Measurement 

 
Part Sample 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd Mean 
(μ) 

SD 
(σ) 

x 
Max 

(μ+2σ) 
Min 

(μ-2σ) 

Sample No.1 5.32 5.32 5.32 5.34 5.34 5.36 5.30 5.34 5.30 5.327 0.020 5.367 5.287 

Remark: Based on resolution being 1/10 of tolerance, the setting is calculated to the next figure of the original 
measurement. 
 

Table 3. Calculating the Monte Carlo simulation settings of the nine measurements. 
 
 

 
 

Figure 4. Sample No.1 probability distribution of the measurements. 
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Having combined the expressions established in 
this study using Crystal Ball, a Monte Carlo 
simulation was implemented 10,000 times for the 
10,000 data of %GR&R and ndc, which was 
similar to executing the measurement system 
analysis 10,000 times. By evaluating the original 
area of the measurement system and the 
judgment suggested by the MSA manual, the 
probability distribution and the possible probability 
of %GR&R were derived. The most appropriate 
normal probability distribution was then calculated 
using the Chi-square goodness of fit test. 
 

22 2/)(

2

1
)( σμ

σπ
 xeXf   for   

0



σ
μ
x

 (Mean 

(μ)； Standard Deviation (σ))                           (22) 
 

22 02.02/)327.5(

02.02

1
)( 


 xeXf

π
  for  

367.5287.5  x                                            (23) 
 

4. Case verification and analysis 
 
To verify the method we proposed, we used two 
case studies of an automobile parts manufacturer 
and selected as the subject for three appraisers, 
ten sample parts, and three-time measurements. In 
case study 1, ten indicator switches were selected 
as the samples, and the thickness of a part of the 
indicator switch was measured. In case study 2, ten 
precision bearings were selected, and the width of 
a part of the precision bearing was measured. The 
detail is described below. 
 
4.1 Case study 1 
 
The first case studied was the dial indicator, coded 
MX-01, which had an obtained precision of 0.01 mm.

Three appraisers, A, B, and C, were selected. Ten 
online-produced indicator switches were selected 
and the thickness of a part of the indicator switch was 
measured. Each appraiser measured the selected 
sample parts three times, as shown in Table 4. 
 
With the Average and Range analysis in the MSA 
Manual, a GR&R of 0.019 was obtained; the 
%GR&R, which was used to judge the 
measurement system, was 18.861% and the ndc 
was 7.342, which was rounded to 7. These values 
were then used to evaluate the measurement 
system analysis with a Monte Carlo simulation. 
GR&R was further input into the Crystal Ball 
software for 10,000 runs of the Monte Carlo 
simulation. The simulated distributions obtained 
thus for GR&R, %GR&R, and ndc, as well as the 
relevant data, are shown in Figures 5, 6, and 7. 
 
Figure 5 shows the distribution of GR&R after 
10,000 simulations. The original value of 0.019 is 
located on the right. As %GR&R is GR&R divided 
by the total variation, the %GR&R is therefore on 
the right. Further analyzing the %GR&R 
distribution in Fig. 6, the %GR&R is between 13% 
and 22% and thus, the automobile part was not a 
critical one. Based on the standard %GR&R 
specifications of 10% to 30%, shown in Table 2, it 
was found that MSA would always conform to the 
specifications. The results of the Chi-square test 
show that the %GR&R distribution was normal. 
The average of the 10,000 simulations was 
17.485%, the standard deviation was 1.666%, 
and the original value was 18.861%, which was 
within +1σ. As a result, the original value of 
18.861% was judged to be in the +1σ range. The 
probability of being larger than 18.861% was only 
20.19%. As the %GR&R distribution was normal

Operator A B C 
Measurement 

Part Sample 
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

Sample No.01 5.32 5.32 5.32 5.34 5.34 5.36 5.30 5.34 5.30 
Sample No.02 5.44 5.40 5.44 5.46 5.46 5.48 5.46 5.40 5.42 
Sample No.03 5.48 5.48 5.50 5.50 5.46 5.48 5.50 5.50 5.50 
Sample No.04 5.20 5.22 5.20 5.24 5.26 5.26 5.22 5.22 5.24 
Sample No.05 5.24 5.24 5.24 5.24 5.24 5.26 5.28 5.24 5.24 
Sample No.06 5.52 5.50 5.50 5.54 5.52 5.56 5.58 5.54 5.56 
Sample No.07 5.38 5.38 5.38 5.40 5.42 5.44 5.40 5.36 5.38 
Sample No.08 5.34 5.34 5.36 5.36 5.38 5.38 5.36 5.34 5.36 
Sample No.09 5.44 5.44 5.42 5.46 5.44 5.44 5.44 5.46 5.42 
Sample No.10 5.40 5.40 5.40 5.40 5.42 5.40 5.40 5.42 5.40 

 
Table 4. Recorded measurements of case 1. 
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and the average of the test was 17.485%, the 
standard error of the mean (SEM) was further 
analyzed to produce the standard error of the 
output data, 0.017. The smaller the standard 
error, the greater the reliability and thus, the 
%GR&R was revised down to 17.485%. 
 
The ndc distribution in Figure 7 was analyzed 
further. As an integer was required for the ndc, the 
distribution was not tested. Figure 7 shows the ndc 
distribution with 10,000 GR&R simulations. Based 
on the ndc specifications, an ndc of 5 is acceptable.

The original value of 7.342 is located on the left and 
the probability of being larger than 7.34 was 
79.38%. Thus, the decision value can be revised 
up. As the real ndc was rounded to 7, the value 
was analyzed with integers in this study. Table 5 
shows the ndc values with 10,000 simulations, 
rounded to one decimal point. Most values, about 
44.03%, were located between 7.5 and 8.4, which 
were rounded to 8. The original value 7 accounted 
for only 20.46% of the results, only half of that of 8. 
Thus, the ndc was revised up to 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Simulated GR&R distribution of case 1. 
 

 
 

Figure 6. Simulated %GR&R distribution of case 1. 
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4.2 Case study 2 
 
The second studied case was the dial indicator, 
coded MX-03 with a precision of 0.001 mm. Three 
appraisers, A, B, and C, were selected. Ten online-
produced precision bearings were selected and the 
width of a part of the precision bearing was 
measured. Sample No. 10 was the same product 
but the width was measured on a different part of it 
and thus, there was a significant numerical 
difference from Sample No.01 to Sample No.09. 
Each appraiser measured the selected sample 
parts three times and the measurements are shown 
Table 6. 
 
With the Average and Range analysis in the MSA 
Manual, the GR&R was found to be 0.001; the 
%GR&R, which was used to judge the 
measurement system, was 9.221%; and the ndc 
was 15.225, which was rounded to 15. These 
values were then used to evaluate the 
measurement system analysis with a Monte Carlo

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
simulation. GR&R was further input into the Crystal 
Ball software for 10,000 Monte Carlo simulations. 
The simulated distributions obtained for GR&R, 
%GR&R, and ndc, as well as the relevant data, are 
shown in Figures 8, 9, 10, and 11. 
 
Figure 8 shows the distribution of GR&R after 
10,000 simulations. The original value of 0.001 was 
located on the left. As %GR&R was GR&R divided 
by the total variation, the %GR&R was therefore 
judged on the left. Analyzing further the %GR&R 
distribution in Fig. 9, the %GR&R was predicted to 
be distributed between 8% and 16%. This 
automobile part is a precision critical part, and poor 
tolerance could cause turning problems when 
driving. Therefore, the %GR&R was regulated to 
less than 10%, and based on Table 2, the standard 
%GR&R specifications should also be less than 
10%. However, the first problem was the judging 
limit of the %GR&R specification, 10%. The 
probability of the original %GR&R being higher than 
9.221% was 98.51%, as shown in Figure 9. 

 
 

Figure 7. Simulated ndc distribution of case 1. 
 

Range Judged ndc Approx. probability % 
5.5 - 6.4 6 0.96 
6.5 - 7.4 7 20.46 
7.5 - 8.4 8 44.03 
8.5 - 9.4 9 20.02 
9.5 - 10.4 10 3.99 

 
Table 5. Proportion of ndc of case 1. 
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Moreover, with the judging limit of 10%, the 
probability of it being higher than 10% was 93.25%, 
as seen in Fig. 10. Therefore, the %GR&R was 
revised up. With the Chi-square test, the %GR&R 
distribution was normal. The average of the 10,000 
simulations was 11.839%, the standard deviation σ 
1.295%, and the original value 9.221% being out of 
-2σ. As a result, the reliability of the original value 
9.221% was rather low. Moreover, the %GR&R 
distribution was normal, the average of the 
distribution tests was 11.839%, and the standard 
error of the mean (SEM) was 0.013. The lower the 
standard error, the greater the reliability and thus, 
the %GR&R was revised up to 11.839%, especially 
as the automobile part was a precision critical one. 
The original standard of within a 10% limit was thus 
exceeded, and the capability of the measurement 
system was improved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ndc distribution in Figure 11 was analyzed 
further. As an integer was required for ndc, the 
distribution was not tested. Figure 11 shows the 
ndc distribution with 10,000 GR&R simulations. 
Based on the ndc specifications, an ndc of 5 is 
acceptable. The original value 15.225 was located 
on the right, and as the probability of it being larger 
than 15.225 was only 1.58%, the decision value 
should therefore be revised down. As the real ndc 
was rounded to 15, the value was analyzed using 
integers. Table 7 lists the ndc values from 10,000 
simulations, rounded to one decimal point. The 
largest group of ndc values, about 26.23%, was 
located between 11.5 and 12.5, which was rounded 
to 12. Therefore, the ndc was revised down to 12, 
which did not affect the original specification of it 
being larger than 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Operator A B C 
Measurement 

Part Sample 
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

Sample No.01 1.620 1.621 1.620 1.621 1.620 1.623 1.620 1.621 1.621 
Sample No.02 1.618 1.619 1.618 1.620 1.621 1.620 1.619 1.618 1.619 
Sample No.03 1.618 1.619 1.619 1.618 1.619 1.619 1.618 1.617 1.618 
Sample No.04 1.612 1.613 1.613 1.619 1.619 1.620 1.618 1.619 1.619 
Sample No.05 1.619 1.619 1.618 1.618 1.617 1.617 1.619 1.618 1.618 
Sample No.06 1.617 1.618 1.617 1.619 1.619 1.618 1.620 1.621 1.621 
Sample No.07 1.619 1.618 1.619 1.621 1.622 1.621 1.621 1.620 1.620 
Sample No.08 1.620 1.619 1.620 1.619 1.618 1.619 1.621 1.621 1.620 
Sample No.09 1.619 1.618 1.618 1.619 1.619 1.618 1.620 1.622 1.621 
Sample No.10 1.582 1.582 1.583 1.575 1.576 1.577 1.585 1.586 1.587 

 
Table 6. Recorded measurements of case 2. 

 

 
 

Figure 8. Simulated GR&R distribution of case 2. 
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Figure 9. Simulated %GR&R distribution (1) of case 2. 
 

 
 

Figure 10. Simulated %GR&R distribution (2) of case 2. 
 

 
 

Figure 11. Simulated ndc distribution of case 2. 
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In the two cases, both %GR&R were found to have a 
normal distribution. Nonetheless, the original 
%GR&R and GR&R in the first case were located on 
the left, whereas they were on the right in the second 
case, showing the great difference in the distribution 
area. The average of the 10,000 simulations was 
17.485% and σ 1.666% in the first case. Both were 
tested as having a normal distribution with the 
average 17.485% and the original value 18.861% 
being within +1σ. In the second case, the average 
was 11.839% and σ 1.295%, and both had a normal 
distribution with the average 11.839% and the 
original value 9.221% being out of -2σ. In 
comparison, σ was larger in the first case than in the 
second, but the original value in the first case was 
located within +1σ. After evaluating statistically the 
%GR&R in the first case, it appeared to be a better 
reference. On the other hand, the distribution of 
%GR&R in the second case was between 8% and 
16%; thus, confirming that there was a possibility of 
exceeding the 10% specification, as the %GR&R of 
9.221% was located at the edge of 10%. Thus, the 
%GR&R was revised to 11.839%, such that it 
exceeded the standard 10% limit. This obtained 
different results to the reference from the evaluators. 
 

The ndc in both cases was more than 5, which was 
within the specifications, and the revisions to the 
%GR&R would not affect the judgment of ndc. In 
contrast, the %GR&R in the first case was revised 
up, whereas in the second it was revised down. 
Finally, by using statistics and a Monte Carlo 
simulation to predict the %GR&R and the ndc of the 
measurement system, the revised results should be 
of more use in further evaluations of the uncertainty 
of the measurement system. 
 

5. Conclusions 
 

According to the MSA manual, it is not appropriate 
to use GR&R as the only acceptable standard for 
measurement systems. The final acceptability of 

 
 
 
 
 
 
 
 
 
 
 
 
measurement systems should not be determined by 
simple indicators, and charts changing over time 
should be utilized to analyze the permanent efficacy 
of MSA. For this reason, different evaluations were 
applied in this study. Using the combination of a 
Monte Carlo simulation, statistical bases, and 
measurement uncertainty to establish the probability 
density function, the method used in this work could 
effectively evaluate the possible range of the GR&R 
of the measurement capability, in order to establish a 
prediction model for the evaluation of the 
measurement capacity of a measurement system. As 
a result, instruments with poor measurement 
capability would not be misused. In addition, with 
regard to the analyses carried out in this work, it was 
also improved continuously to meet the relevant 
requirements. With effective simulations and 
analyses, instruments that cannot be used any more 
should be restricted or repaired in order to raise 
measurements above the related standards and 
reduce measurement errors. This study used the 
Average and Range method proposed by the MSA 
Reference Manual to evaluate gauge repeatability 
and reproducibility. The method does not have the 
capability of handling any experimental set-up to 
estimate the variances more accurately, and 
determine the effect of the interaction between parts 
and appraisers. It cannot even provide further 
predictive analysis for sample parts and 
measurement personnel contributions. Future 
researchers could use the Monte Carlo method to 
determine independent sample bias and linear in 
GR&R, and then assess measurement system 
stability. Therefore, we can predict and evaluate the 
entire measurement system more completely. 
 
 
 
 
 
 

Range Judged ndc Approx. probability % 
8.5 - 9.4 9 1.10 
9.5 - 10.4 10 9.63 
10.5 - 11.4 11 24.48 
11.5 - 12.4 12 26.23 
12.5 - 13.4 13 16.42 

14.4 14 8.10 
14.5 - 15.4 15 2.78 
15.5 - 16.4 16 0.71 

 
Table 7. Proportion of ndc of case 2. 
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