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Abstract: A fall detection system enhances the quality of life for elderly individuals by allowing 
them to live independently without constant care. It is more accurate and cost-effective com-
pared to image-based systems. The system includes two key components: detection, which 
identifies falls by comparing daily activity data with abnormal sensor values, and communica-
tion, which alerts emergency contacts. By using heart rate and oxygen sensors, it can determine 
whether a fall is conscious or unconscious. Wearable devices, particularly wrist devices, provide 
accurate data, but current models primarily detect falls without offering additional health infor-
mation. Future improvements may include wireless data transmission for increased efficiency.
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1. Introduction

Falls among the elderly are a major concern, causing 
over 645,000 deaths annually and leading to 36.3 million 
individuals seeking medical attention, according to the 
WHO (Casilari et  al., 2020). Severe injuries, such as hip 
fractures and brain trauma, can result from falls, and de-
lays in receiving medical help increase the risk of death. 
Fall detection systems (FDS) can reduce response times 
and improve elderly care. Wearable FDSs, which are more 
affordable than image-based systems, typically use ac-
celerometers, gyroscopes, and, in some cases, heart rate 
sensors to detect falls. A system incorporating a heart 
rate sensor (MAX 30101) and an oxygen sensor enhances 
detection by assessing whether the fall was conscious or 
unconscious. Data from these wrist sensors helps catego-
rize daily activities and identify falls using the k-nearest 
neighbors’ algorithm. This information helps determine 
whether the person needs medical assistance. Fall detec-
tion systems (FDSs) have become increasingly important 
for older adults due to the severe risks associated with 
falls. Recent advancements focus on enhancing these 
systems through Machine Learning (ML) and Deep Learn-
ing (DL) technologies (Li et  al., 2012). Research shows 
that user characteristics, such as weight and height, 
can impact system performance significantly, reducing 
accuracy. A Fusion Fall Detection Algorithm Combining 
a Threshold-Based Method and Convolutional Neural 
Network introduces innovations by fusing algorithms 
that combine various techniques, such as Convolutional 
Neural Networks (CNNs), to improve fall detection accu-
racy. A Cross-Dataset Deep Learning-Based Classifier for 
Fall Detection and Identification demonstrates that deep 
learning classifiers are highly effective across datasets, 
thereby improving adaptability and accuracy (Casilari 
et  al., 2017). A Machine Learning Approach for Fall De-
tection and Daily Living Activity Recognition leverages 
machine learning frameworks and acceleration data to 
improve performance and reduce false alerts. 

For Fall Detection in Older People, incorporating ther-
mal sensors and Bi-, Long Short-Term Memory (LSTM) 
offers high accuracy and real-time data transmission. 
Deep learning-based fall detection using smartwatches 
for healthcare applications employs gyroscope data and 
BiLSTM networks, achieving up to 99% accuracy (Mo-
hammad et  al., 2023). Similarly, applying deep learning 
to automatic fall detection using mobile sensors achieves 
superior accuracy compared to traditional methods. A 
Fall Detection Approach Based on Combined Two-Chan-
nel Body Activity Classification for Innovative Indoor 

Environments uses surveillance footage to classify body 
activities, achieving impressive fall-detection results 
(Şengül et  al., 2021). IoT-based human fall-detection 
systems that leverage multiple models improve accura-
cy across diverse environments. Low-power fall-sensing 
technologies based on FD-CNN balance efficiency, con-
nectivity, and effective fall detection (Taramasco et  al., 
2018). A Study on the Impact of Users’ Characteristics on 
the Performance of Wearable Fall Detection Systems em-
phasizes that factors such as gender, Body Mass Index 
(BMI), weight, and height have a secondary impact on the 
accuracy of these systems. Training and evaluating sys-
tems in which test subjects differ significantly in physical 
characteristics can lead to a 20% reduction in sensitiv-
ity and to a loss of specific information of up to 95% 
(Wang et  al., 2025). Fall detection systems proposed in 
the literature rely on signals captured by accelerometers, 
gyroscopes, and cameras. The fusion fall detection sys-
tem presented in this paper combines a threshold-based 
method (TBM) with a convolutional neural network 
(CNN). SHFFD employs TBM to preview events based 
on triaxial acceleration measurements. During the TBM 
phase of the fusion algorithm, a feature set is generated. 
A bidirectional neural network for fall detection achieves 
99% accuracy. The Bi-Long short-term memory (LSTM) 
algorithm, which uses both previous and new informa-
tion, produces outstanding results while respecting user 
privacy, achieving 93% accuracy in fall detection. 

Fall detection systems are not limited to wearable 
devices and can be integrated into a variety of assis-
tive technologies to enhance safety for individuals with 
mobility challenges further. One promising avenue is inte-
grating fall-detection mechanisms into crutches, walkers, 
and other mobility aids. These devices are already com-
monly used by individuals with impaired mobility, and 
incorporating fall detection sensors could serve a dual 
purpose: assisting with movement while simultaneously 
providing safety by detecting falls.

For instance, crutches and walkers could be equipped 
with accelerometers and gyroscopes to monitor the us-
er’s stability and detect any abnormal movements that 
could indicate a fall. These devices, when integrated with 
an alert system, could notify caregivers or emergency 
services immediately upon detecting a fall, thus reduc-
ing the response time and potentially saving lives. This 
integration would not only enhance the versatility of fall 
detection systems but also make them accessible to a 
broader range of users, including those who may not be 
able to wear wearable devices due to discomfort, person-
al preference, or medical conditions. 
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The inclusion of sensors in walking aids could offer an 
extra layer of monitoring. For example, by adding a heart 
rate sensor or an oxygen sensor to these devices, the sys-
tem could further analyze the circumstances of the fall, 
such as whether it was due to a sudden loss of conscious-
ness, heart-related issues, or other medical conditions. 
This would improve fall detection systems’ ability to pro-
vide precise, contextually relevant alerts to caregivers or 
medical personnel. Integrating fall detection technolo-
gies into a broader range of assistive devices can help 
create a more comprehensive safety ecosystem for elder-
ly individuals and people with mobility impairments. This 
approach could significantly reduce fall-related injuries 
and fatalities by enabling quicker responses and more 
personalized care.

2. Methodology

The existing fall detection system uses the gyroscope 
sensor to detect falls and does not rely on any other sen-
sors to achieve precise detection (Wu et al., 2021). Also, it 
requires a high amount of energy to collect and process 
data to detect a fall. 

In our project, it use a heart rate and oximeter sen-
sor (MAX30100) to get the heart rate and oxygen level of 
a person and also use the Gyroscope sensor (MPU6050) 
to get the position data of the person and get  all these 
values by using the Raspberry pi zero and use LabView 
software to get data and run the graph of the datum got 
from both the sensors. Using the K-Nearest Neighbour 
algorithm to detect if the fall is conscious or unconscious. 
Because most falls result from skidding into obstacles, 
when a fall occurs, our algorithm checks whether it was 
conscious or unconscious. Our project also detects a fall 
8 seconds in advance by processing oximeter data. If a 
person is going to fall, the oxygen rate will receive a low 
grade to predict the fall (Xu et al., 2021). 

The Raspberry Pi was chosen primarily for its com-
patibility with the selected sensors and software. Its 
versatility in interfacing with a variety of sensors, in-
cluding the heart rate, oxygen, and gyroscope sensors, 
made it an ideal choice (Altay & Ulas, 2019). Additionally, 
its processing capabilities allow efficient data collection 
and real-time analysis. While cost-effectiveness is a ben-
efit, the main reason for its selection was its seamless 
integration with Python programming and LabVIEW for 
data visualization and processing.

The gyroscope and oximeter sensors provide data to 
the Raspberry Pi Zero. The Raspberry Pi Zero runs the 
data with the built-in Python code. That code has a KNN 

algorithm path (Di et al., 2015). The LabVIEW software re-
trieves data from the Raspberry Pi Zero and plots graphs 
of gyroscope, Heart rate, and oxygen level (SpO2). Lab-
VIEW is trained on all three values to run the algorithm 
and predict the fall exactly. If the fall occurs, it will be 
communicated to the medical assistant. 

The electrical section consists of a Raspberry Pi Zero 
module, a relay module, a Gyroscope sensor, a Heart rate 
sensor, an LCD, a step-down transformer, a Buck convert-
er, and wires. The real-time electrical circuit is shown in 
Figure 2.

The Heart Rate Sensor (MAX 30101) includes both an 
oxygen level sensor and a heart rate sensor (Ding et al., 
2022). It detects pulse oximetry and heart rate using two 
LEDs, a photodetector, improved optics, and low-noise 
analog signal processing. The sensor’s operating voltage 
ranges from 1.8 to 3.3V. The Gyroscope Sensor (MPU 6050) 
consists of a 3-axis gyroscope and a 3-axis accelerometer, 
with an operating voltage of 2.3 to 3.3V. The gyroscope 
measures rotation along the x, y, and z axes, while the 
accelerometer measures a person’s movement when 
walking, sitting, or running. A voltage regulator provides 

Figure 1. Flow chart.
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a stable 5V supply to the system. A buck converter mod-
ule ensures a stable power supply to the Raspberry Pi 
module. The Raspberry Pi collects sensor data from the 
heart rate and gyroscope sensors and sends it to LabVIEW 
for simulation and analysis (Kaur & Sharma, 2024). The 
Raspberry Pi has built-in Python support for classifying 
ADLs (Activities of Daily Living) and transmitting. 

The Raspberry Pi was chosen primarily for its com-
patibility with the selected sensors and software. Its 
versatility in interfacing with a variety of sensors, includ-
ing heart rate, oxygen, and gyroscope sensors, made it 
an ideal choice. Its processing capabilities allow efficient 
data collection and real-time analysis. While cost-effec-
tiveness is a benefit, the main reason for its selection 
was its seamless integration with Python programming 
and LabVIEW for data visualization and processing (Liu 
et al., 2021).

LabVIEW is a graphical programming environment 
with a front page for user interaction and a block diagram 
for programming. The Raspberry Pi, connected to sensors 
such as a gyroscope and a heart rate monitor, collects 
data, which is displayed graphically on LabVIEW’s front 
page. The LabVIEW block diagram uses case statements, 
arithmetic commands, and while loops to continuously 
collect and process sensor data, representing it in both 
digital and analog formats. Sensor data, such as heart 
rate, oxygen levels, and gyroscope readings, is exported 
to Excel for analysis. The real-time LabVIEW block dia-
gram is shown in Figure 5.

The analog and digital sensor data values are dis-
played on the LabVIEW front page. The LabVIEW front 
page diagram is shown in Figure 6.

The device is intended to be worn around the neck, 
much like a neckband, providing comfort and minimal 
disruption to daily tasks (Resch et  al, 2025). Its light-
weight, ergonomic design ensures continuous monitoring 
without discomfort, making it suitable for extended wear 
while allowing freedom of movement throughout the us-
er’s day. The real-time setup is shown in Figure 4.1 and 
Figure 4.

A graph is a visual representation of collected data 
on the X- and Y-axes (Hasan et al., 2019). Heart rate, ox-
ygen level, and gyroscope value are represented on the 
Y-axis, and time period on the X-axis. The graph is used 
to compare the previous and current values over a given 
time period (Razjouyan et al., 2017). The graph is created 
using previous and current sensor values, such as heart 
rate and gyroscope data. The value point is connected 
to a graph on the X- and Y-axes. Heart rate, oxygen level, 
and gyroscope values are collected using a Raspberry Pi 

Figure 2. Electrical Setup.

Figure 3 Electrical Setup Schematic Diagram.

 

Figure 4 RealTime Setup.
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Zero module with a sensor, and the corresponding graphs 
are displayed on the LabVIEW front page. In Figure 7, 
the heart rate graph is generated in LabVIEW, with the 
corresponding data organized and analyzed. The X-axis 
represents time, showing progression over the monitor-
ing period, while the Y-axis displays heart rate values, 
reflecting the number of heartbeats per minute at each 
time point (Saleh & Jeannes, 2019). This graph provides 

a clear and detailed view of heart rate fluctuations over 
time, allowing in-depth analysis of the data, the use of 
LabVIEW for graph creation, and a comprehensive repre-
sentation of the heart rate measurements.

In Figure 8, the oxygen level graph is generated in Lab-
VIEW, with data analysis supported by an Excel sheet. 
The graph presents time on the X-axis, reflecting the 
progression of the observation period. On the Y-axis, 

Figure 5. LabVIEW Block Diagram.

Figure 6 LabVIEW Front Page. Figure 7. Heart Rate Graph.



K. Gomathi et al. / Journal of Applied Research and Technology 536-545

Vol. 23, No. 6, December 2025     541

oxygen levels are plotted, representing the measured ox-
ygen concentration at each time point. This visualization 
provides a clear overview of oxygen level variations over 
time, enabling a more detailed analysis of the data. The 
combination of LabVIEW for data visualization and Excel 
for data organization and analysis ensures an accurate 
and comprehensive representation of the oxygen levels.

In Figure 9, the gyroscope position value graph is gen-
erated in LabVIEW, with the data organized and analyzed. 
The X-axis represents time, showing the time progression 
during the observation period, while the Y-axis displays 
the gyroscope position values, indicating the orientation 
or rotational position at each corresponding time point. 
This graph offers a clear visualization of the gyroscope’s 
movement over time, enabling detailed analysis of its po-
sitional changes (Noorudin et al., 2021). The combination 
of LabVIEW for graph form data analysis ensures accurate 
and comprehensive representation of the gyroscope’s 
position data.

3. Result and analysis

The fall detection system must be analyzed using a KNN 
algorithm. The KNN algorithm is easy to use, exact, and 
very accurate. The KNN (K-Nearest Neighbour) algorithm 
uses the Euclidean distance; it returns results based on 
the distance between the training data shown in Figure 
8. It gives the result on the shortest distance side in the 
graph.

The K-Nearest Neighbour (K-NN) algorithm was cho-
sen for classification in this fall detection system due to 
its simplicity, ease of implementation, and effectiveness 
in handling real-time sensor data. Unlike more complex 
algorithms, K-NN does not require extensive training or 
model assumptions, making it ideal for detecting pat-
terns in small, low-dimensional datasets such as heart 
rate, oxygen levels, and gyroscope data (Popister et  al, 
2025). Additionally, K-NN provides fast, efficient classi-
fication, which is crucial for timely fall identification in 
emergencies. Algorithms like neural networks, decision 
trees, and deep learning methods have been tested for 
fall detection. While deep learning models offer higher ac-
curacy, they are computationally intensive and consume 
more energy, which is not ideal for wearable devices. 
K-NN provides a better balance of accuracy, efficiency, 
and energy consumption for real-time, battery-powered 
applications.

Figure 8. Oxygen Level Graph.

Figure 9. Position Graph.

Figure 10. K-Nearest Neighbor Algorithm.



K. Gomathi et al. / Journal of Applied Research and Technology 536-545

Vol. 23, No. 6, December 2025     542

•	 Accuracy: Deep learning methods (CNNs, RNNs) offer 
higher accuracy, especially with complex data, but 
simpler algorithms like K-NN can perform competi-
tively with well-engineered features. 

•	 Efficiency: K-NN is computationally efficient and 
faster for inference, making it ideal for real-time 
fall detection. Deep learning models are slower and 
resource-heavy.

•	 Energy Consumption: Deep learning methods 
consume more power due to high computational 
demands, while K-NN are more energy-efficient, suit-
able for battery-powered wearable devices. 

•	 The value of K in the K-NN algorithm was determined 
using cross-validation. Various values of K were test-
ed to evaluate performance based on accuracy, and 
the value that minimized error and overfitting was 
selected. 

•	 The value of K impacts the system’s accuracy by bal-
ancing bias and variance. Smaller K values can lead to 
overfitting, while larger K values can smooth decision 
boundaries, potentially leading to underfitting. The 
chosen K enhances generalization.

Table 1. Sitting Position Dataset.

SITTING POSITION

So.No. AGE Gyroscope 
value

Heart rate Oxygen 
rate

1 21 1 80 103

2 21 1 86 131

3 21 2 84 110

4 21 1 86 122

5 20 1 80 122

6 20 2 83 124

7 20 2 73 111

8 20 2 76 120

9 20 2 78 112

10 21 1 83 116

11 37 1 88 125

12 43 1 80 120

13 46 1 65 121

14 54 1 70 111

15 61 1 71 105

In this dataset, heart rate, position, and oxygen level 
data for 17 people aged 20 to 61. The position data comes 
from the gyroscope sensor, and there is not much differ-
ence because everyone is sitting in a similar position. The 
heart rate (BPM – Beats per Minute) ranges from 65 to 86. 
It can be seen in the chart for all heart rate, position, and 
oxygen level in Figure 11.

Figure 11. Sitting Position bar graph.

The data sheet is used to analyze a person’s fall while 
walking. The data sheet is filled out based on the person’s 
age in various situations, such as walking. The data sheet 
consists of the gyroscope, heart rate, oxygen level, and 
age of the person.

Table 2. Walking Position Dataset.

WALKING POSITION

So.No. AGE Gyroscope 
value

Heart rate Oxygen 
rate

1 21 1 92 130

2 21 1 90 128

3 21 2 88 132

4 21 1 89 126

5 20 1 94 131

6 20 2 96 129

7 20 2 99 140

8 20 2 93 138

9 20 2 100 141

10 21 1 91 130

11 37 1 78 130

12 43 1 69 116

13 46 1 68 116

14 54 1 65 111

15 61 1 67 110
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In the walking position dataset analysis, 17 data sets 
from different age groups were analyzed. Oxygen levels 
were notably higher than during other ADLs, and heart 
rates were slightly elevated during walking, ranging from 
67 to 100 BPM. The position data varied randomly.

The data sheet is used to analyze a person’s fall while 
running. The data sheet is filled out based on the person’s 
age in various situations, such as running. The data sheet 
consists of the gyroscope, heart rate, oxygen level, and 
age of the person. From the running position dataset, I 
plotted the graph of all three heart rates (BPM): position 
and Oxygen level datum. If the graph is analyzed, it can 
be noticed that older people have a low heart rate, and 
adults also have a low heart rate compared to older peo-
ple. The oxygen level also varies, similar to the heart rate.

Table 3 Running Position Dataset.

RUNNING POSITION

So.No. AGE Gyroscope 
value

Heart rate Oxygen 
rate

1 21 1 108 123

2 21 1 112 132

3 21 2 116 126

4 21 1 121 132

5 20 1 117 133

6 20 2 109 127

7 20 2 113 124

8 20 2 118 129

9 20 2 110 131

10 21 1 114 125

11 37 1 107 124

12 43 1 102 121

13 46 1 97 119

14 54 1 92 116

15 61 1 88 114

The graph above shows heart rate (BPM) and oxygen 
saturation (SpO2) plots for people of different ages. The 
graph below shows the KNN algorithm checking for the 
fall, which is shown in Figure 13.

The input data was pre-processed and feature-en-
gineered before being introduced into the K-Nearest 
Neighbour (K-NN) algorithm. The raw data from the sen-
sors includes heart rate, oxygen level, and gyroscope.
1.	 Pre-processing: Noise was reduced, and outliers were 

handled to improve data quality. Missing values were 
imputed if necessary. 

2.	 Feature Engineering: Relevant features such as 
average heart rate, acceleration, and oxygen level 
were extracted from the sensor data to provide 
meaningful inputs for classification. 

3.	 Windowing: Time windows were applied to segment 
continuous data into manageable chunks, allowing 
the algorithm to focus on localized patterns such as 
short-term changes in heart rate or movement that 
are critical for detecting falls. 

The system mitigates potential inaccuracies in predicting 
falls based on oximeter data by integrating multiple 
sensors, such as heart rate and gyroscope readings. 
This multi-sensor approach ensures more reliable fall 
detection, compensating for subtle changes in oxygen 
levels and enhancing overall accuracy. 

Figure 12. Walking Position Bar Graph.

Figure 13. Running Position Bar Graph.
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Conclusions

As stated in the objective, the development and analysis 
of the fall detection system have been completed. The 
experimental analysis shows that the system has good 
precision and no false-positive results regarding falls. Ad-
ditionally, it demonstrates greater precision than other 
fall detection systems. This system consists of sensors, 
microcontroller boards, and a KNN algorithm to deter-
mine whether the fall was conscious or unconscious. 
Moreover, it can predict if a person is likely to fall by an-
alyzing the oximeter data. If the oxygen level gradually 
decreases, there is a high chance the person may fall 
or require medical assistance. The system is energy-ef-
ficient and offers higher precision than other available 
fall detection systems. It employs an algorithm that self-
trains, improving precision over time. This system uses 
commercial software, LabVIEW, which provides high ef-
ficiency and accuracy, allowing for easy analysis of the 
system. To enhance fall-prediction reliability, the system 
integrates data from multiple sensors, including an ox-
imeter, a heart rate sensor, and a gyroscope. Machine 
learning algorithms analyze combined data, improving 
fall detection accuracy even when subtle changes in ox-
ygen levels occur. Additionally, user-specific calibration 
and dynamic threshold adjustment are implemented, 
ensuring better adaptability and reducing the likelihood 
of false positives or missed falls. The system’s perfor-
mance in diverse, uncontrolled environments is being 
enhanced through expanded testing in real-world con-
ditions, including uneven surfaces and outdoor settings. 
We are integrating data from these environments into the 
training process and updating machine learning models 
to improve adaptability, reliability, and accuracy across 
diverse fall scenarios. There are plans to integrate addi-
tional health metrics into the system to enhance its utility 
for medical professionals. Future upgrades may include 
incorporating blood pressure and activity levels to pro-
vide a more comprehensive view of the user’s health 
status. These metrics could help medical professionals 
better assess the user’s condition, identify potential 
health risks, and tailor their response accordingly. Addi-
tionally, continuous monitoring of these vital signs can 
offer insights into overall health trends, improving the 
system’s ability to detect early warning signs and support 
more personalized care. 
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