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Abstract: A fall detection system enhances the quality of life for elderly individuals by allowing
them to live independently without constant care. It is more accurate and cost-effective com-
pared to image-based systems. The system includes two key components: detection, which
identifies falls by comparing daily activity data with abnormal sensor values, and communica-
tion, which alerts emergency contacts. By using heart rate and oxygen sensors, it can determine
whether a fall is conscious or unconscious. Wearable devices, particularly wrist devices, provide
accurate data, but current models primarily detect falls without offering additional health infor-
mation. Future improvements may include wireless data transmission for increased efficiency.
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1. Introduction

Falls among the elderly are a major concern, causing
over 645,000 deaths annually and leading to 36.3 million
individuals seeking medical attention, according to the
WHO (Casilari et al., 2020). Severe injuries, such as hip
fractures and brain trauma, can result from falls, and de-
lays in receiving medical help increase the risk of death.
Fall detection systems (FDS) can reduce response times
and improve elderly care. Wearable FDSs, which are more
affordable than image-based systems, typically use ac-
celerometers, gyroscopes, and, in some cases, heart rate
sensors to detect falls. A system incorporating a heart
rate sensor (MAX 30101) and an oxygen sensor enhances
detection by assessing whether the fall was conscious or
unconscious. Data from these wrist sensors helps catego-
rize daily activities and identify falls using the k-nearest
neighbors’ algorithm. This information helps determine
whether the person needs medical assistance. Fall detec-
tion systems (FDSs) have become increasingly important
for older adults due to the severe risks associated with
falls. Recent advancements focus on enhancing these
systems through Machine Learning (ML) and Deep Learn-
ing (DL) technologies (Li et al., 2012). Research shows
that user characteristics, such as weight and height,
can impact system performance significantly, reducing
accuracy. A Fusion Fall Detection Algorithm Combining
a Threshold-Based Method and Convolutional Neural
Network introduces innovations by fusing algorithms
that combine various techniques, such as Convolutional
Neural Networks (CNNs), to improve fall detection accu-
racy. A Cross-Dataset Deep Learning-Based Classifier for
Fall Detection and Identification demonstrates that deep
learning classifiers are highly effective across datasets,
thereby improving adaptability and accuracy (Casilari
et al., 2017). A Machine Learning Approach for Fall De-
tection and Daily Living Activity Recognition leverages
machine learning frameworks and acceleration data to
improve performance and reduce false alerts.

For Fall Detection in Older People, incorporating ther-
mal sensors and Bi-, Long Short-Term Memory (LSTM)
offers high accuracy and real-time data transmission.
Deep learning-based fall detection using smartwatches
for healthcare applications employs gyroscope data and
BiLSTM networks, achieving up to 99% accuracy (Mo-
hammad et al., 2023). Similarly, applying deep learning
to automatic fall detection using mobile sensors achieves
superior accuracy compared to traditional methods. A
Fall Detection Approach Based on Combined Two-Chan-
nel Body Activity Classification for Innovative Indoor

Environments uses surveillance footage to classify body
activities, achieving impressive fall-detection results
(Sengiil et al.,, 2021). loT-based human fall-detection
systems that leverage multiple models improve accura-
cy across diverse environments. Low-power fall-sensing
technologies based on FD-CNN balance efficiency, con-
nectivity, and effective fall detection (Taramasco et al.,
2018). A Study on the Impact of Users’ Characteristics on
the Performance of Wearable Fall Detection Systems em-
phasizes that factors such as gender, Body Mass Index
(BMI), weight, and height have a secondary impact on the
accuracy of these systems. Training and evaluating sys-
tems in which test subjects differ significantly in physical
characteristics can lead to a 20% reduction in sensitiv-
ity and to a loss of specific information of up to 95%
(Wang et al., 2025). Fall detection systems proposed in
the literature rely on signals captured by accelerometers,
gyroscopes, and cameras. The fusion fall detection sys-
tem presented in this paper combines a threshold-based
method (TBM) with a convolutional neural network
(CNN). SHFFD employs TBM to preview events based
on triaxial acceleration measurements. During the TBM
phase of the fusion algorithm, a feature set is generated.
A bidirectional neural network for fall detection achieves
99% accuracy. The Bi-Long short-term memory (LSTM)
algorithm, which uses both previous and new informa-
tion, produces outstanding results while respecting user
privacy, achieving 93% accuracy in fall detection.

Fall detection systems are not limited to wearable
devices and can be integrated into a variety of assis-
tive technologies to enhance safety for individuals with
mobility challenges further. One promising avenue s inte-
grating fall-detection mechanisms into crutches, walkers,
and other mobility aids. These devices are already com-
monly used by individuals with impaired mobility, and
incorporating fall detection sensors could serve a dual
purpose: assisting with movement while simultaneously
providing safety by detecting falls.

For instance, crutches and walkers could be equipped
with accelerometers and gyroscopes to monitor the us-
er’s stability and detect any abnormal movements that
could indicate a fall. These devices, when integrated with
an alert system, could notify caregivers or emergency
services immediately upon detecting a fall, thus reduc-
ing the response time and potentially saving lives. This
integration would not only enhance the versatility of fall
detection systems but also make them accessible to a
broader range of users, including those who may not be
able to wear wearable devices due to discomfort, person-
al preference, or medical conditions.
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The inclusion of sensors in walking aids could offer an
extra layer of monitoring. For example, by adding a heart
rate sensor or an oxygen sensor to these devices, the sys-
tem could further analyze the circumstances of the fall,
such as whether it was due to a sudden loss of conscious-
ness, heart-related issues, or other medical conditions.
This would improve fall detection systems’ ability to pro-
vide precise, contextually relevant alerts to caregivers or
medical personnel. Integrating fall detection technolo-
gies into a broader range of assistive devices can help
create a more comprehensive safety ecosystem for elder-
ly individuals and people with mobility impairments. This
approach could significantly reduce fall-related injuries
and fatalities by enabling quicker responses and more
personalized care.

2. Methodology

The existing fall detection system uses the gyroscope
sensor to detect falls and does not rely on any other sen-
sors to achieve precise detection (Wu et al., 2021). Also, it
requires a high amount of energy to collect and process
data to detect a fall.

In our project, it use a heart rate and oximeter sen-
sor (MAX30100) to get the heart rate and oxygen level of
a person and also use the Gyroscope sensor (MPU6050)
to get the position data of the person and get all these
values by using the Raspberry pi zero and use LabView
software to get data and run the graph of the datum got
from both the sensors. Using the K-Nearest Neighbour
algorithm to detect if the fall is conscious or unconscious.
Because most falls result from skidding into obstacles,
when a fall occurs, our algorithm checks whether it was
conscious or unconscious. Our project also detects a fall
8 seconds in advance by processing oximeter data. If a
person is going to fall, the oxygen rate will receive a low
grade to predict the fall (Xu et al., 2021).

The Raspberry Pi was chosen primarily for its com-
patibility with the selected sensors and software. Its
versatility in interfacing with a variety of sensors, in-
cluding the heart rate, oxygen, and gyroscope sensors,
made it an ideal choice (Altay & Ulas, 2019). Additionally,
its processing capabilities allow efficient data collection
and real-time analysis. While cost-effectiveness is a ben-
efit, the main reason for its selection was its seamless
integration with Python programming and LabVIEW for
data visualization and processing.

The gyroscope and oximeter sensors provide data to
the Raspberry Pi Zero. The Raspberry Pi Zero runs the
data with the built-in Python code. That code has a KNN

GyrosCODE(C) fummmy SENSOR DATA | Heart Rat BPM
Accelerometar |_| eat Rat sensorBPN)
Raspberry Pi (== Python Program
LABVIEW Software | | KNN Algorithm

IF{Gyroscope = Fall Detected)

NO FALL
BPM=(60-100) | |BPM=Below 55 BPM= Above 106
Conscious Fall | | Unconscious Fell Fall {Accident)
NO Medical | | Medical Help Needed | [ Medical Help Needed
Help Needed

Figure 1. Flow chart.

algorithm path (Di et al., 2015). The LabVIEW software re-
trieves data from the Raspberry Pi Zero and plots graphs
of gyroscope, Heart rate, and oxygen level (Sp02). Lab-
VIEW is trained on all three values to run the algorithm
and predict the fall exactly. If the fall occurs, it will be
communicated to the medical assistant.

The electrical section consists of a Raspberry Pi Zero
module, a relay module, a Gyroscope sensor, a Heart rate
sensor, an LCD, a step-down transformer, a Buck convert-
er, and wires. The real-time electrical circuit is shown in
Figure 2.

The Heart Rate Sensor (MAX 30101) includes both an
oxygen level sensor and a heart rate sensor (Ding et al.,
2022). It detects pulse oximetry and heart rate using two
LEDs, a photodetector, improved optics, and low-noise
analog signal processing. The sensor’s operating voltage
ranges from 1.8 to 3.3V. The Gyroscope Sensor (MPU 6050)
consists of a 3-axis gyroscope and a 3-axis accelerometer,
with an operating voltage of 2.3 to 3.3V. The gyroscope
measures rotation along the x, y, and z axes, while the
accelerometer measures a person’s movement when
walking, sitting, or running. A voltage regulator provides
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a stable 5V supply to the system. A buck converter mod-
ule ensures a stable power supply to the Raspberry Pi
module. The Raspberry Pi collects sensor data from the
heart rate and gyroscope sensors and sends it to LabVIEW
for simulation and analysis (Kaur & Sharma, 2024). The
Raspberry Pi has built-in Python support for classifying
ADLs (Activities of Daily Living) and transmitting.

The Raspberry Pi was chosen primarily for its com-
patibility with the selected sensors and software. Its
versatility in interfacing with a variety of sensors, includ-
ing heart rate, oxygen, and gyroscope sensors, made it
an ideal choice. Its processing capabilities allow efficient
data collection and real-time analysis. While cost-effec-
tiveness is a benefit, the main reason for its selection
was its seamless integration with Python programming
and LabVIEW for data visualization and processing (Liu
et al., 2021).

LabVIEW is a graphical programming environment
with a front page for user interaction and a block diagram
for programming. The Raspberry Pi, connected to sensors
such as a gyroscope and a heart rate monitor, collects
data, which is displayed graphically on LabVIEW’s front
page. The LabVIEW block diagram uses case statements,
arithmetic commands, and while loops to continuously
collect and process sensor data, representing it in both
digital and analog formats. Sensor data, such as heart
rate, oxygen levels, and gyroscope readings, is exported
to Excel for analysis. The real-time LabVIEW block dia-
gram is shown in Figure 5.

The analog and digital sensor data values are dis-
played on the LabVIEW front page. The LabVIEW front
page diagram is shown in Figure 6.

The device is intended to be worn around the neck,
much like a neckband, providing comfort and minimal
disruption to daily tasks (Resch et al, 2025). Its light-
weight, ergonomic design ensures continuous monitoring
without discomfort, making it suitable for extended wear
while allowing freedom of movement throughout the us-
er’s day. The real-time setup is shown in Figure 4.1 and
Figure 4.

A graph is a visual representation of collected data
on the X- and Y-axes (Hasan et al., 2019). Heart rate, ox-
ygen level, and gyroscope value are represented on the
Y-axis, and time period on the X-axis. The graph is used
to compare the previous and current values over a given
time period (Razjouyan et al., 2017). The graph is created
using previous and current sensor values, such as heart
rate and gyroscope data. The value point is connected
to a graph on the X- and Y-axes. Heart rate, oxygen level,
and gyroscope values are collected using a Raspberry Pi

Relay Module

Stepdown
Transformer

LCD Dispay

Gyroscope sensor

Raspberry pi
Module

Heart rate sensor

Buck Converter
Module

Figure 3 Electrical Setup Schematic Diagram.

Figure 4 RealTime Setup.
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Figure 5. LabVIEW Block Diagram.

Zero module with a sensor, and the corresponding graphs
are displayed on the LabVIEW front page. In Figure 7,
the heart rate graph is generated in LabVIEW, with the
corresponding data organized and analyzed. The X-axis
represents time, showing progression over the monitor-
ing period, while the Y-axis displays heart rate values,
reflecting the number of heartbeats per minute at each
time point (Saleh & Jeannes, 2019). This graph provides

oI HEART RATE
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) 100
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weuTUSE | a 'ﬁ 2

BYTESREAD 4
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ros | R
sz

Figure 6 LabVIEW Front Page.

a clear and detailed view of heart rate fluctuations over
time, allowing in-depth analysis of the data, the use of
LabVIEW for graph creation, and a comprehensive repre-
sentation of the heart rate measurements.

In Figure 8, the oxygen level graph is generated in Lab-
VIEW, with data analysis supported by an Excel sheet.
The graph presents time on the X-axis, reflecting the
progression of the observation period. On the Y-axis,

Figure 7. Heart Rate Graph.
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oxygen levels are plotted, representing the measured ox-
ygen concentration at each time point. This visualization
provides a clear overview of oxygen level variations over
time, enabling a more detailed analysis of the data. The
combination of LabVIEW for data visualization and Excel
for data organization and analysis ensures an accurate
and comprehensive representation of the oxygen levels.

In Figure 9, the gyroscope position value graph is gen-
erated in LabVIEW, with the data organized and analyzed.
The X-axis represents time, showing the time progression
during the observation period, while the Y-axis displays
the gyroscope position values, indicating the orientation
or rotational position at each corresponding time point.
This graph offers a clear visualization of the gyroscope’s
movement over time, enabling detailed analysis of its po-
sitional changes (Noorudin et al., 2021). The combination
of LabVIEW for graph form data analysis ensures accurate
and comprehensive representation of the gyroscope’s
position data.

3. Result and analysis

The fall detection system must be analyzed using a KNN
algorithm. The KNN algorithm is easy to use, exact, and
very accurate. The KNN (K-Nearest Neighbour) algorithm
uses the Euclidean distance; it returns results based on
the distance between the training data shown in Figure
8. It gives the result on the shortest distance side in the
graph.

The K-Nearest Neighbour (K-NN) algorithm was cho-
sen for classification in this fall detection system due to
its simplicity, ease of implementation, and effectiveness
in handling real-time sensor data. Unlike more complex
algorithms, K-NN does not require extensive training or
model assumptions, making it ideal for detecting pat-
terns in small, low-dimensional datasets such as heart
rate, oxygen levels, and gyroscope data (Popister et al,
2025). Additionally, K-NN provides fast, efficient classi-
fication, which is crucial for timely fall identification in
emergencies. Algorithms like neural networks, decision
trees, and deep learning methods have been tested for
fall detection. While deep learning models offer higher ac-
curacy, they are computationally intensive and consume
more energy, which is not ideal for wearable devices.
K-NN provides a better balance of accuracy, efficiency,
and energy consumption for real-time, battery-powered
applications.

Figure 8. Oxygen Level Graph.

Figure 9. Position Graph.

et B, Classe B

—

Figure 10. K-Nearest Neighbor Algorithm.
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Accuracy: Deep learning methods (CNNs, RNNs) offer
higher accuracy, especially with complex data, but
simpler algorithms like K-NN can perform competi-
tively with well-engineered features.

Efficiency: K-NN is computationally efficient and
faster for inference, making it ideal for real-time
fall detection. Deep learning models are slower and
resource-heavy.

Energy Consumption: Deep learning methods
consume more power due to high computational
demands, while K-NN are more energy-efficient, suit-
able for battery-powered wearable devices.

The value of K in the K-NN algorithm was determined
using cross-validation. Various values of K were test-
ed to evaluate performance based on accuracy, and
the value that minimized error and overfitting was
selected.

The value of K impacts the system’s accuracy by bal-
ancing bias and variance. Smaller K values can lead to
overfitting, while larger K values can smooth decision
boundaries, potentially leading to underfitting. The
chosen K enhances generalization.

Table 1. Sitting Position Dataset.

In this dataset, heart rate, position, and oxygen level
data for 17 people aged 20 to 61. The position data comes
from the gyroscope sensor, and there is not much differ-
ence because everyone is sitting in a similar position. The
heart rate (BPM - Beats per Minute) ranges from 65 to 86.
It can be seen in the chart for all heart rate, position, and
oxygen level in Figure 11.

Sheet 1

M oxvGEN
1o | VSAGE

D neart
lagad RATE
VSAGE

HEART RATE (BPM)
OXYGEN (PPM)

AGE (YEARS)

Figure 11. Sitting Position bar graph.

The data sheet is used to analyze a person’s fall while
walking. The data sheet is filled out based on the person’s
age in various situations, such as walking. The data sheet
consists of the gyroscope, heart rate, oxygen level, and
age of the person.

Table 2. Walking Position Dataset.

SITTING POSITION

WALKING POSITION

So.No. AGE Gyroscope Heartrate  Oxygen So.No. AGE Gyroscope Heartrate  Oxygen

value rate value rate
1 21 1 80 103 1 21 1 92 130
2 21 1 86 131 2 21 1 90 128
3 21 2 84 110 3 21 2 88 132
4 21 1 86 122 4 21 1 89 126
5 20 1 80 122 5 20 1 94 131
6 20 2 83 124 6 20 2 96 129
7 20 2 73 111 7 20 2 99 140
8 20 2 76 120 8 20 2 93 138
9 20 2 78 112 9 20 2 100 141
10 21 1 83 116 10 21 1 91 130
11 37 1 88 125 11 37 1 78 130
12 43 1 80 120 12 43 1 69 116
13 46 1 65 121 13 46 1 68 116
14 54 1 70 111 14 54 1 65 111
15 61 1 71 105 15 61 1 67 110
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In the walking position dataset analysis, 17 data sets
from different age groups were analyzed. Oxygen levels
were notably higher than during other ADLs, and heart
rates were slightly elevated during walking, ranging from
67 to 100 BPM. The position data varied randomly.

The data sheet is used to analyze a person’s fall while
running. The data sheet is filled out based on the person’s
age in various situations, such as running. The data sheet
consists of the gyroscope, heart rate, oxygen level, and
age of the person. From the running position dataset, |
plotted the graph of all three heart rates (BPM): position
and Oxygen level datum. If the graph is analyzed, it can
be noticed that older people have a low heart rate, and
adults also have a low heart rate compared to older peo-
ple. The oxygen level also varies, similar to the heart rate.

Table 3 Running Position Dataset.

RUNNING POSITION

So.No. AGE Gyroscope Heartrate  Oxygen

value rate
1 21 1 108 123
2 21 1 112 132
3 21 2 116 126
4 21 1 121 132
5 20 1 117 133
6 20 2 109 127
7 20 2 113 124
8 20 2 118 129
9 20 2 110 131
10 21 1 114 125
11 37 1 107 124
12 43 1 102 121
13 46 1 97 119
14 54 1 92 116
15 61 1 88 114

The graph above shows heart rate (BPM) and oxygen
saturation (Sp02) plots for people of different ages. The
graph below shows the KNN algorithm checking for the
fall, which is shown in Figure 13.

The input data was pre-processed and feature-en-
gineered before being introduced into the K-Nearest
Neighbour (K-NN) algorithm. The raw data from the sen-
sors includes heart rate, oxygen level, and gyroscope.

1. Pre-processing: Noise was reduced, and outliers were
handled to improve data quality. Missing values were
imputed if necessary.

sheet1 [ HEART RATE VS
- AGE

1200 ([ OXYGEN VS AGE

H
OXVLEN RATE (PPM)

'HEART RATE (BPM)
2

g

0! I o
14 10 18 20 2z 24 26 28 30 32 34 36 3B 40 4z W 46 48 50 52 54
AGE (VEARS)

Figure 12. Walking Position Bar Graph.
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=
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Figure 13. Running Position Bar Graph.

2. Feature Engineering: Relevant features such as
average heart rate, acceleration, and oxygen level
were extracted from the sensor data to provide
meaningful inputs for classification.

3. Windowing: Time windows were applied to segment
continuous data into manageable chunks, allowing
the algorithm to focus on localized patterns such as
short-term changes in heart rate or movement that
are critical for detecting falls.

The system mitigates potential inaccuracies in predicting
falls based on oximeter data by integrating multiple
sensors, such as heart rate and gyroscope readings.
This multi-sensor approach ensures more reliable fall
detection, compensating for subtle changes in oxygen
levels and enhancing overall accuracy.

Vol. 23, No. 6, December 2025 543



K. Gomathi et al. / Journal of Applied Research and Technology 536-545

Conclusions

As stated in the objective, the development and analysis
of the fall detection system have been completed. The
experimental analysis shows that the system has good
precision and no false-positive results regarding falls. Ad-
ditionally, it demonstrates greater precision than other
fall detection systems. This system consists of sensors,
microcontroller boards, and a KNN algorithm to deter-
mine whether the fall was conscious or unconscious.
Moreover, it can predict if a person is likely to fall by an-
alyzing the oximeter data. If the oxygen level gradually
decreases, there is a high chance the person may fall
or require medical assistance. The system is energy-ef-
ficient and offers higher precision than other available
fall detection systems. It employs an algorithm that self-
trains, improving precision over time. This system uses
commercial software, LabVIEW, which provides high ef-
ficiency and accuracy, allowing for easy analysis of the
system. To enhance fall-prediction reliability, the system
integrates data from multiple sensors, including an ox-
imeter, a heart rate sensor, and a gyroscope. Machine
learning algorithms analyze combined data, improving
fall detection accuracy even when subtle changes in ox-
ygen levels occur. Additionally, user-specific calibration
and dynamic threshold adjustment are implemented,
ensuring better adaptability and reducing the likelihood
of false positives or missed falls. The system’s perfor-
mance in diverse, uncontrolled environments is being
enhanced through expanded testing in real-world con-
ditions, including uneven surfaces and outdoor settings.
We are integrating data from these environments into the
training process and updating machine learning models
to improve adaptability, reliability, and accuracy across
diverse fall scenarios. There are plans to integrate addi-
tional health metrics into the system to enhance its utility
for medical professionals. Future upgrades may include
incorporating blood pressure and activity levels to pro-
vide a more comprehensive view of the user’s health
status. These metrics could help medical professionals
better assess the user’s condition, identify potential
health risks, and tailor their response accordingly. Addi-
tionally, continuous monitoring of these vital signs can
offer insights into overall health trends, improving the
system’s ability to detect early warning signs and support
more personalized care.
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