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Abstract: This paper details the development of PID controller tuning, based on the implementation 
of advanced optimization techniques in MATLAB to find the optimal gains for control actions. The 
methodology used to create the solutions was that of genetic algorithms, an artificial intelligence 
technique developed in the 1970s and inspired by Darwin's natural selection, within the field of 
evolutionary computing. Its implementation is based on selection, crossover, and mutation processes, 
which allow the solutions to iteratively converge towards increasingly optimal results. Two different 
genetic algorithms were programmed and designed. The first focused exclusively on a single objective, 
which was the settling time; while the second was based on a multi-objective technique that 
additionally considered the maximum overshoot, rise time, and delay time. Different fitness functions 
were developed to create these neural models; subsequently, the gain results obtained from these 
genetic methods were compared with those proposed by analytical and experimental methods, both 
in the field of simulation and in physical implementation. The analysis of the responses validated the 
efficiency and effectiveness of the proposed algorithms for controller tuning, showing better 
performance with the gains obtained through genetic algorithms. 
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1. Introduction 
 
Industrial process control originated around 1920 with the 
early implementation of automatic control in steam boilers. 
Thanks to the Industrial Revolution, the analysis of control 
loops intensified, and laws were formulated to describe them 
more accurately (Borase et al., 2020).  

In classical control systems, one of the main elements is the 
automatic controller, whose main function is to compare the 
actual output value with the desired value to obtain a 
difference and reduce deviations, which will improve the 
system's performance. Although there are various types of 
controllers designed for industrial applications, this study 
focuses specifically on the Proportional-Integral-Derivative 
(PID) controller. It was chosen for its wide versatility to adapt 
to different systems and its high precision due to the use of the 
three control actions. 

Controllers are regulated by constants that determine the 
gains in the controller. First, there is the proportional gain Kp 
that operates as an amplifier that reduces the rise time, then 
there is the integral gain Ki that eliminates the phase shift 
generated by the first control action, it also corrects the error 
in the steady state but can negatively affect the transient 
response. Finally, there is the derivative gain Kd, whose 
function is to increase the stability of the system, responding 
quickly to changes in the error and improving the transient 
response (Dubey et al., 2022). 

There are different methods to adjust these gains. On the 
one hand, there are experimental methods, such as the one 
presented by Ziegler and Nichols, which is based on the open-
loop system response to a step input. This allows for obtaining 
a graphic response to identify parameters such as the 
maximum response height and the delay time; based on these 
data, predefined formulas are applied to obtain the PID values 
(Patel, 2020). Another method proposed by these engineers is 
the “last gain” method, which consists of adjusting a 
proportional gain that makes the closed-loop system oscillate 
without it becoming unstable, to determine the period of 
these oscillations and thus use predefined formulas. 
Additionally, within this type of method is the Cohen and Coon 
method, which introduced a self-regulation index and 
proposed new formulas adapted to systems with more 
complex dynamics (Suksawat & Kaewpradit, 2021).  

On the other hand, there are analytical methods that use 
mathematical models, such as the Routh-Hurwitz criterion, to 
ensure the stability of a closed-loop system and establish a 
range for the PID gains. Additionally, there is the strategy of 
eliminating at least one stable pole that presents slow 
dynamics in the plant with a controller zero (Pavan Kumar & 
Bhimansingu, 2021). 

People looking to tune a PID controller need to understand 
the dynamics of the process. All these methods described, in 

addition to having benefits, have a major disadvantage and 
that is that, while they ensure the stability of the system, they 
do not optimize its operation because some are based on trial-
and-error processes. A modern alternative to optimally tune a 
controller is to use genetic algorithms (GA), which are an 
artificial intelligence technique capable of providing neural 
controllers that can learn the behavior of the system by 
analyzing input and output data. When integrated with other 
strategies, GAs are very useful, even in the management of 
complex systems (Suseno & Ma'arif, 2021). 

There are various artificial intelligence techniques applied 
to different fields of research. For example, evolutionary 
algorithms aim to find a set of parameters that optimize a 
fitness function, which reflects the “real” value of potential 
solutions (Rajamani et a., 2021). Additionally, neural networks 
can be used, which process information in parallel through 
sets of interconnected neurons; the most widely used neuron 
in this context is the perceptron, widely used for data 
classification due to its ability to identify and categorize 
patterns (Zhang et al., 2022). Another example is fuzzy logic, 
which is based on using information with few specifications to 
solve problems, creating a chain of rules based on common 
sense or the individual's hypotheses, which are integrated 
with adaptive systems (Saraswat & Suhag, 2023).  

The principles of genetic algorithms (GA) were proposed by 
John H. Holland. These optimization methods are based on 
the genetic process of living organisms and the Darwinian 
principle of reproduction and survival of the fittest. Genetic 
algorithms are useful for generating solutions to problems, 
which evolve to achieve optimal results, but this is highly 
dependent on the proper encoding of these solutions (Katoch 
et al., 2021).  

In genetic algorithms (GA), individuals are the possible 
solutions to the problem, which can be represented as a set of 
parameters called genes, which when grouped form a 
sequence called a chromosome. In biological terms, the set of 
parameters that represents the chromosome is called a 
phenotype, which contains useful information to build an 
organism, called a genotype. The adaptation of an individual 
to a problem depends on the evaluation of the genotype, 
which can be evaluated from the chromosome using a fitness 
function designed specifically for each problem. This function 
must be able to assign a real number that reflects the 
effectiveness of a solution concerning the problem in 
question. Therefore, to apply a genetic algorithm it is 
necessary to have a correct representation of the possible 
solutions to the problem, a fitness function that determines 
the viability of said solutions, and the selection of individuals 
based on their previously given effectiveness. A process of 
crossing and mutation is also required that allows the 
reproduction of descendants (Deng et al., 2022). 
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This work proposes the tuning of a PID controller using 
genetic algorithm techniques in Matlab and experimentally in 
Arduino. The objective is to develop a tool in which a first or 
second-order plant can be introduced, the parameters to be 
improved in the plant can be selected and the tool can 
automatically provide the values of the controller gains. The 
results obtained are compared with traditional methods, both 
experimental and analytical, to verify their correct operation 
and the achievement of the objectives.  

 
2. Materials and methods 

 
For the development of this work, a prototype plant was 
proposed, to then perform its tuning using traditional 
methods, to obtain a comparison, which is detailed below. 

 
2.1. Prototype plant 
The layout established for the control system is intended to be 
the basis for comparing the different controller tuning 
methods that will be discussed later. 

An RC cascade circuit was chosen, as shown in Figure 1, 
which has resistance values of 10KΩ and capacitor values of 
100µF. To find its transfer function according to the concept 
focused on a linear time-invariant system —defined as the 
quotient of the Laplace transform of the output to the Laplace 
transform of the input, assuming that the initial conditions are 
zero— the following function was obtained: 

 
𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

= 1
𝑠𝑠2+3𝑠𝑠+1

                (1) 

 

 
 

Figure 1. Cascade RC electrical circuit. 
 

2.2. Tuning using the Ziegler and Nichols method of the 
open loop system 
Ziegler and Nichols method was employed by drawing the 
open loop system diagram using a stepped input of amplitude 
5 as illustrated in Figure 2. This facilitated finding an inflection 
point and drawing a tangent line to the response shown in  
 
 

Figure 3 from which parameters like system height K=5, delay 
time L=0.4, and time constant τ=2.35 were determined as 
specified in Figure 4 (Allu & Toding, 2020). 

 

 
 

Figure 2. Block diagram of the open loop system. 
 

 
Figure 3. Open loop system response. 

 

 
 

Figure 4. Ziegler-Nichols methodology. 
 
Using the formulas from Table 1, it was possible to 

characterize the controller, obtaining the gains that regulate it. 
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𝐾𝐾𝑃𝑃 = 1.41                            (2) 

𝐾𝐾𝐼𝐼 = 1.76                           (3) 

𝐾𝐾𝐷𝐷 = 0.28                                  (4) 

Table 1. Gains for the Ziegler-Nichols method. 
 

Controller 𝐾𝐾𝑃𝑃 𝜏𝜏𝑖𝑖 𝜏𝜏𝑑𝑑 

P 
𝜏𝜏
𝐾𝐾𝐾𝐾 ∞ 0 

PI 0.9
𝜏𝜏
𝐾𝐾𝐾𝐾 

𝐾𝐾
0.3 0 

PID 1.2
𝜏𝜏
𝐾𝐾𝐾𝐾 2L 0.5 

 
2.3. Tuning using the Routh-Hurwitz criterion 
To establish a comparison between the most common tuning 
methods, the Routh array (6) was developed starting from the 
characteristic equation of the system, which results from the 
product of the controller with the closed-loop plant (5). 

 

𝐻𝐻(𝑠𝑠) = 𝐾𝐾𝐷𝐷𝑠𝑠2+𝐾𝐾𝑃𝑃𝑠𝑠+𝐾𝐾𝐼𝐼
𝑠𝑠3+𝑠𝑠2(𝐾𝐾𝐷𝐷+3)+𝑠𝑠(𝐾𝐾𝑃𝑃+1)+𝐾𝐾𝐼𝐼

         (5) 

 

  
 
With the support of the formulas defined to determine the 

constants b1b_1b1 and c1c_1c1, which depend on the other 
parameters of the array, it was possible to find the ranges for 
the PID gains necessary to maintain system stability, as this is 
the focus of the implemented analytical method. 

 
𝐾𝐾𝑃𝑃 = 10                                  (7) 

𝐾𝐾𝐼𝐼 = 4                                   (8) 

𝐾𝐾𝐷𝐷 = 6                               (9) 

It should be noted that these values were chosen randomly 
as long as they remained within the range that guarantees the 
stability of the system. This serves as an example of the 
different values that these control gains can take. 

 
2.4. Genetic algorithms 
Genetic algorithms (GAs) simulate biological evolution 
processes to solve problems that require optimizing 
outcomes. These algorithms work with a population of 
individuals, each representing a solution to the problem. Each  
solution is assigned a fitness value provided by the fitness  
 
 

function, which is analogous to an organism's ability to 
compete for resources and survive.  

During the execution of the algorithm, parents are selected 
based on their fitness and then crossed using crossover 
operators to produce offspring with characteristics of both 
parents. In addition, a mutation operator is applied to alter 
some parts of the potential solutions, introducing variability.  

Each successive formation creates a new generation, and 
this process is repeated iteratively until the termination 
criterion is met, which could be reaching the maximum 
number of generations or finding the most optimal solution to 
the problem at hand. 

To generate an accurate coding of the GA, the flow chart 
presented in Figure 5 was followed, which includes the 
necessary steps that will be explained later. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Flowchart for the implementation of genetic algorithms. 
 

2.4.1.  Initial population  
This process involves generating initial solutions that will 
serve as starting points for the GA to begin its search for an 
optimized solution. As previously mentioned, solutions are 
represented by chromosomes, which are composed of genes 
that can be encoded as integers, binaries, floats, etc. The most 
common way to initialize the population is randomly within a 
range of possible values; this technique can expand the space 
of explored solutions.   

 
 
 

(6) 
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2.4.2.  Fitness functions 
One of the most crucial stages to achieve good performance 
with a genetic algorithm is the evaluation of candidate solutions 
through the generation of fitness functions. The main objective 
is to ensure that individuals close to each other in the search 
space have very similar fitness values. Therefore, each individual 
should be assigned a real number that reflects their fitness, 
which will help improve the subsequent stages of the GA. 

To program the fitness functions that will govern each GA, 
the flowchart presented in Figure 6 was considered. Initially, 
using the command window in Matlab, the PID controller 
gains were assigned according to the block diagram in 
Simulink (Figure 2). Later, during the simulation of the 
program, critical data such as system output, controller 
output, and error were extracted. Finally, these values were 
used to apply the Matlab functions described in Table 2 to 
calculate the critical parameters of the system response. 

 

 
 

Figure 6. Flowchart for generating the adaptation functions. 
 

Table 2. Gains for the Ziegler-Nichols method. 
 

Matlab 
function 

Description 

SettlingTime 
Calculate the settling time of the system 

within a specific threshold close to the final value, 
which can be 2% or 5%. 

Overshoot 
Calculate the maximum peak or maximum 

overshoot that the system's response can reach. 

RiseTime 
Calculate the time required for the system to 

rise from 10% to 90% of the final value. 

Find 
This function was used to locate the first 

moment when the response reached 50% of the 
final value in order to obtain the delay time. 

 

One of the additional purposes of this work is to show the 
differences between a single-objective GA and a multi-
objective GA. To this end, a multi-objective fitness function 
was designed, incorporating all the criteria detailed in Table 2. 
To achieve this, linear weighting (Scoring) was implemented, 
a selection method to maximize the satisfaction of the desired 
results; this involves defining a value function that represents 
preferences by assigning weights to the various factors that 
make up the function. 

The weights assigned to each parameter are given 
according to the desired importance, ensuring that the total 
sum is 100%. This ensures that each criterion contributes 
proportionally to the value of the multi-objective fitness 
function (MFF). The sum of these weights is shown below: 

 
𝑀𝑀𝑀𝑀𝑀𝑀 = (0.4 𝑇𝑇𝑃𝑃) +  (0.3 𝑀𝑀𝑃𝑃) + (0.2 𝑇𝑇𝑠𝑠) + (0.1 𝑇𝑇𝑑𝑑)  (10) 

 
Where: 
𝑇𝑇𝑃𝑃= Settling time 
 𝑀𝑀𝑃𝑃= Maximum overshoot 
𝑇𝑇𝑠𝑠= Rise time 
𝑇𝑇𝑑𝑑= Delay time 
 
On the other hand, for the fitness function of the single-

objective GA, only the settling time will be considered, so the 
direct weight assigned to it in MATLAB is 100%. 

 
2.4.3.  Selection of Individuals 
This process goes hand in hand with the previous stage, as 
individuals are chosen based on their performance to provide 
better results. Selection is a critical stage, as it determines how 
quickly the algorithm can converge to a solution found in the 
population. 

There are several selection techniques, such as roulette 
selection, where each individual is assigned a value 
proportional to their fitness or adaptation, which causes the 
individuals with the best fitness to be selected. Tournament 
selection aims to choose a random number of individuals and 
select the best of this group by directly comparing fitness 
values between individuals. In addition, rank selection forces 
the best individual to be selected as a parent, making this a 
technique with a certain degree of elitism. 

The type of selection used to encode the GAs was 
tournament selection, to achieve greater precision in the 
results because it has the important advantage of expanding 
the exploration of possible solutions, which can be 
understood with the simple example shown in Figure 7. 
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Figure 7. Tournament selection method. 
 
 

2.4.4.  Crossing individuals 
Once individuals have been selected to be parents, they must 
be crossed to create new offspring containing genetic 
information from both parents. Similar to selection, there are 
different techniques to apply the crossover operator. One of 
the most traditional is the one-point crossover, where 
chromosomes are split at a random point to produce two 
initial segments and two final segments that will form the new 
individual. Another technique is the two-point crossover, 
where the chromosome is split into three parts, allowing the 
offspring to contain the central subchain from one parent and 
the lateral subchains from the other, enabling a more varied 
and complete combination. On the other hand, there is the 
uniform crossover (Figure 8), which, with the help of a 
crossover mask, gives the same probability that a gene comes 
from either of the two parents; this method was chosen for GA 
programming because it can preserve high genetic diversity. 

 

 
 

Figure 8. Uniform crossing method. 
 

2.4.5.  Mutation of individuals 
The mutation operator is responsible for increasing or 
decreasing the solution space and, in turn, generating genetic 
variability between individuals. There are several mutation 
techniques, such as Gaussian mutation, which modifies the 
value of an individual using a Gaussian random number 
method. Uniform mutation is another example of this 
operator, which replaces the value of an individual at random 
with a higher or lower value. 

However, the type of mutation chosen is the one provided 
by default by MATLAB to work with GAs: adaptive mutation.  
This method is responsible for increasing or decreasing the 
mutation rate to improve genetic diversity; as its name 

indicates, the operator adapts to the problem to achieve 
better results in the search space. 

 
2.4.6.  Programming 
Programming was done in MATLAB following the block 
diagram in Figure 9. To solve the optimization problems, the 
functions of the optimoptions tool were used, defining the 
genetic algorithm using the default function @ga. 
 

 
 

Figure 9. Flowchart for the generation of the GA. 
 
Starting with the initialization of the population, because 

the technique used is random, Matlab provides the size of the 
said population, generally calculated as double the search 
variables; in this case, the population is initialized with 6 
individuals. To set the search values between each execution 
of the program, a seed was established to avoid parameter 
variation, achieved through the rng (seed) function. After this 
step, the lower and upper limits for the gains were established, 
being from 0 to 10 units respectively, because responses with 
small and positive values are sought. 

Later, within the optimal options function, the genetic 
algorithm was configured, detailing the selection, crossover, 
and mutation operators selected after the literature review. 
These were defined using the @selectiontournament, 
@crossoverscattered, and @mutationadaptfeasible 
functions, respectively. Additionally, the number of iterations 
to be produced was specified; as part of the work, a 
comparison of results was made with maximum generation 
parameters of 1, 5, and 10 iterations. 

Once these parameters were configured, the GA was 
executed, considering that it must be applied to the single-
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objective or multi-objective fitness function. Finally, to 
observe the results, the three elements, Kp, Ki, and Kd, were 
printed in vector form. 

 
2.5. Interface 
To complete the development of this study, a GUI (Graphical 
User Interface) was generated to have a simple interaction 
with the designed genetic algorithms. Using the GUIDE design 
editor (Figure 10), which automatically generates the MATLAB 
code for the construction of the interface, the application's 
behavior was modified. 

 

 
 

Figure 10. Matlab GUIDE designer. 
 

The interface design aims to be intuitive and 
understandable, facilitating both the configuration and the 
analysis of the plant to be controlled. The coefficients of the 
transfer function are entered in the “denominator” and 
“numerator” fields, using square brackets to ensure a clear 
and structured text entry. These coefficients are sent to the 
block diagram, which serves as a basis for executing the 
iterations of the genetic algorithm. 

Once the transfer function has been loaded, it is possible to 
analyze it and apply control using the selected algorithm, 
observing the system responses individually or in a general 
graph that allows comparing the behaviors. 

In addition, two contextual help buttons have been 
included next to the algorithms. These buttons detail the key 
parameters in the implementation of each algorithm, 
providing the user with the necessary information to make an 
informed choice. 

 
3. Results 

 
First, the GUIDE interface design is presented, which includes 
the text fields and buttons described above to make the 
project more understandable and functional. As an example, 
the proposed plant application (1) with 10 development 
iterations is shown (Figure 11). 

As mentioned above, the responses of the systems with 
different values in the PID control gains were compared, which 

were obtained by applying both genetic algorithms with 
maximum generations of 1, 5 and 10. 

To verify that the fitness value was improving (decreasing), 
the @gaplotbestf function was used, which generates a graph of 
the fitness value in relation to the generations created by the 
algorithm. As can be seen in Figure 12, the average and best 
fitness values begin to converge as the generations increase. 

 

 
 

Figure 11. Graphical user interface. 
 

 

 
 

Figure 12. Graph of the evolution of the fitness value over 10 
generations in the single-objective algorithm. 

 
Figure 13 shows the result of the execution of the interface 

to obtain the gains with 10 generations produced, taking into 
account that the selected plant is the one developed 
previously (1). It is also possible to show the comparison of the 
responses of both the open loop system and the system with 
the PID controller obtained recently, using the “See 
comparison” button. 
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Figure 13. System response given control gains 
 with 10 maximum generations. 

 
Table 3 presents the results obtained by the GAs and the 

analytical and experimental methods discussed previously. It 
is observed that the integral and derivative gain values in the 
single-objective genetic algorithm (GA) remain constant. This 
is because the focus of said GA is on minimizing the settling 
time. In this case, a balance is generated between both control 
actions, since by increasing Kp, the settling time tends to 
decrease; while, by increasing Ki, the settling time increases. 
This allows us to predict that the settling time will not vary 
significantly between iterations. On the other hand, the gains 
obtained in the multi-objective GA show variation in the three 
parameters, which shows that more important metrics of the 
natural response of the system are considered. In addition, as 
the iterations progress, the responses begin to converge. This 
can be seen in the table, where the values obtained in 5 and 
10 generations show less variation compared to the results 
after 1 generation. Table 4 describes the evaluation of the 
response characteristics calculated using the functions shown 
in Table 2. It is important to note that a 2% threshold was used, 
within which the system is considered stable, and this time 
was obtained in a simulated and ideal manner. 

This table illustrates how the settling time benefits 
significantly from using the controllers provided by the genetic 
algorithm compared to traditional methods. Focusing on the 
comparison between the single-objective GA and the multi-
objective GA, the former shows greater overshoots than the 
latter, as the multi-objective GA takes this criterion into 
account to a greater extent when evaluating the system. 

However, the delay time and rise time do not show significant 
changes, as their weight in the fitness function is very low. 

 
Table 3. Characteristics of the system responses to the applied 

controllers, through simulation. 
 

Method Generation Kp Ki Kd 
Single-
objective 
GA 

1 9.488 3.3090 2.2211 
5 9.7389 3.3090 2.2211 
10 9.7701 3.3090 2.2211 

Multi-
objective 
GA 

1 9.4889 3.3090 2.8975 
5 9.9118 2.9474 2.6179 
10 9.9118 2.8849 2.4929 

Rout-
Hurwitz 
criterion 

Unique 10 4 6 

Ziegler-
Nichols 

Unique 1.41 1.76 0.286 

 
Table 4. Characteristics of the system responses to the applied 

controllers, through simulation. 
 

Method Generation 𝑇𝑇𝑝𝑝(s) 𝑀𝑀𝑝𝑝(%) 𝑇𝑇𝑠𝑠(s) 𝑇𝑇𝑑𝑑(s) 
Single-

objective 
GA 

1 0.9036 1.865 0.6236 0.2674 
5 08799 1.9327 0.6089 0.2769 

10 0.8762 1.9409 0.6071 0.2769 
Multi-

Objective 
GA 

1 1.0979 0.2775 0.6613 0.2343 
5 1.0058 0.00023 0.6280 0.2591 

10 0.9702 4.38e-05 0.62067 0.2774 
Routh-
Hurwitz 

Unique 1.8167 1.0458   

Ziegler-
Nichols 

Unique 9.8272 266.4567 1.6453 1.2035 

 
The settling time is a crucial factor in the single-objective 

genetic algorithm. When analyzing the tenth iteration, it is 
observed that the reduction in the settling time compared to 
the multi-objective genetic algorithm, the analytical method, 
and the experimental method is 9.68%, 52.03%, and 91.08%, 
respectively. This decrease in the settling time also impacts 
the rise time, which for this algorithm is lower than the others, 
showing improvements of 3.12%, 21.02%, and 63.10%, 
respectively. 

Regarding the overshoot parameters, the multi-objective 
algorithm stands out compared to the others. Regarding the 
single-objective GA, the analytical method and the 
experimental method present reductions in the overshoot of 
99.99%, 99.58%, and 99.99%, respectively. 

On the other hand, in terms of delay time, the analytical 
method demonstrates a better response. It is worth noting 
that the values of the gains 𝐾𝐾p and Ki are very similar in all 
algorithms, although Ki shows a higher value, which is 
associated with the improvement in this parameter compared 
to the single-objective GA, the multi-objective GA and the 
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experimental method, with decreases of 48.39%, 47.50%, and 
88.12%, respectively. 

Figures 14 and 15 show the system responses with the 
controllers specified by the three generations taken. As 
observed, in both cases, the signal between the fifth and the 
tenth generation begins to look very similar, as their fitness 
values are closer to each other, as seen in Figure 12. Figure 16 
provides a clearer visualization of the differences between 
each of the four methods used throughout this study. 

 

 
Figure 14. Comparison of system responses with simple GA 

applied in different generations. 
 

 
Figure 15. Comparison of system responses with multiple GA 

applied in different generations. 
 
 
 
 
 

 
 

Figure 16. Comparison of system responses to different 
controllers. 

 
These results were also obtained using Arduino and its ease 

of connection to Simulink. To visualize the comparisons 
clearly, Table 5 is prepared, where each parameter was 
obtained from scale measurements in Figures 18 and 19, 
which present more realistic results of the work carried out. 
The overshoot percentage stands out, which is significantly 
higher in traditional methods compared to optimization 
methods. On the other hand, the settling time presents very 
similar values between the different approaches, although its 
final choice will depend on the specific application of the 
control system. This will allow the most appropriate method 
to be selected based on other key characteristics. In general, 
both the rise time and the delay time remain in very similar 
ranges between the different methodologies. 

 
Table 5. Characteristics of the system responses to the applied 

controllers using Arduino. 
 

Method Generation 𝑇𝑇𝑝𝑝(s) 𝑀𝑀𝑝𝑝(%) 𝑇𝑇𝑠𝑠(s) 𝑇𝑇𝑑𝑑(s) 
Single-

objective 
GA 

1 12.83 34.5 1.2 0.83 
5 13.33 36 1 1.16 

10 13.58 36.6 0.83 1.16 
Multi-

Objective 
GA 

1 15.5 37 1.3 1 
5 14.62 32 1.21 1.08 

10 14.58 31.6 1.18 1.13 
Routh-
Hurwitz 

Unique 10 36.84 1.64 1.2 

Ziegler-
Nichols 

Unique 15.6 54.73 1.28 1.29 
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In a more realistic context regarding the system results and 
when analyzing the tenth generation, it is highlighted that the 
multi-objective genetic algorithm presents reductions in the 
maximum overshoot and delay time parameters compared to 
the single-objective genetic algorithm, the analytical method 
and the experimental one, with percentage differences of 
13.6%, 14.22% and 42.26% for the overshoot, and 2.58%, 5.8% 
and 12.4% for the delay time, respectively. 

The single-objective genetic algorithm stands out in this 
comparison for its notable decrease in the rise time compared 
to the multi-objective GA, the analytical method, and the 
experimental one, with reductions of 29.66%, 49.39%, and 
35.15%, respectively. 

Finally, one of the most important criteria to evaluate is the 
settling time. Thanks to the implementation of an analytical 
method, a stable response was achieved in approximately 10 
seconds. This represents percentage differences compared to 
the other methods, such as the single-objective genetic 
algorithm, the multi-objective genetic algorithm, and the 
experimental method, with values of 26.36%, 31.14%, and 
35.89%, respectively. 

The circuit in Figure 1 was implemented and through a 
block arrangement in Simulink, PWM inputs were specified, 
and the controllers through a sum of gains and analog outputs 
to read the signal provided by the system, as can be seen in 
Figure 17. 

 
 

Figure 17. Block diagram for the implementation 
 of the system using Arduino. 

 
The signals shown in Figure 18 demonstrate how the 

settling time and the percentage of overshoot of the single-
objective GA signals increase slightly with each generation 
taken. However, this changes when applying the controllers 
from the multi-objective GA, as both criteria decrease 
significantly, as shown in Figure 19. 

Another observation supporting the theory of the 
controllers is that as the proportional gain value increases, the 
rise time decreases, but the delay time increases. 

 
 
 

 
 

Figure 18. Comparison of system responses with the simple GA 
applied using Arduino. 

 

 
 
Figure 19. Comparison of the system responses with the multiple 

GA applied using Arduino. 
 
Figure 20 shows the signals from the applied methods to 

determine, in a more realistic environment, which method 
offers the best response. It can be seen that the analytical 
method provides values similar to those determined by the 
neural models, resulting in very similar responses. In contrast, 
the experimental method, as observed in the simulation, 
shows several oscillations before settling at the desired value. 
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Figure 20. Comparison of system responses to different 
controllers applied using Arduino. 

 
 
4. Conclusions  

 
To develop genetic algorithms in MATLAB, the main 
characteristics of classic control system responses were 
considered, such as settling time, maximum overshoot, rise 
time, and delay time. Additionally, various existing techniques 
were evaluated to construct each stage of these neural 
models. One of the most important aspects was to clearly 
define the parameters for the development of the fitness 
function from the outset, as it verifies that the performance of 
the solution is optimal for solving control problems. 
     It was demonstrated that traditional methods can be time-
consuming and inaccurate due to their wide variability in 
possible controller gains, as seen with experimental methods. 
As observed in the graphs, their application to the specified 
plant generated high oscillations and overshoots compared to 
other responses. 
     The significant effectiveness of using genetic algorithms to 
improve system response was evident. Although the 
developed open-loop system did not naturally exhibit noise or 
oscillations, the settling time was improved both ideally 
(simulated) and practically through the implementation of the 
plant and Arduino. 
     Furthermore, one of the focuses of this study was the 
comparison between a single-objective GA and a multi-
objective GA. Given the PID values, the results showed little 
overall variation, but a more noticeable difference in both 
settling time and overshoot. 
     The use of multiple objectives for the evaluation of the 
system in the natural state showed an improvement in the 
results when considering the added weight in the total 
function using the scoring technique, thus prioritizing the key 

metrics. Regarding the execution time, it is worth noting that it 
is the same in both algorithms, approximately 18 seconds per 
iteration since both focus on a single evaluation function. This 
highlights the importance of using artificial intelligence 
techniques to find these values. From another perspective, 
these values can be programmed directly into the 
microcontroller or PLC that controls the process, without 
requiring additional tools, thus improving the response of an 
industrial system, which leads to greater efficiency and cost 
reduction. 
     Based on the graphical results, improvements were 
declared not only in the output signal of the control systems 
but also in the resolution time of control problems, which can 
be tedious and, at an industrial level, could affect the 
performance of the system being worked on. 
     As future work, it is proposed to complement the 
optimization of PID tuning with hybrid optimization methods 
such as Particle Swarm Optimization or Simulated Annealing, 
as well as to implement it in larger and more complex systems, 
such as gain control in Atomic Force Microscopy (which is 
based on PID gains), motor speed control with PLCs, energy 
balancing in electrical distribution microgrids, phase-locking 
algorithms for energy synchronization, differential robots in 
trajectory tracking, to mention a few. 
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