

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 23 (2025) 240-251

Original

Tuning a PID controller using genetic algorithms

D. López-Reynaa I. López-Reynaa G. González-Badilloa
M. F. Martínez Montejanob R. C. Martínez-Montejanoa*

aFacultad de Estudios Profesionales Zona Media, Universidad Autónoma de San Luis Potosí,

Carretera Rioverde-San Ciro km 4., Ejido puente del Carmen, 79610, Rioverde, S. L. P.
bResearch and Technology, Oak Ridge National Laboratory, 1 Bethel Valley, Rd, Oak Ridge,

TN 37830, EEUU.

Received 09 06 2024; accepted 11 08 2024
Available 06 30 2025

Keywords: Control, control gains, genetic algorithms.

Abstract: This paper details the development of PID controller tuning, based on the implementation
of advanced optimization techniques in MATLAB to find the optimal gains for control actions. The
methodology used to create the solutions was that of genetic algorithms, an artificial intelligence
technique developed in the 1970s and inspired by Darwin's natural selection, within the field of
evolutionary computing. Its implementation is based on selection, crossover, and mutation processes,
which allow the solutions to iteratively converge towards increasingly optimal results. Two different
genetic algorithms were programmed and designed. The first focused exclusively on a single objective,
which was the settling time; while the second was based on a multi-objective technique that
additionally considered the maximum overshoot, rise time, and delay time. Different fitness functions
were developed to create these neural models; subsequently, the gain results obtained from these
genetic methods were compared with those proposed by analytical and experimental methods, both
in the field of simulation and in physical implementation. The analysis of the responses validated the
efficiency and effectiveness of the proposed algorithms for controller tuning, showing better
performance with the gains obtained through genetic algorithms.

∗Corresponding author.
E-mail address: roberto.montejano@uaslp.mx (R. C. Martínez-Montejano).
Peer Review under the responsibility of Universidad Nacional Autónoma de México.

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:roberto.montejano@uaslp.mx
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 241

1. Introduction

Industrial process control originated around 1920 with the
early implementation of automatic control in steam boilers.
Thanks to the Industrial Revolution, the analysis of control
loops intensified, and laws were formulated to describe them
more accurately (Borase et al., 2020).

In classical control systems, one of the main elements is the
automatic controller, whose main function is to compare the
actual output value with the desired value to obtain a
difference and reduce deviations, which will improve the
system's performance. Although there are various types of
controllers designed for industrial applications, this study
focuses specifically on the Proportional-Integral-Derivative
(PID) controller. It was chosen for its wide versatility to adapt
to different systems and its high precision due to the use of the
three control actions.

Controllers are regulated by constants that determine the
gains in the controller. First, there is the proportional gain Kp
that operates as an amplifier that reduces the rise time, then
there is the integral gain Ki that eliminates the phase shift
generated by the first control action, it also corrects the error
in the steady state but can negatively affect the transient
response. Finally, there is the derivative gain Kd, whose
function is to increase the stability of the system, responding
quickly to changes in the error and improving the transient
response (Dubey et al., 2022).

There are different methods to adjust these gains. On the
one hand, there are experimental methods, such as the one
presented by Ziegler and Nichols, which is based on the open-
loop system response to a step input. This allows for obtaining
a graphic response to identify parameters such as the
maximum response height and the delay time; based on these
data, predefined formulas are applied to obtain the PID values
(Patel, 2020). Another method proposed by these engineers is
the “last gain” method, which consists of adjusting a
proportional gain that makes the closed-loop system oscillate
without it becoming unstable, to determine the period of
these oscillations and thus use predefined formulas.
Additionally, within this type of method is the Cohen and Coon
method, which introduced a self-regulation index and
proposed new formulas adapted to systems with more
complex dynamics (Suksawat & Kaewpradit, 2021).

On the other hand, there are analytical methods that use
mathematical models, such as the Routh-Hurwitz criterion, to
ensure the stability of a closed-loop system and establish a
range for the PID gains. Additionally, there is the strategy of
eliminating at least one stable pole that presents slow
dynamics in the plant with a controller zero (Pavan Kumar &
Bhimansingu, 2021).

People looking to tune a PID controller need to understand
the dynamics of the process. All these methods described, in

addition to having benefits, have a major disadvantage and
that is that, while they ensure the stability of the system, they
do not optimize its operation because some are based on trial-
and-error processes. A modern alternative to optimally tune a
controller is to use genetic algorithms (GA), which are an
artificial intelligence technique capable of providing neural
controllers that can learn the behavior of the system by
analyzing input and output data. When integrated with other
strategies, GAs are very useful, even in the management of
complex systems (Suseno & Ma'arif, 2021).

There are various artificial intelligence techniques applied
to different fields of research. For example, evolutionary
algorithms aim to find a set of parameters that optimize a
fitness function, which reflects the “real” value of potential
solutions (Rajamani et a., 2021). Additionally, neural networks
can be used, which process information in parallel through
sets of interconnected neurons; the most widely used neuron
in this context is the perceptron, widely used for data
classification due to its ability to identify and categorize
patterns (Zhang et al., 2022). Another example is fuzzy logic,
which is based on using information with few specifications to
solve problems, creating a chain of rules based on common
sense or the individual's hypotheses, which are integrated
with adaptive systems (Saraswat & Suhag, 2023).

The principles of genetic algorithms (GA) were proposed by
John H. Holland. These optimization methods are based on
the genetic process of living organisms and the Darwinian
principle of reproduction and survival of the fittest. Genetic
algorithms are useful for generating solutions to problems,
which evolve to achieve optimal results, but this is highly
dependent on the proper encoding of these solutions (Katoch
et al., 2021).

In genetic algorithms (GA), individuals are the possible
solutions to the problem, which can be represented as a set of
parameters called genes, which when grouped form a
sequence called a chromosome. In biological terms, the set of
parameters that represents the chromosome is called a
phenotype, which contains useful information to build an
organism, called a genotype. The adaptation of an individual
to a problem depends on the evaluation of the genotype,
which can be evaluated from the chromosome using a fitness
function designed specifically for each problem. This function
must be able to assign a real number that reflects the
effectiveness of a solution concerning the problem in
question. Therefore, to apply a genetic algorithm it is
necessary to have a correct representation of the possible
solutions to the problem, a fitness function that determines
the viability of said solutions, and the selection of individuals
based on their previously given effectiveness. A process of
crossing and mutation is also required that allows the
reproduction of descendants (Deng et al., 2022).

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 242

This work proposes the tuning of a PID controller using
genetic algorithm techniques in Matlab and experimentally in
Arduino. The objective is to develop a tool in which a first or
second-order plant can be introduced, the parameters to be
improved in the plant can be selected and the tool can
automatically provide the values of the controller gains. The
results obtained are compared with traditional methods, both
experimental and analytical, to verify their correct operation
and the achievement of the objectives.

2. Materials and methods

For the development of this work, a prototype plant was
proposed, to then perform its tuning using traditional
methods, to obtain a comparison, which is detailed below.

2.1. Prototype plant
The layout established for the control system is intended to be
the basis for comparing the different controller tuning
methods that will be discussed later.

An RC cascade circuit was chosen, as shown in Figure 1,
which has resistance values of 10KΩ and capacitor values of
100µF. To find its transfer function according to the concept
focused on a linear time-invariant system —defined as the
quotient of the Laplace transform of the output to the Laplace
transform of the input, assuming that the initial conditions are
zero— the following function was obtained:

𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

= 1
𝑠𝑠2+3𝑠𝑠+1

 (1)

Figure 1. Cascade RC electrical circuit.

2.2. Tuning using the Ziegler and Nichols method of the
open loop system
Ziegler and Nichols method was employed by drawing the
open loop system diagram using a stepped input of amplitude
5 as illustrated in Figure 2. This facilitated finding an inflection
point and drawing a tangent line to the response shown in

Figure 3 from which parameters like system height K=5, delay
time L=0.4, and time constant τ=2.35 were determined as
specified in Figure 4 (Allu & Toding, 2020).

Figure 2. Block diagram of the open loop system.

Figure 3. Open loop system response.

Figure 4. Ziegler-Nichols methodology.

Using the formulas from Table 1, it was possible to

characterize the controller, obtaining the gains that regulate it.

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 243

𝐾𝐾𝑃𝑃 = 1.41 (2)

𝐾𝐾𝐼𝐼 = 1.76 (3)

𝐾𝐾𝐷𝐷 = 0.28 (4)

Table 1. Gains for the Ziegler-Nichols method.

Controller 𝐾𝐾𝑃𝑃 𝜏𝜏𝑖𝑖 𝜏𝜏𝑑𝑑

P
𝜏𝜏
𝐾𝐾𝐾𝐾 ∞ 0

PI 0.9
𝜏𝜏
𝐾𝐾𝐾𝐾

𝐾𝐾
0.3 0

PID 1.2
𝜏𝜏
𝐾𝐾𝐾𝐾 2L 0.5

2.3. Tuning using the Routh-Hurwitz criterion
To establish a comparison between the most common tuning
methods, the Routh array (6) was developed starting from the
characteristic equation of the system, which results from the
product of the controller with the closed-loop plant (5).

𝐻𝐻(𝑠𝑠) = 𝐾𝐾𝐷𝐷𝑠𝑠2+𝐾𝐾𝑃𝑃𝑠𝑠+𝐾𝐾𝐼𝐼
𝑠𝑠3+𝑠𝑠2(𝐾𝐾𝐷𝐷+3)+𝑠𝑠(𝐾𝐾𝑃𝑃+1)+𝐾𝐾𝐼𝐼

 (5)

With the support of the formulas defined to determine the

constants b1b_1b1 and c1c_1c1, which depend on the other
parameters of the array, it was possible to find the ranges for
the PID gains necessary to maintain system stability, as this is
the focus of the implemented analytical method.

𝐾𝐾𝑃𝑃 = 10 (7)

𝐾𝐾𝐼𝐼 = 4 (8)

𝐾𝐾𝐷𝐷 = 6 (9)

It should be noted that these values were chosen randomly
as long as they remained within the range that guarantees the
stability of the system. This serves as an example of the
different values that these control gains can take.

2.4. Genetic algorithms
Genetic algorithms (GAs) simulate biological evolution
processes to solve problems that require optimizing
outcomes. These algorithms work with a population of
individuals, each representing a solution to the problem. Each
solution is assigned a fitness value provided by the fitness

function, which is analogous to an organism's ability to
compete for resources and survive.

During the execution of the algorithm, parents are selected
based on their fitness and then crossed using crossover
operators to produce offspring with characteristics of both
parents. In addition, a mutation operator is applied to alter
some parts of the potential solutions, introducing variability.

Each successive formation creates a new generation, and
this process is repeated iteratively until the termination
criterion is met, which could be reaching the maximum
number of generations or finding the most optimal solution to
the problem at hand.

To generate an accurate coding of the GA, the flow chart
presented in Figure 5 was followed, which includes the
necessary steps that will be explained later.

Figure 5. Flowchart for the implementation of genetic algorithms.

2.4.1. Initial population
This process involves generating initial solutions that will
serve as starting points for the GA to begin its search for an
optimized solution. As previously mentioned, solutions are
represented by chromosomes, which are composed of genes
that can be encoded as integers, binaries, floats, etc. The most
common way to initialize the population is randomly within a
range of possible values; this technique can expand the space
of explored solutions.

(6)

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 244

2.4.2. Fitness functions
One of the most crucial stages to achieve good performance
with a genetic algorithm is the evaluation of candidate solutions
through the generation of fitness functions. The main objective
is to ensure that individuals close to each other in the search
space have very similar fitness values. Therefore, each individual
should be assigned a real number that reflects their fitness,
which will help improve the subsequent stages of the GA.

To program the fitness functions that will govern each GA,
the flowchart presented in Figure 6 was considered. Initially,
using the command window in Matlab, the PID controller
gains were assigned according to the block diagram in
Simulink (Figure 2). Later, during the simulation of the
program, critical data such as system output, controller
output, and error were extracted. Finally, these values were
used to apply the Matlab functions described in Table 2 to
calculate the critical parameters of the system response.

Figure 6. Flowchart for generating the adaptation functions.

Table 2. Gains for the Ziegler-Nichols method.

Matlab
function

Description

SettlingTime
Calculate the settling time of the system

within a specific threshold close to the final value,
which can be 2% or 5%.

Overshoot
Calculate the maximum peak or maximum

overshoot that the system's response can reach.

RiseTime
Calculate the time required for the system to

rise from 10% to 90% of the final value.

Find
This function was used to locate the first

moment when the response reached 50% of the
final value in order to obtain the delay time.

One of the additional purposes of this work is to show the
differences between a single-objective GA and a multi-
objective GA. To this end, a multi-objective fitness function
was designed, incorporating all the criteria detailed in Table 2.
To achieve this, linear weighting (Scoring) was implemented,
a selection method to maximize the satisfaction of the desired
results; this involves defining a value function that represents
preferences by assigning weights to the various factors that
make up the function.

The weights assigned to each parameter are given
according to the desired importance, ensuring that the total
sum is 100%. This ensures that each criterion contributes
proportionally to the value of the multi-objective fitness
function (MFF). The sum of these weights is shown below:

𝑀𝑀𝑀𝑀𝑀𝑀 = (0.4 𝑇𝑇𝑃𝑃) + (0.3 𝑀𝑀𝑃𝑃) + (0.2 𝑇𝑇𝑠𝑠) + (0.1 𝑇𝑇𝑑𝑑) (10)

Where:
𝑇𝑇𝑃𝑃= Settling time
 𝑀𝑀𝑃𝑃= Maximum overshoot
𝑇𝑇𝑠𝑠= Rise time
𝑇𝑇𝑑𝑑= Delay time

On the other hand, for the fitness function of the single-

objective GA, only the settling time will be considered, so the
direct weight assigned to it in MATLAB is 100%.

2.4.3. Selection of Individuals
This process goes hand in hand with the previous stage, as
individuals are chosen based on their performance to provide
better results. Selection is a critical stage, as it determines how
quickly the algorithm can converge to a solution found in the
population.

There are several selection techniques, such as roulette
selection, where each individual is assigned a value
proportional to their fitness or adaptation, which causes the
individuals with the best fitness to be selected. Tournament
selection aims to choose a random number of individuals and
select the best of this group by directly comparing fitness
values between individuals. In addition, rank selection forces
the best individual to be selected as a parent, making this a
technique with a certain degree of elitism.

The type of selection used to encode the GAs was
tournament selection, to achieve greater precision in the
results because it has the important advantage of expanding
the exploration of possible solutions, which can be
understood with the simple example shown in Figure 7.

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 245

Figure 7. Tournament selection method.

2.4.4. Crossing individuals
Once individuals have been selected to be parents, they must
be crossed to create new offspring containing genetic
information from both parents. Similar to selection, there are
different techniques to apply the crossover operator. One of
the most traditional is the one-point crossover, where
chromosomes are split at a random point to produce two
initial segments and two final segments that will form the new
individual. Another technique is the two-point crossover,
where the chromosome is split into three parts, allowing the
offspring to contain the central subchain from one parent and
the lateral subchains from the other, enabling a more varied
and complete combination. On the other hand, there is the
uniform crossover (Figure 8), which, with the help of a
crossover mask, gives the same probability that a gene comes
from either of the two parents; this method was chosen for GA
programming because it can preserve high genetic diversity.

Figure 8. Uniform crossing method.

2.4.5. Mutation of individuals
The mutation operator is responsible for increasing or
decreasing the solution space and, in turn, generating genetic
variability between individuals. There are several mutation
techniques, such as Gaussian mutation, which modifies the
value of an individual using a Gaussian random number
method. Uniform mutation is another example of this
operator, which replaces the value of an individual at random
with a higher or lower value.

However, the type of mutation chosen is the one provided
by default by MATLAB to work with GAs: adaptive mutation.
This method is responsible for increasing or decreasing the
mutation rate to improve genetic diversity; as its name

indicates, the operator adapts to the problem to achieve
better results in the search space.

2.4.6. Programming
Programming was done in MATLAB following the block
diagram in Figure 9. To solve the optimization problems, the
functions of the optimoptions tool were used, defining the
genetic algorithm using the default function @ga.

Figure 9. Flowchart for the generation of the GA.

Starting with the initialization of the population, because

the technique used is random, Matlab provides the size of the
said population, generally calculated as double the search
variables; in this case, the population is initialized with 6
individuals. To set the search values between each execution
of the program, a seed was established to avoid parameter
variation, achieved through the rng (seed) function. After this
step, the lower and upper limits for the gains were established,
being from 0 to 10 units respectively, because responses with
small and positive values are sought.

Later, within the optimal options function, the genetic
algorithm was configured, detailing the selection, crossover,
and mutation operators selected after the literature review.
These were defined using the @selectiontournament,
@crossoverscattered, and @mutationadaptfeasible
functions, respectively. Additionally, the number of iterations
to be produced was specified; as part of the work, a
comparison of results was made with maximum generation
parameters of 1, 5, and 10 iterations.

Once these parameters were configured, the GA was
executed, considering that it must be applied to the single-

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 246

objective or multi-objective fitness function. Finally, to
observe the results, the three elements, Kp, Ki, and Kd, were
printed in vector form.

2.5. Interface
To complete the development of this study, a GUI (Graphical
User Interface) was generated to have a simple interaction
with the designed genetic algorithms. Using the GUIDE design
editor (Figure 10), which automatically generates the MATLAB
code for the construction of the interface, the application's
behavior was modified.

Figure 10. Matlab GUIDE designer.

The interface design aims to be intuitive and
understandable, facilitating both the configuration and the
analysis of the plant to be controlled. The coefficients of the
transfer function are entered in the “denominator” and
“numerator” fields, using square brackets to ensure a clear
and structured text entry. These coefficients are sent to the
block diagram, which serves as a basis for executing the
iterations of the genetic algorithm.

Once the transfer function has been loaded, it is possible to
analyze it and apply control using the selected algorithm,
observing the system responses individually or in a general
graph that allows comparing the behaviors.

In addition, two contextual help buttons have been
included next to the algorithms. These buttons detail the key
parameters in the implementation of each algorithm,
providing the user with the necessary information to make an
informed choice.

3. Results

First, the GUIDE interface design is presented, which includes
the text fields and buttons described above to make the
project more understandable and functional. As an example,
the proposed plant application (1) with 10 development
iterations is shown (Figure 11).

As mentioned above, the responses of the systems with
different values in the PID control gains were compared, which

were obtained by applying both genetic algorithms with
maximum generations of 1, 5 and 10.

To verify that the fitness value was improving (decreasing),
the @gaplotbestf function was used, which generates a graph of
the fitness value in relation to the generations created by the
algorithm. As can be seen in Figure 12, the average and best
fitness values begin to converge as the generations increase.

Figure 11. Graphical user interface.

Figure 12. Graph of the evolution of the fitness value over 10
generations in the single-objective algorithm.

Figure 13 shows the result of the execution of the interface

to obtain the gains with 10 generations produced, taking into
account that the selected plant is the one developed
previously (1). It is also possible to show the comparison of the
responses of both the open loop system and the system with
the PID controller obtained recently, using the “See
comparison” button.

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 247

Figure 13. System response given control gains
 with 10 maximum generations.

Table 3 presents the results obtained by the GAs and the

analytical and experimental methods discussed previously. It
is observed that the integral and derivative gain values in the
single-objective genetic algorithm (GA) remain constant. This
is because the focus of said GA is on minimizing the settling
time. In this case, a balance is generated between both control
actions, since by increasing Kp, the settling time tends to
decrease; while, by increasing Ki, the settling time increases.
This allows us to predict that the settling time will not vary
significantly between iterations. On the other hand, the gains
obtained in the multi-objective GA show variation in the three
parameters, which shows that more important metrics of the
natural response of the system are considered. In addition, as
the iterations progress, the responses begin to converge. This
can be seen in the table, where the values obtained in 5 and
10 generations show less variation compared to the results
after 1 generation. Table 4 describes the evaluation of the
response characteristics calculated using the functions shown
in Table 2. It is important to note that a 2% threshold was used,
within which the system is considered stable, and this time
was obtained in a simulated and ideal manner.

This table illustrates how the settling time benefits
significantly from using the controllers provided by the genetic
algorithm compared to traditional methods. Focusing on the
comparison between the single-objective GA and the multi-
objective GA, the former shows greater overshoots than the
latter, as the multi-objective GA takes this criterion into
account to a greater extent when evaluating the system.

However, the delay time and rise time do not show significant
changes, as their weight in the fitness function is very low.

Table 3. Characteristics of the system responses to the applied

controllers, through simulation.

Method Generation Kp Ki Kd
Single-
objective
GA

1 9.488 3.3090 2.2211
5 9.7389 3.3090 2.2211
10 9.7701 3.3090 2.2211

Multi-
objective
GA

1 9.4889 3.3090 2.8975
5 9.9118 2.9474 2.6179
10 9.9118 2.8849 2.4929

Rout-
Hurwitz
criterion

Unique 10 4 6

Ziegler-
Nichols

Unique 1.41 1.76 0.286

Table 4. Characteristics of the system responses to the applied

controllers, through simulation.

Method Generation 𝑇𝑇𝑝𝑝(s) 𝑀𝑀𝑝𝑝(%) 𝑇𝑇𝑠𝑠(s) 𝑇𝑇𝑑𝑑(s)
Single-

objective
GA

1 0.9036 1.865 0.6236 0.2674
5 08799 1.9327 0.6089 0.2769

10 0.8762 1.9409 0.6071 0.2769
Multi-

Objective
GA

1 1.0979 0.2775 0.6613 0.2343
5 1.0058 0.00023 0.6280 0.2591

10 0.9702 4.38e-05 0.62067 0.2774
Routh-
Hurwitz

Unique 1.8167 1.0458

Ziegler-
Nichols

Unique 9.8272 266.4567 1.6453 1.2035

The settling time is a crucial factor in the single-objective

genetic algorithm. When analyzing the tenth iteration, it is
observed that the reduction in the settling time compared to
the multi-objective genetic algorithm, the analytical method,
and the experimental method is 9.68%, 52.03%, and 91.08%,
respectively. This decrease in the settling time also impacts
the rise time, which for this algorithm is lower than the others,
showing improvements of 3.12%, 21.02%, and 63.10%,
respectively.

Regarding the overshoot parameters, the multi-objective
algorithm stands out compared to the others. Regarding the
single-objective GA, the analytical method and the
experimental method present reductions in the overshoot of
99.99%, 99.58%, and 99.99%, respectively.

On the other hand, in terms of delay time, the analytical
method demonstrates a better response. It is worth noting
that the values of the gains 𝐾𝐾p and Ki are very similar in all
algorithms, although Ki shows a higher value, which is
associated with the improvement in this parameter compared
to the single-objective GA, the multi-objective GA and the

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 248

experimental method, with decreases of 48.39%, 47.50%, and
88.12%, respectively.

Figures 14 and 15 show the system responses with the
controllers specified by the three generations taken. As
observed, in both cases, the signal between the fifth and the
tenth generation begins to look very similar, as their fitness
values are closer to each other, as seen in Figure 12. Figure 16
provides a clearer visualization of the differences between
each of the four methods used throughout this study.

Figure 14. Comparison of system responses with simple GA

applied in different generations.

Figure 15. Comparison of system responses with multiple GA

applied in different generations.

Figure 16. Comparison of system responses to different
controllers.

These results were also obtained using Arduino and its ease

of connection to Simulink. To visualize the comparisons
clearly, Table 5 is prepared, where each parameter was
obtained from scale measurements in Figures 18 and 19,
which present more realistic results of the work carried out.
The overshoot percentage stands out, which is significantly
higher in traditional methods compared to optimization
methods. On the other hand, the settling time presents very
similar values between the different approaches, although its
final choice will depend on the specific application of the
control system. This will allow the most appropriate method
to be selected based on other key characteristics. In general,
both the rise time and the delay time remain in very similar
ranges between the different methodologies.

Table 5. Characteristics of the system responses to the applied

controllers using Arduino.

Method Generation 𝑇𝑇𝑝𝑝(s) 𝑀𝑀𝑝𝑝(%) 𝑇𝑇𝑠𝑠(s) 𝑇𝑇𝑑𝑑(s)
Single-

objective
GA

1 12.83 34.5 1.2 0.83
5 13.33 36 1 1.16

10 13.58 36.6 0.83 1.16
Multi-

Objective
GA

1 15.5 37 1.3 1
5 14.62 32 1.21 1.08

10 14.58 31.6 1.18 1.13
Routh-
Hurwitz

Unique 10 36.84 1.64 1.2

Ziegler-
Nichols

Unique 15.6 54.73 1.28 1.29

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 249

In a more realistic context regarding the system results and
when analyzing the tenth generation, it is highlighted that the
multi-objective genetic algorithm presents reductions in the
maximum overshoot and delay time parameters compared to
the single-objective genetic algorithm, the analytical method
and the experimental one, with percentage differences of
13.6%, 14.22% and 42.26% for the overshoot, and 2.58%, 5.8%
and 12.4% for the delay time, respectively.

The single-objective genetic algorithm stands out in this
comparison for its notable decrease in the rise time compared
to the multi-objective GA, the analytical method, and the
experimental one, with reductions of 29.66%, 49.39%, and
35.15%, respectively.

Finally, one of the most important criteria to evaluate is the
settling time. Thanks to the implementation of an analytical
method, a stable response was achieved in approximately 10
seconds. This represents percentage differences compared to
the other methods, such as the single-objective genetic
algorithm, the multi-objective genetic algorithm, and the
experimental method, with values of 26.36%, 31.14%, and
35.89%, respectively.

The circuit in Figure 1 was implemented and through a
block arrangement in Simulink, PWM inputs were specified,
and the controllers through a sum of gains and analog outputs
to read the signal provided by the system, as can be seen in
Figure 17.

Figure 17. Block diagram for the implementation
 of the system using Arduino.

The signals shown in Figure 18 demonstrate how the

settling time and the percentage of overshoot of the single-
objective GA signals increase slightly with each generation
taken. However, this changes when applying the controllers
from the multi-objective GA, as both criteria decrease
significantly, as shown in Figure 19.

Another observation supporting the theory of the
controllers is that as the proportional gain value increases, the
rise time decreases, but the delay time increases.

Figure 18. Comparison of system responses with the simple GA
applied using Arduino.

Figure 19. Comparison of the system responses with the multiple

GA applied using Arduino.

Figure 20 shows the signals from the applied methods to

determine, in a more realistic environment, which method
offers the best response. It can be seen that the analytical
method provides values similar to those determined by the
neural models, resulting in very similar responses. In contrast,
the experimental method, as observed in the simulation,
shows several oscillations before settling at the desired value.

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 250

Figure 20. Comparison of system responses to different
controllers applied using Arduino.

4. Conclusions

To develop genetic algorithms in MATLAB, the main
characteristics of classic control system responses were
considered, such as settling time, maximum overshoot, rise
time, and delay time. Additionally, various existing techniques
were evaluated to construct each stage of these neural
models. One of the most important aspects was to clearly
define the parameters for the development of the fitness
function from the outset, as it verifies that the performance of
the solution is optimal for solving control problems.
 It was demonstrated that traditional methods can be time-
consuming and inaccurate due to their wide variability in
possible controller gains, as seen with experimental methods.
As observed in the graphs, their application to the specified
plant generated high oscillations and overshoots compared to
other responses.
 The significant effectiveness of using genetic algorithms to
improve system response was evident. Although the
developed open-loop system did not naturally exhibit noise or
oscillations, the settling time was improved both ideally
(simulated) and practically through the implementation of the
plant and Arduino.
 Furthermore, one of the focuses of this study was the
comparison between a single-objective GA and a multi-
objective GA. Given the PID values, the results showed little
overall variation, but a more noticeable difference in both
settling time and overshoot.
 The use of multiple objectives for the evaluation of the
system in the natural state showed an improvement in the
results when considering the added weight in the total
function using the scoring technique, thus prioritizing the key

metrics. Regarding the execution time, it is worth noting that it
is the same in both algorithms, approximately 18 seconds per
iteration since both focus on a single evaluation function. This
highlights the importance of using artificial intelligence
techniques to find these values. From another perspective,
these values can be programmed directly into the
microcontroller or PLC that controls the process, without
requiring additional tools, thus improving the response of an
industrial system, which leads to greater efficiency and cost
reduction.
 Based on the graphical results, improvements were
declared not only in the output signal of the control systems
but also in the resolution time of control problems, which can
be tedious and, at an industrial level, could affect the
performance of the system being worked on.
 As future work, it is proposed to complement the
optimization of PID tuning with hybrid optimization methods
such as Particle Swarm Optimization or Simulated Annealing,
as well as to implement it in larger and more complex systems,
such as gain control in Atomic Force Microscopy (which is
based on PID gains), motor speed control with PLCs, energy
balancing in electrical distribution microgrids, phase-locking
algorithms for energy synchronization, differential robots in
trajectory tracking, to mention a few.

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgments

The authors would like to thank the Unidad Académica
Multidisciplinaria Zona Media of UASLP for supporting this
work.

Funding

The authors received no specific funding for this work.

D. López-Reyna et al. / Journal of Applied Research and Technology 240-251

Vol. 23, No. 3, June 2025 251

References

Allu, N., & Toding, A. (2020). Tuning with Ziegler Nichols
method for design PID controller at rotate speed DC
motor. In IOP Conference Series: Materials Science and
Engineering (Vol. 846, No. 1, p. 012046). IOP
https://doi.org/10.1088/1757-899X/846/1/012046

Borase, R. P., Maghade, D. K., Sondkar, S. Y., & Pawar, S.
N. (2020). A review of PID control, tuning methods and
applications. International Journal of Dynamics and
Control, 9, 818-827.
https://doi.org/10.1007/s40435-020-00665-4

Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., Chen, H., &
Zhao, H. (2022). An enhanced fast non-dominated
solution sorting genetic algorithm for multi-objective
problems. Information Sciences, 585, 441-453.
https://doi.org/10.1016/j.ins.2021.11.052

Dubey, V., Goud, H., & Sharma, P. C. (2022). Role of PID
control techniques in process control system: a
review. Data Engineering for Smart Systems: Proceedings
of SSIC 2021, 659-670.
https://doi.org/10.1007/978-981-16-2641-8_62

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on
genetic algorithm: past, present, and future. Multimedia
tools and applications, 80, 8091-8126.
https://doi.org/10.1007/s11042-020-10139-6

Patel, V. V. (2020). Ziegler-nichols tuning method:
Understanding the pid controller. Resonance, 25(10),
1385-1397.
https://doi.org/10.1007/s12045-020-1058-z

Pavan Kumar, Y. V., & Bhimasingu, R. (2021). Design of
voltage and current controller parameters using small
signal model-based pole-zero cancellation method for
improved transient response in microgrids. SN Applied
Sciences, 3, 1-17.
https://doi.org/10.1007/s42452-021-04815-x

Rajamani, M. P. E., Rajesh, R., & Willjuice Iruthayarajan, M.
(2021). Design and Experimental Validation of PID
Controller for Buck Converter: A Multi-Objective
Evolutionary Algorithms Based Approach. IETE Journal
of Research, 69(1), 21–32.
https://doi.org/10.1080/03772063.2021.1905564

Saraswat, R., & Suhag, S. (2023). Type-2 fuzzy logic PID
control for efficient power balance in an AC
microgrid. Sustainable Energy Technologies and
Assessments, 56, 103048.
https://doi.org/10.1016/j.seta.2023.103048

Suksawat, T., & Kaewpradit, P. (2021). Comparison of
Ziegler-Nichols and Cohen-Coon tuning methods:
implementation to water level control based MATLAB
and Arduino. Engineering Journal Chiang Mai
University, 28(1), 153-168.

Suseno, E. W., & Ma'arif, A. (2021). Tuning of PID
controller parameters with genetic algorithm method on
DC motor. International Journal of Robotics and Control
Systems, 1(1), 41-53.
https://doi.org/10.31763/ijrcs.v1i1.249

Zhang, L., Li, S., Xue, Y., Zhou, H., & Ren, Z. (2022). Neural
network PID control for combustion instability. Combustion
theory and modelling, 26(2), 383-398.
https://doi.org/10.1080/13647830.2022.2025908

https://doi.org/10.1088/1757-899X/846/1/012046
https://doi.org/10.1007/s40435-020-00665-4
https://doi.org/10.1016/j.ins.2021.11.052
https://doi.org/10.1007/978-981-16-2641-8_62
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s12045-020-1058-z
https://doi.org/10.1007/s42452-021-04815-x
https://doi.org/10.1080/03772063.2021.1905564
https://doi.org/10.1016/j.seta.2023.103048
https://ph01.tci-thaijo.org/index.php/EngJCMU/article/view/243443/166127
https://ph01.tci-thaijo.org/index.php/EngJCMU/article/view/243443/166127
https://ph01.tci-thaijo.org/index.php/EngJCMU/article/view/243443/166127
https://ph01.tci-thaijo.org/index.php/EngJCMU/article/view/243443/166127
https://ph01.tci-thaijo.org/index.php/EngJCMU/article/view/243443/166127
https://doi.org/10.31763/ijrcs.v1i1.249
https://doi.org/10.1080/13647830.2022.2025908

