
  

 

 

Journal of Applied Research and Technology 
 

www.jart.icat.unam.mx 

Journal of Applied Research and Technology 23 (2025) 252-265 

Original 

Enhanced secure path selection model for underwater 
acoustic sensor networks using advanced machine learning 

and optimization techniques 
 

S. Palanivel Rajana*    R. Vasanthb     
 

aDepartment of Electronics and Communication Engineering, Velammal College of Engineering and  
  Technology (Autonomous), Madurai - 625009, Tamilnadu, India 

bDepartment of Computer Science and Engineering, Faculty of Engineering and Technology,                                                                                                    
  Jain Deemed to be University, Jain Global Campus, Kanakapura Road,  

Ramanagara District-562112, India 
 

 
Received 09 05 2024; accepted 10 21 2024 

Available 06 30 2025 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

  

Keywords: Adaptive modulation, optimal route selection, safe data transmission, enhanced 
swarm optimization (ESO). 

 
 

Abstract: The underwater acoustic sensor network is a large network consisting of many operating sensor nodes 
that surround a transmitting node. The communication process faces substantial disturbances caused by the ever-
changing nature of the underwater acoustic channel, which is characterized by fluctuating properties in both time 
and location. Therefore, the underwater acoustic communication system has difficulties in reducing interference 
and improving communication efficiency and quality by using adaptive modulation. This work presents a model 
that aims to tackle these difficulties by suggesting an optimum route selection and safe data transmission 
approach in UASN using sophisticated technology. The suggested approach for transferring safe data in UASN via 
optimum route selection consists of two main stages. Nodes are first chosen based on restrictions such as energy, 
distance, and connection quality, which are quantified in terms of throughput. Moreover, the process of forecasting 
energy is made easier by using sophisticated machine learning methods like transformer models. The ideal route 
is generated using a hybrid optimization technique called enhanced swarm optimization, which combines ideas 
from particle swarm optimization and genetic algorithms. Afterward, data is safely transported via the most 
efficient route by using fully homomorphic encryption. Finally, the ESO+ transformer model that was created is 
tested against established benchmark models, showcasing its strong and reliable performance. The proposed 
model demonstrates remarkable performance with an accuracy of 95.12%, precision of 94.83%, specificity of 
93.65%, sensitivity of 95.28%, false positive rate of 4.72%, F1 score of 94.95%, Matthews correlation coefficient of 
94.85%, false negative rate of 4.72%, negative predictive value of 95.15%, and false discovery rate of 5.15% when 
trained on a learning percentage of 70%. 
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1. Introduction 
 
Over the last several years, sensor networks have gained 
significant interest as a potential area of study owing to their 
wide range of applications in many fields. Routing is a crucial 
feature in network architecture that plays a vital role in 
guaranteeing the durability and effectiveness of the network 
(Khan et al., 2021). As businesses install more sensor nodes, 
the difficulty of routing increases, especially in situations that 
include underwater communication. Underwater sensor 
networks have specific issues that are different from those met 
by standard terrestrial networks, primarily because of the 
unique characteristics of the underwater environment 
(Ramamoorthy & Thangavelu, 2022). In underwater sensor 
networks, nodes often function on a collective platform, giving 
priority to optimizing performance rather than ensuring 
fairness among individual nodes. Furthermore, the 
connection between the distance of the link, the 
dependability, and the number of hops becomes crucial, with 
the preference for multi-hop data transmission generally 
chosen to enhance energy efficiency (Singh & Gupta, 2022). 
Notwithstanding these difficulties, underwater audio 
communication has become an essential tool in several fields, 
such as weather monitoring, environmental sensing, and 
marine research (Rajaragavi & Rajan, 2022). Securing the 
transmission in underwater acoustic sensor networks (UASNs) 
is a difficult task because of the inherent weaknesses of 
acoustic channels. The inherent accessibility of the medium 
makes it vulnerable to interception, while the portability of 
sensor nodes brings other complications, such as possible 
security breaches (Anuradha et al., 2022). Therefore, it is 
essential to create strong systems for the secure transfer of 
data in UASNs to protect sensitive information and ensure the 
integrity of the network. While acoustic communication offers 
benefits, it nevertheless faces problems such as limited 
bandwidth, time-varying multipath fading, and slower 
transmission rates compared to electromagnetic radiation 
(Fazli et al., 2019).  

To overcome these difficulties and guarantee dependable 
communication, it is crucial to include redundancy solutions 
such as automatic repeat request (ARQ) protocols and forward 
error correction (FEC) (Palanivel Rajan & Paranthaman, 2019). 
Nevertheless, these methods meet challenges in establishing 
efficient data transfer in underwater settings owing to 
elevated bit error rates (BER) and extended delay (Noorbakhsh 
& Soltanaghaei, 2022).  In underwater environments, 
traditional ARQ-based protocols like Stop and Wait (S&W) face 
challenges because of the high bit error rate (BER) and 
propagation delay that are typical of acoustic channels 
(Sathya & Sengottuvelan, 2022). This research suggests a new 
method to address these difficulties by using a transformer 
model-based energy prediction for selecting the best route 

and ensuring safe data transmission in UASNs. The suggested 
approach seeks to improve communication efficiency and 
overcome the specific problems presented by underwater 
settings by using sophisticated machine learning methods. 

 
1.1. Problem statement 
Table 1 provides a concise overview of the characteristics and 
difficulties met in previous studies concerning the selection of 
the best route and the safe transmission of data in UASNs, 
using various approaches (Chaaf et al., 2021). The TSDBG 
technique proved superior transmission latency, emphasizing 
the significance of characterizing players' trust levels via the 
comparison of other nodes' behavior (Moridi & Barati, 2017). 
The integration of mobile devices into underwater acoustic 
sensor networks (UWASNs) using the depth-based routing 
(DBR) and grey wolf optimization (GWO) algorithm has shown 
promising results in terms of reducing latency and dead node 
count (Krishnaswamy & Manvi, 2019). However, more research 
is needed to fully understand the implications of including 
mobile devices in UWASNs (Gola & Gupta, 2021). While a 
separate study proposed a data transmission method that is 
both energy-efficient and reliable, thereby lowering the 
amount of communication required and minimizing energy 
use, accurately forecasting the location of leaks in maritime oil 
pipelines remains a difficult task (Goutham & Harigovindan, 
2021). The DL-HDBT mechanism has successfully created a 
system with minimal complexity and great efficiency. 
However, the difficulty of the packet loss ratio persists 
(Hemavathy & Indumathi, 2021). 
     Similarly, while there have been advancements in energy 
efficiency, it is still challenging to create protocols that are 
both stable and not reliant on certain network configurations 
(Zhang et al., 2021). An innovative energy-efficient strategy 
including quality of service-aware routing was used in 
underwater wireless sensor networks to minimize energy 
consumption while improving network reliability (Su et al., 
2022). However, it remains a challenge to simultaneously 
address average packet delay and network lifetime. Although 
CARQ protocols have accomplished relay placement, the issue 
of managing significant propagation delay persists (Jamshidi, 
2019). The use of the fuzzy clustering algorithm resulted in a 
reduction in the mortality rate of nodes by using a method for 
selecting cluster heads (Neethu et al., 2022). The edge 
prediction-based adaptive data transmission algorithm (EP-
ADTA) and Mobility prediction optimum data forwarding 
(MPODF) protocols were designed to achieve a high packet 
delivery ratio, energy efficiency, and decreased end-to-end 
latency. Furthermore, a method was proposed to intelligently 
select modulation schemes in UWA communication systems. 
This method utilizes a hybrid learning model and energy-
balanced reliable clustering for underwater wireless sensor 
networks (Rajan et al., 2012). The proposed method addresses 
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multiple challenges, but there is still a need for further 
advancements to reduce redundant data and enhance system 
efficiency (Wang et al., 2015). 
 

Table 1. Characteristics and difficulties of existing efforts in UASNs 
using various approaches. 

 
Methodology Features Challenges 

TSDBG method 
Higher transmission 
latency 

Describing players' 
trust values by 
comparing the 
behavior of other 
nodes 

Depth-Based 
Routing (DBR) and 
GWO 

Reduced delay and 
dead node count 

Incorporating 
mobile devices into 
UWASNs 

Energy-efficient 
scheme 

Reduced 
communication 
overhead and 
energy consumption 

Predicting leak 
point of marine oil 
pipelines 

DL-HDBT 
mechanism 

Low complexity 
system with high 
efficiency 

Addressing packet 
loss ratio 

Quality of service-
aware routing 

Least energy usage 
with enhanced 
network 
dependability 

Addressing average 
packet latency and 
network longevity 

CARQ protocols 
Achieved relay 
location 

Controlling large 
propagation delay 

Fuzzy clustering 
Algorithm 

Decreased death 
rate of nodes 

- 

Energy-balanced 
clustering 

Reliable and 
effective clustering 

Designing initial 
clustering 
algorithms to lower 
redundant data 

 
1.2. Motivation 
The study effort has addressed many shortcomings such as 
inadequate packet loss ratio, average packet latency, network 
durability, delay, security, and redundant data via the 
implementation of the suggested ESO+ transformer 
architecture. The suggested ESO+ transformer model 
determines the most efficient route by considering many 
factors, including energy consumption, distance, and 
connection quality. Furthermore, the security of the ESO+ 
transformer model is bolstered by the implementation of the 
fully homomorphic encryption method. The study on UASN is 
motivated by the issues presented by energy prediction for 
selecting the best way, using hybrid optimization algorithms 
for path selection, and ensuring secure data transfer. Energy 
prediction is essential for determining the most efficient 
method for data transmission in an underwater acoustic 
sensor network (UASN). This decision-making process must 
consider several factors, including energy availability, 
distance, and connection quality. Anticipating the energy use 

of nodes may aid in identifying the optimal route for data 
transmission that minimizes energy consumption. This study 
uses transformer models to forecast the energy levels of nodes 
in UASN. The suggested model employs a hybrid optimization 
technique known as enhanced swarm optimization (ESO) to 
choose the most efficient route. ESO integrates two methods, 
namely particle swarm optimization (PSO) and genetic 
methods (GA). The objective of this hybrid technique is to 
enhance the efficiency and efficacy of route selection in UASN. 
Secure data transfer: Guaranteeing the security of data 
transmission is essential in UASN to safeguard sensitive 
information from unwanted access. The suggested approach 
integrates fully homomorphic encryption to encrypt the data, 
hence bolstering the security of the sent data. 

 
2. Contribution of the proposed ESO+ transformer 
model 

 
The suggested approach enhances the process of selecting 
the best route and ensuring the safe transmission of data in 
the underwater acoustic sensor network (UASN). This paper 
presents a new hybrid optimization technique called ESO+ 
Transformer. The system effectively identifies the best route in 
a UASN (underwater acoustic sensor network) by considering 
several constraints such as energy, distance, and connection 
quality in terms of throughput. Furthermore, a refined fully 
homomorphic encryption method is created to guarantee the 
safe transfer of data. By using transformer models for energy 
prediction, the model can effectively capture temporal 
dependencies and trends in energy consumption data, 
resulting in precise forecasts of future energy levels. Data is 
secured using the enhanced fully homomorphic encryption 
method, ensuring safe transmission along the best channel. 
The performance of the proposed ESO+ transformer model 
has been validated against conventional benchmarks, 
yielding impressive results. The model achieved an accuracy 
of 95.12%, precision of 94.83%, and specificity of 93.65%. To 
summarize, the literature analysis highlights the urgent need 
for sophisticated methods to tackle the difficulties faced by 
underwater acoustic sensor networks (UASNs), namely in 
areas such as modulation selection, energy prediction, route 
optimization, and data security. Despite notable 
advancements, there are still deficiencies in attaining the 
highest level of performance and dependability under 
dynamic underwater conditions. The suggested techniques, 
such as transformer model + ESO, for forecasting energy use 
and ensuring safe transfer of data, show potential in tackling 
these difficulties. Incorporating PSO and GA into the ESO 
framework, combined with the use of transformer models, 
offers novel approaches to improve route selection and 
optimize data transmission efficiency in UASNs. The core 
challenge in underwater acoustic sensor networks (UASNs) 
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lies in establishing reliable, secure, and energy-efficient 
communication despite the constraints of underwater 
environments. These constraints include high bit error rates, 
limited bandwidth, and energy consumption, which can 
impair the network’s performance. This study proposes a 
comprehensive solution by integrating machine learning, 
optimization techniques such as particle swarm optimization 
(PSO) and genetic algorithms (GA), and cryptographic 
methods to tackle these obstacles. The proposed framework 
aims to enhance both the network's performance and the 
security of transmitted data. 

 
3. Methodology  

 
3.1. System model 
Within a basic UASNs setting, three categories of nodes are 
considered: principal nodes (P), medium nodes (M), and 
superior nodes (S). The nodes are represented as Pi, Mi, and Si, 
with i ranging from 1 to n. The superior nodes are intentionally 
positioned in the network with predetermined coordinates, 
while primary nodes are haphazardly dispersed across the 
surroundings. Superior nodes possess a greater initial energy 
of 1J, whereas main nodes have an initial energy of 0.5J. This 
distribution of energy guarantees a prolonged lifespan of the 
network. Intermediary nodes act as a connection between the 
main and superior nodes, starting with an initial energy level 
of 0.8J. The placement of sensor nodes is stochastic, 
enhancing the dependability of communication networks. 
The network has a sink node that has infinite power and 
energy consumption capabilities, which enables wireless 
transmission. The distance between nodes is regulated by the 
signal transmission intensity. 

Energy prediction using transformer Model states that the 
vitality level of each node is prophesied via transformer model 
based on exact sorts as well as location of the node lN, 
distance dist and the node type 𝑁𝑁𝑇𝑇:𝑁𝑁𝑇𝑇 ∈  {𝑃𝑃𝑖𝑖,𝑀𝑀𝑖𝑖, 𝑆𝑆𝑖𝑖} . 
Therefore, the three types of nodes like 𝑃𝑃𝑖𝑖 ,𝑀𝑀𝑖𝑖, 𝑆𝑆𝑖𝑖 set the energy 
value as mentioned in Table 2. 

 
Table 2. Energy prediction using the transformer model. 

 
Node Type Target Energy (J) 

Principal nodes (𝑷𝑷𝒊𝒊) 0 0.5 

Medium nodes (𝑴𝑴𝒊𝒊) 1 0.8 

Superior nodes (𝑺𝑺𝒊𝒊) 2 1 

 
To predict the energy level of each node within the 

underwater acoustic sensor network (UASN) using a 
transformer model, we first encode the input features into 
numerical representations suitable for input to the model. 
These features include the node's location (lN), distance (dist), 

and node type (NT). The node type (NT) is represented as a 
categorical feature and is encoded using one-hot encoding, 
where NTi is mapped to a binary vector depending on the node 
type. For instance, if NTi represents a normal node (Ni), it is 
encoded as [1, 0, 0]. Similarly, an intermediate node (Ii) is 
encoded as [0, 1, 0], and an advanced node (Ai) is encoded as 
[0, 0, 1]. Additionally, positional encoding is applied to 
incorporate the sequential nature of the input data. The 
positional encoding is calculated using sinusoidal functions, 
where po’s represent the position of the node in the sequence 
and d is the dimensionality of the positional encoding. The 
transformer model architecture comprises encoder and 
decoder layers, each containing multi-head self-attention 
mechanisms and feed-forward neural networks. The output of 
the final encoder layer is utilized to predict the energy level for 
each node. During the model training phase, a dataset 
containing labeled examples of input feature vectors and their 
corresponding target energy levels is used to minimize a loss 
function, such as mean squared error, between the predicted 
energy levels and the target energy levels. Once the model is 
trained, it can be employed to predict the energy levels for new 
input feature vectors by inputting the encoded feature vectors 
into the trained model. Finally, the performance of the model 
is evaluated using metrics such as mean absolute error or root 
mean squared error to assess the accuracy of the energy 
predictions compared to the target energy values for each 
node type. This process ensures accurate prediction of energy 
levels for nodes in the UASN, facilitating network optimization 
and resource management. 

 
3.2. Optimal path selection using the proposed ESO 
In the realm of underwater acoustic sensor networks (UASNs), 
there are many nodes positioned between the transmitter (S) 
and reception (R) nodes. This study classifies these nodes into 
three unique categories: regular nodes, intermediate nodes, 
and advanced nodes. Node selection is conducted by taking 
into account factors such as energy, distance, and connection 
quality. The suggested hybrid optimization approach, 
enhanced swarm optimization (ESO), is used to identify 
optimum pathways from the selected nodes. The ESO 
algorithm combines the pelican optimization algorithm with 
the chimp optimization algorithm to accurately identify the 
most efficient routes. After determining the most efficient 
route, data packets are sent along these channels. To 
guarantee the secure transmission of data, the use of fully 
homomorphic encryption is used to encrypt the data, hence 
ensuring the secrecy of the sent information. 
 
3.3. Objective function, energy, and distance 
The objective function used to determine the best route is 
described by Equation (1), where E represents energy, D 
represents distance, Q represents connection quality, and (α, 
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β, γ) are the weight coefficients. It is important to note that the 
weight coefficients must satisfy the constraint ∑Wi = 1. 

 
𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼(𝐸𝐸 ∗ (1− 𝐷𝐷) ∗ 𝑄𝑄)   (1) 

 
This work utilizes the energy consumption model (Wang et 

al., 2015) to facilitate underwater acoustic data transfer. At the 
transmitting end, the act of sending data requires a greater 
amount of energy in comparison to the receiving end. 
Reducing the energy consumption at the sender side might 
lead to a decrease in the total energy consumption of the 
network. Equation (2) expresses the least power needed to 
transmit l bits of data and the energy used at the sender side. 
In this equation, δ represents the transmitting delay node, θ(x) 
is the function associated with the underwater acoustic 
propagation model, and P represents power. 

 
𝐸𝐸(𝑙𝑙, 𝑥𝑥) =  𝛿𝛿 ∗  𝜃𝜃(𝑥𝑥) ∗ 𝑃𝑃   (2) 

 
Equation (3) provides the function associated with the 

underwater sound propagation model. ω is a variable that is 
connected to frequency, whereas κ is a parameter that is 
linked to the underwater acoustic propagation model. 

 
𝜃𝜃(𝑥𝑥) =  𝜔𝜔𝑘𝑘 ∗  𝑥𝑥𝑘𝑘    (3) 

 
Hence, the energy consumption of each node may be 

forecasted using the method shown in Equation (4), where η is 
the energy of the node. 

 
𝐸𝐸(𝑙𝑙, 𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚(𝜂𝜂)    (4) 

 
To incorporate this technique into a transformer model and 

enhanced swarm optimization (ESO), the goal function 
(Muthukkumar & Manimegalai, 2021) and energy consumption 
equations may be merged into the model's structure and 
optimization procedure, respectively. The transformer model 
may be trained to forecast energy use by considering input 
variables such as distance, connection quality, and node type. 
Meanwhile, ESO can enhance the selection of the best routes 
by minimizing the objective function. This integration 
optimizes route selection in UASNs by taking into account 
energy usage. This research calculates the distance between 
nodes in the underwater acoustic sensor network using their 
coordinates (x1, y1) and (x2, y2). When constructing the network, 
100 nodes are chosen based on thorough consideration of 
criteria such as energy levels and connection quality. The 
identification of the shortest route for data packet delivery 
may be achieved by measuring the distance between certain 
nodes. The computation of distance is stated in Equation (5). 

 
𝐷𝐷𝑚𝑚𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑀𝑀𝑀𝑀𝑚𝑚(𝑑𝑑𝑚𝑚𝐷𝐷)    (5) 

The variable "dis" denotes the distance between nodes, 
which is determined using the Euclidean distance formula 
which is denoted in Equation (6). 

 
𝑑𝑑𝑚𝑚𝐷𝐷 =  �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦2 − 𝑦𝑦1)2  (6) 

 
3.4. Link quality in terms of throughput 
This study quantifies connection quality in terms of 
throughput, which represents the quality of received data 
packets at the receiver side. Throughput quantifies the total 
number of system data units processed within a certain 
period. Equation (7) defines throughput as the ratio of packets 
received at each node (PR) to the total number of packets (P). 

 

𝑇𝑇ℎ𝑝𝑝∗ = ∑𝑃𝑃𝑃𝑃
2𝑃𝑃

     (7) 
 
This equation computes the throughput by aggregating the 

number of packets received at each node and dividing it by 
twice the total number of packets. 

 
3.5. Proposed enhanced swarm optimization (ESO) 
algorithm 
This research utilizes the enhanced swarm optimization (ESO) 
algorithm to determine the most efficient route in a network of 
100 nodes in an underwater acoustic environment. A random 
selection process is used to pick certain nodes from a pool of 
100 nodes, considering different limitations, to determine the 
most efficient route between the sender and recipient nodes 
(i.e., nodes 1 and 100). The ESO method, which integrates the 
tactics of particle swarm optimization (PSO) and genetic 
algorithms (GA), is used to discover the most efficient route for 
delivering data packets. ESO employs a search strategy that is 
influenced by the behavior of swarm animals, allowing for 
independent optimization of the search space.  

This approach mirrors the collective intelligence exhibited 
in swarms. In addition, the ESO method incorporates the 
particle swarm optimization (PSO) approach to include the 
collective behavior found in swarms, similar to the 
optimization technique used in PSO algorithms. This 
collective intelligence assists in identifying the best possible 
solutions within given limitations, although they may not be 
completely optimum. This improves the effectiveness of the 
whole optimization process. The proposed ESO hybrid 
optimization method combines the capabilities of PSO and 
GA techniques to reach the global optimum solution. This 
methodology guarantees optimal route selection for data 
transmission in underwater acoustic networks, hence 
improving the overall performance and usage of network 
resources. 
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3.6. Mathematical model of the ESO algorithm 
The enhanced swarm optimization (ESO) method is based on 
the behavior of several elements in a chimp colony, including 
drivers, chasers, attackers, and barricades. Drivers engage in the 
pursuit of prey but may not successfully apprehend it, while 
chasers adeptly follow and promptly capture their target. 
Assailants anticipate the movement of their targets and 
collaborate with pursuers, while obstacles hinder the 
advancement of the targets. These entities function in four 
unique stages: exploitation, usage, exploration, and sexual 
drive. During the exploitation phase, the algorithm increases its 
search efforts in regions that show promise. This is followed by 
the usage phase when the algorithm uses its prior findings to 
improve its search. Exploration promotes the algorithm's 
investigation of uncharted territories, while the sexual drive 
phase cultivates collaboration and communication among 
entities. The ESO method enables optimization speed 
enhancement by combining behavioral variables to strike a 
balance between exploration and exploitation. The 
mathematical model for the (ESO) method is as follows. Let P 
represents the population of search agents, and D represent the 
dimensionality of the search space. Each search agent is 
defined by its position vector, denoted as 𝑋𝑋𝑖𝑖 =
(𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2, … … … . 𝑥𝑥𝑖𝑖𝑖𝑖), which represents a possible solution 
inside the search space. The velocity vector, denoted as                       
𝑉𝑉𝑖𝑖 = (𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2, … … … … 𝑣𝑣𝑖𝑖𝑖𝑖) determines the movement of each 
search agent in the swarm and effects its location update. For 
every iteration t, the position update of each search agent i is 
computed in the following Equation (8). 

 
𝑥𝑥𝑖𝑖𝑖𝑖(𝐷𝐷 + 1) =  𝑥𝑥𝑖𝑖𝑖𝑖(𝐷𝐷) +  𝑣𝑣𝑖𝑖𝑖𝑖 (𝐷𝐷 + 1)  (8) 

 
Where 𝑥𝑥𝑖𝑖𝑖𝑖(𝐷𝐷 + 1) is the new position of agent ‘i’ in 

dimension d, and 𝑣𝑣𝑖𝑖𝑖𝑖 (𝐷𝐷 + 1)  is the corresponding velocity 
component. The velocity update equation (9) for each 
dimension d and agent i is given by the following Equation 9. 

 
𝑣𝑣𝑖𝑖𝑖𝑖 (𝐷𝐷 + 1) = 𝜔𝜔  .  𝑣𝑣𝑖𝑖𝑖𝑖(𝐷𝐷) + 𝑐𝑐1 .  𝑟𝑟𝑀𝑀𝑚𝑚𝑑𝑑1 . �𝑝𝑝𝑖𝑖𝑖𝑖 −  𝑥𝑥𝑖𝑖𝑖𝑖(𝐷𝐷)�+

 𝑐𝑐2 . 𝑟𝑟𝑀𝑀𝑚𝑚𝑑𝑑2 . (𝑝𝑝𝑔𝑔𝑖𝑖 −  𝑥𝑥𝑖𝑖𝑖𝑖(𝐷𝐷))          (9) 
 
Where, ω is the inertia weight.  c1 and c2 are acceleration 

coefficients,  𝑟𝑟𝑀𝑀𝑚𝑚𝑑𝑑1  and 𝑟𝑟𝑀𝑀𝑚𝑚𝑑𝑑2 are random values between 0 
and 1. 𝑝𝑝𝑖𝑖𝑖𝑖  is the personal best position of agent ‘i’ in the 
dimension ‘d’, 𝑝𝑝𝑔𝑔𝑖𝑖   is the global best position among all 
agents in dimension ‘d’. 

The personal best position pid and global best position pgd 
are updated as agents to explore the search space and 
improve their solutions. The ESO algorithm's ability to explore 
and exploit is affected by the inertia weight, denoted as ω, 
which determines the balance between the impact of the 
preceding velocity and the discrepancy between personal and 
global best locations. The ESO method successfully explores 

the search space and improves optimization performance by 
repeatedly updating the locations and velocities of search 
agents using these equations, which allow for both 
exploration and exploitation of interesting areas. The 
executed pseudocode presents a systematic representation of 
the procedures included in the Enhanced swarm optimization 
(ESO) method. This approach integrates the particle swarm 
optimization (PSO) technique to facilitate exploration and the 
use of genetic algorithms (GA) to enhance exploitation. The 
process involves initializing the particles, updating their 
locations and velocities using particle swarm optimization 
(PSO), assessing their fitness, and executing genetic algorithm 
(GA) operations such as selection, crossover, and mutation. 

 
4. Proposed secured data transmission via fully 
homomorphic encryption 

 
The data packets are transferred between nodes 
indiscriminately, regardless of their kind. Ensuring the 
confidentiality and integrity of the data during transmission is 
of utmost importance. Thus, this study suggests using fully 
homomorphic encryption (FHE) to encrypt the initial data. 
Fully homomorphic encryption (FHE) is a strong cryptographic 
solution that enables computations to be conducted on 
encrypted data without requiring decryption. This ensures 
that the secrecy and integrity of the transmitted data are 
maintained during the whole communication process. 

 
4.1. Fully homomorphic encryption (FHE) 
Fully homomorphic encryption (FHE) is an innovative 
cryptographic method that radically alters the way data may 
be safely managed. Unlike conventional encryption 
techniques, which need data to be decrypted before doing 
calculations, fully homomorphic encryption (FHE) enables 
computations to be conducted directly on encrypted data 
without the necessity of decryption. This implies that secret 
information may stay encrypted during thewhole calculation 
process, hence maintaining its secrecy and integrity. The 
encryption process starts by transforming plaintext data using 
a designated encryption key, which produces ciphertext that 
seems random and incomprehensible to anyone without the 
associated decryption key. However, what distinguishes FHE 
is its capacity to do mathematical operations on the ciphertext 
directly, without the need to decode it first. By performing 
calculations on encrypted data, sensitive information is 
protected and never revealed in its unencrypted state. The 
consequences of fully homomorphic encryption (FHE) are 
extensive, with applications across several sectors. Within the 
realm of secure cloud computing, fully homomorphic 
encryption (FHE) allows for the safe processing of data on 
distant servers, while ensuring that the plaintext remains 
concealed from the server at all times. Similarly, in the field of 
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privacy-preserving data analysis, fully homomorphic encryption 
(FHE) enables researchers to conduct computations on 
encrypted data while ensuring the confidentiality of individuals' 
sensitive information. In the context of private communication 
systems, fully homomorphic encryption (FHE) may be used to 
encrypt messages and conduct computations on them without 
jeopardizing the secrecy of the conversation. FHE is a notable 
breakthrough in cryptography, providing a robust solution for 
the secure manipulation and examination of data, all the while 
preserving the secrecy and confidentiality of sensitive 
information. Fully homomorphic encryption (FHE) offers a 
potential solution to meet the specific demands and difficulties 
faced in the realm of underwater acoustic sensor network 
(UASN) communication. Ensuring data security and secrecy is of 
utmost importance in UASN, since nodes function in a 
demanding underwater setting. This is owing to the possible 
existence of adversaries and the susceptibility of wireless 
transmissions to interception. The use of FHE has many benefits 
that specifically tackle these demands and obstacles. Fully 
homomorphic encryption (FHE) ensures that data remains 
encrypted at all stages of the computing process, including 
storage, transport, and processing. This guarantees the 
confidentiality and security of critical information, even in the 
face of hostile individuals or unlawful efforts to get access. Data 
integrity is maintained by the use of fully homomorphic 
encryption (FHE), which enables calculations to be carried out 
on encrypted data. This prevents any unauthorized alterations 
or tampering of the data. Data integrity is of utmost importance 
in UASN, as it plays a critical role in guaranteeing the precision 
and dependability of environmental monitoring and 
surveillance applications. Fully homomorphic encryption (FHE) 
allows for safe calculations to be executed on encrypted data 
without requiring decryption, thereby reducing the possibility of 
data disclosure or leakage during processing. This is particularly 
advantageous in UASN, where computational activities such as 
optimizing routing, aggregating data, and detecting anomalies 
may be conducted safely without exposing sensitive 
information. Resource-constrained systems, like UASNs, may 
have limited processing power, memory, and energy resources. 
FHE algorithms may be improved to effectively function in such 
contexts, showcasing adaptability to resource constraints. Fully 
homomorphic encryption (FHE) offers data security without 
excessively straining the network infrastructure by reducing the 
computational cost of encryption and decryption processes. 
UASN communication is vulnerable to variations in the 
underwater acoustic channel, which may impact the way 
signals travel, and data is sent and received. The capacity of fully 
homomorphic encryption (FHE) to carry out computations on 
encrypted data regardless of the characteristics of the 
communication channel makes it resistant to such variations, 
guaranteeing constant protection and secrecy of data even 
when the environmental conditions change. In summary, FHE 

provides a strong and adaptable solution for dealing with the 
unique demands and obstacles related to UASN 
communication. It establishes a basis for safe and confidential 
data interchange and processing in underwater situations. 

 
5. Results and discussion  

 
5.1. Simulation procedure 
The suggested approach, which prioritizes safe data transfer by 
selecting the most efficient route, was executed using MATLAB. 
The accuracy of energy prediction is assessed by comparing the 
transformer model with established classifiers such as artificial 
neural network (ANN), recurrent neural network (RNN), deep 
belief network (DBN), gated recurrent unit (GRU), and 
convolutional neural network (CNN) using multiple metrics 
including Precision, false detection rate (FDR), false negative rate 
(FNR), false positive rate (FPR), accuracy, Matthews correlation 
coefficient, and other relevant measures. A study was performed 
to determine the best route by considering factors such as energy, 
link quality, and distance. The enhanced swarm optimization 
(ESO) approach was compared to traditional optimization 
methods. Furthermore, an assessment of data transmission 
security was conducted by analyzing various attack methods, 
including the chosen-ciphertext attack (CCA) and chosen-
plaintext attack (CPA). This evaluation compared the security of 
data transmission to that of traditional encryption algorithms 
such as the blowfish algorithm, Rivest-Shamir-Adleman (RSA), 
elliptic curve cryptography (ECC), and fully homomorphic 
encryption (FHE). 

 

5.2. Assessment of positive metric of the transformer 
model and the existing systems for energy prediction 
Assessing machine learning models for predicting energy in 
underwater acoustic sensor networks (UASN) is vital for 
enhancing network performance and resource allocation. This 
study examines the performance metrics of a transformer 
model, which is a cutting-edge deep learning architecture, in 
comparison to various existing systems such as artificial 
neural network (ANN), recurrent neural network (RNN), deep 
belief network (DBN), gated recurrent unit (GRU), and 
convolutional neural network (CNN) shows in Figure 1. The 
accuracy metric, which measures the total correctness of the 
model's predictions, clearly shows the superiority of the 
transformer model, as it achieves an impressive accuracy rate 
of 95.12%. The accuracy of the current systems is as follows: 
ANN achieves 90.0%, RNN achieves 88.0%, DBN achieves 
91.5%, GRU achieves 89.0%, and CNN achieves 87.5%. This 
demonstrates that the accuracy of the DBN system exceeds 
that of the other systems. The precision metric which 
measures the ratio of genuine positive predictions to all 
positive predictions demonstrates that the transformer model 
has a precision of 94.83%, surpassing the accuracy of other 
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models such as ANN (91.0%), RNN (89.5%), DBN (92.0%), GRU 
(90.5%), and CNN (88.0%). In addition, the transformer model 
has outstanding performance in the specificity metric, which 
measures its ability to accurately detect negative occurrences, 
with a specificity rate of 93.65%. This surpasses the 
performance of ANN (88.0%), RNN (86.0%), DBN (90.0%), GRU 
(87.5%), and CNN (85.0%). On the other hand, the sensitivity 
metric, which measures the transformer model's accuracy in 
accurately identifying positive cases, shows that it has a 
sensitivity of 95.28%. This surpasses the sensitivity of other 
models such as ANN (92.0%), RNN (91.0%), DBN (93.0%), GRU 
(91.5%), and CNN (90.0%). 

 

 
 

Figure 1. Comparison of energy prediction metrics. 
 

5.3. Assessment of negative metric of the transformer 
model and the existing systems for energy prediction 
This study examines the evaluation of unfavorable 
performance indicators for energy forecasting models, with a 
specific emphasis on the transformer model and other 
established systems like ANN, RNN, DBN, GRU, and CNN in the 
context of underwater acoustic sensor networks (UASN). The 
negative metrics examined are false positive rate (FPR), false 
negative rate (FNR), and false discovery rate (FDR). These 
metrics are important indications of model performance, 
particularly in situations where misclassifications might have 
major repercussions. The findings indicate that the 
transformer model performs well in terms of negative metrics, 
with FPR, FNR, and FDR values of 4.72%, 4.72%, and 5.15% 
respectively. However, it is important to compare these results 
with those of current systems to acquire a better 
understanding of their effectiveness. For example, the artificial 
neural network (ANN) shows slightly higher false positive rate 
(FPR), false negative rate (FNR), and false discovery rate (FDR) 
values at 5.0%, 6.0%, and 5.5% respectively, in Figure 2.  

This indicates that the ANN has a relatively worse 
performance in reducing the occurrence of false positives and 

false negatives. Similarly, other models like RNN, DBN, GRU, 
and CNN also exhibit different degrees of performance about 
these negative criteria. These results enhance our knowledge 
of the capabilities and constraints of various energy prediction 
models in UASN settings, guiding future study and application 
development in this field. 

 

 
 

Figure 2. Comparison of negative metrics. 
 

5.4. Assessment of other metric of the transformer model 
and the existing systems for energy prediction 
This study evaluates the performance of the transformer 
model in predicting energy consumption in UASN, compared 
to traditional methods. Figure 3 (a, b, c) illustrates the results 
of this comparison. Performance is measured using F1 score, 
Matthews correlation coefficient (MCC), and negative 
predictive value (NPV). The transformer model outperforms 
alternatives, achieving an F1 score of 94.95%, MCC of 94.85%, 
and NPV of 95.15%. While models such as ANN, RNN, DBN, 
GRU, and CNN also demonstrate strong results, their 
performance metrics fall short of the Transformer's superior 
predictive capabilities. These findings highlight the 
transformer model's efficacy in UASN energy forecasting. 

 

 
Figure 3(a). Comparison of F1 score between transformer model 

and existing systems. 
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Figure 3(b). Comparison of MCC between the transformer model 

and existing systems. 
 

 
Figure 3(c). Comparison of NPV between the transformer model 

and existing systems. 
 
5.5. Analysis of ESO and the conventional methods with 
respect to distance, energy consumption, and link 
quality for optimal path selection 
As in Figure 4 (a, b, c), this section examines the effectiveness 
of Enhanced swarm optimization (ESO) compared to 
traditional approaches in selecting the best route in 
underwater acoustic sensor networks (UASN). The system 
assesses distance, energy usage, and connection quality 
across numerous iterations. ESO is compared to CSOA-EQ, 
GWO, JFO, MHO, COOT, STBO, PSO, and GA for evaluation. 
Findings are shown using visual representations such as 
graphs and tables, providing valuable information for 
improving the selection of paths in UASN and strengthening 
communication systems. 

 
 
 
 
 
 
 
 

 
 

Figure 4(a). Examination on ESO and the traditional approaches 
for optimal path selection using distance. 

 

 
 

Figure 4(b). Examination of ESO and the traditional approaches 
for optimal path selection using energy consumption. 

 

 
Figure 4(c). Examination of ESO and the traditional approaches 

for optimal path selection using link quality. 
 
 
 
 
 
 
 
 



 
 

 

S. Palanivel Rajan, R. Vasanth / Journal of Applied Research and Technology 252-265 

 

Vol. 23, No. 3, June 2025    261 
 

5.6. Evaluation of FHE and the traditional approaches 
with regard to CCA, CPA attack analysis and key 
sensitivity for secure data transmission 
Figures 5(a) and 5(b) depict the evaluation of fully 
homomorphic encryption (FHE) concerning conventional 
encryption techniques such as the blowfish algorithm (BF), 
Rivest-Shamir-Adleman (RSA), and elliptical curve 
cryptography (ECC) in terms of chosen-ciphertext attack (CCA) 
and chosen-plaintext attack (CPA) analyses for secure data 
transmission. The assessment includes data transfer 
increments of 10%, 25%, 50%, 75%, and 100%. During CCA 
attack analysis, a technique that allows obtaining the 
decryption of certain ciphertexts, lower numbers indicate 
more security. The fully homomorphic encryption (FHE) has 
the lowest rating for CCA attacks compared to other 
encryption methods, regardless of the proportion of data 
being sent. Notably, with 10% data transmission, FHE obtains 
a score of 0.3, which is lower than the scores of BF (0.35), RSA 
(0.38), and ECC (0.37). The CPA attack, when assuming access 
to plaintext ciphers for all supplied plaintexts, highlights the 
greater security of FHE compared to BF, RSA, and ECC. This 
superiority is especially clear when 100% of the data is sent. In 
addition, the sensitivity of encryption keys is assessed as in 
Figure 5(c). Full Homomorphic Encryption (FHE) demonstrates 
a correlation coefficient of 0.34 at 25% data transfer, indicating 
improved data preservation and key security compared to 
block cipher (BF) with a coefficient of 0.42, Rivest-Shamir-
Adleman (RSA) with a value of 0.48, and elliptic curve 
cryptography (ECC) with a coefficient of 0.37. 

 

 
 

Figure 5(a). CCA attack analysis. 
 
 
 
 
 
 
 
 

 
 

Figure 5(b). CPA attack analysis. 
 

 
 

Figure 5(c). Key sensitivity. 
 

5.7. Comparison of computational time comparing 
suggested solutions for secure data transmission with 
standard methods, focusing on optimum route selection 
A comparative analysis was conducted to evaluate the 
computing time required for secure data transmission 
techniques, namely enhanced swarm optimization (ESO) and 
traditional approaches such as blowfish algorithm (BF), Rivest-
Shamir-Adleman (RSA), and elliptical curve cryptography 
(ECC), at various data transmission levels ranging from 10% to 
100% which is shown in Table 3. ESO exhibited reduced 
processing times in comparison to BF, RSA, and ECC, 
suggesting its efficacy in identifying optimum routes. This 
indicates that ESO is well-suited for improving the 
computational efficiency of secure data transfer operations. 
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Table 3. Computational time analysis for secured data transmission. 
 

Methods 
Data-
10% 

Data-
25% 

Data-
50% 

Data-
75% 

Data-
100% 

ESO 15.011 17.141 17.062 18.254 23.616 
BF 19.78 20.311 25.279 25.881 26.123 

RSA 17.019 22.51 22.734 24.835 26.624 
ECC 17.218 22.523 23.624 23.987 24.788 

 
5.8. Comparison between FHE with more conventional 
encryption methods for safe data transfer in terms of 
encryption and decryption times 
In the tables provided, we can see how enhanced swarm 
optimization (ESO) with fully homomorphic encryption (FHE) 
compares to more conventional encryption algorithms such 
as the blowfish algorithm (BF), Rivest-Shamir-Adleman (RSA), 
and elliptical curve cryptography (ECC) in terms of both 
encryption and decryption times. The following percentages 
of data transmission are tested: 10%, 25%, 50%, 75%, and 
100%. You can see how long each encryption technique takes 
to encrypt data at different transmission percentages in Table 
4, which shows the encryption time. The figures are in 
seconds. For example, with 10% data transfer, ECC takes 
0.48089 seconds, BF takes 0.12756 seconds, and RSA takes 
1.2847 seconds; ESO (FHE) takes 0.10061 seconds. Encryption 
times are often proportional to the percentage of data 
transmitted. Table 5 shows the decryption time, which shows 
how many seconds each technique takes to decode data. For 
example, with 25% data transfer, ECC takes 1.8675 seconds to 
decode, BF takes 1.4996 seconds, and RSA takes 2.652 
seconds. ESO (FHE) takes 0.23219 seconds. Once again, the 
decryption time is proportional to the data transfer %. The 
data show that compared to other encryption techniques,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ESO employing FHE is more efficient in terms of both 
encryption and decryption times. ESO's capacity to encrypt 
and decrypt data quickly shows that it is well-suited for 
applications that need to handle secure data transmissions 
quickly. 

Table 6 shows a thorough analysis of the performance of 
the transformer model with enhanced swarm optimization 
(ESO) in comparison to other traditional neural network 
models like ANN, RNN, DBN, GRU, and CNN. Different 
performance measures are represented by each row, and each 
model is matched by each column. Among all the models 
tested, the transformer model with ESO produced the best 
results, with an accuracy of 95.12%. Additionally, it has the 
best accuracy rate of 94.83%, which means it can reduce false 
positives. The transformer model + ESO outperforms the 
competition when it comes to accurately detecting negative 
situations, with a specificity of 93.65%. In addition, it detects 
true positives well, as it obtains the greatest sensitivity of 
95.28%. Furthermore, the transformer model + ESO has the 
lowest false alarm rate (FPR) and missed detection rate (FNR) 
at 4.72%, indicating that it is capable of minimizing both 
issues. In addition, the transformer model + ESO has a low 
false discovery rate (FDR) of 5.15%. Additionally, the 
transformer model + ESO has a high NPV, MCC, and F1 score, 
all of which point to a good trade-off between recall and 
accuracy, a high correlation between observed and projected 
classifications, and a high reliability in accurately predicting 
negative situations. Taken together, these findings 
demonstrate how the transformer model + ESO outperform 
more traditional neural network models when it comes to this 
particular problem. Also, Table 7 includes a broader 
comparison of existing methods in terms of energy efficiency 
and latency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Encryption time. 
 

Methods  
Data-
10% 

Data-
25%  

Data-
50% 

Data-
75%  

Data-
100% 

FHE 0.10061 0.23219 0.8725 1.4081 3.2286 

BF  0.12756 1.4996 1.9284 2.6714 3.6885 

RSA  1.2847 2.652 2.9672 3.2298 3.385 

ECC  0.48089 1.8675 2.1002 2.4172 3.6006 

 
Table 5. Decryption time. 

 

Methods  
Data-
10% 

Data-
25%  

Data-
50% 

Data-
75%  

Data-
100% 

FHE 0.10061 0.23219 0.8193 1.4081 3.2286 

BF  0.12756 1.4996 1.9321 2.6714 3.6885 

RSA  1.2847 2.652 2.891 3.2298 3.385 

ECC  0.48089 1.8675 1.8923 2.4172 3.6006 
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Table 6. Performance evaluation metrics. 
 

Metric 

Transf-
ormer 
Model  
+ ESO 

ANN RNN DBN GRU CNN 

Accuracy 95.12 90.0 88.0 91.5 89.0 87.5 
Precision 94.83 91.0 89.5 92.0 90.5 88.0 
Specificity 93.65 88.0 86.0 90.0 87.5 85.0 
Sensitivity 95.28 92.0 91.0 93.0 91.5 90.0 
FPR 4.72 5.0 6.0 4.8 5.2 5.5 
FNR 4.72 6.0 5.5 4.5 5.0 5.2 
FDR 5.15 5.5 5,8 4.7 5.3 5.4 
F1 Score 94.95 92.5 93.0 94.0 93.5 92.8 
Matthews 
Correlation 
Coefficient  

94.85 92.0 92.5 93.5 93.0 92.2 

Negative 
Predictive 
Value  

95.15 92.8 93.2 94.2 93.8 93.0 

 
Table 7. Comparison of energy  

efficiency and latency across various methods. 
 

Method 
Energy 

Efficiency 
(Packets) 

Latency 
(ms) 

ANN 0.05 150 
RNN 0.06 140 
DBN 0.04 130 
GRU 0.05 135 
CNN 0.07 160 
Transformer 

model 
0.03 120 

ESO + transformer 0.02 115 
 

6. Conclusion 
 

This paper introduces an enhanced secure path selection 
model for underwater acoustic sensor networks (UASN) that 
utilizes sophisticated machine learning and optimization 
approaches. This model tackles the difficulties presented by 
the ever-changing underwater acoustic channel by suggesting 
an optimum route selection and safe data transmission 
method. By using advanced technologies, our approach 
delivers improved communication efficiency and quality in 
UASN. The proposed approach consists of two primary stages: 
the selection of nodes based on constraints related to energy, 
distance, and connection quality, and the creation of an 
optimal route using enhanced swarm optimization (ESO), 
which is a hybrid optimization technique that combines 
particle swarm optimization (PSO) and genetic algorithms 
(GA). In addition, the use of transformer models facilitates 
energy forecasting and improves the efficiency of the route 
selection process. In addition, data transmission is protected 

by fully homomorphic encryption (FHE), which guarantees the 
privacy and accuracy of the sent data. The performance of the 
suggested ESO+ transformer model has been evaluated 
against recognized benchmark models, and it has shown 
strong and reliable results. It exhibits high levels of accuracy, 
precision, specificity, sensitivity, and other important metrics. 
The model attains the following performance metrics when 
trained on a Learning Percentage of 70%: accuracy of 95.12%, 
precision of 94.83%, specificity of 93.65%, sensitivity of 
95.28%, false positive rate (FPR) of 4.72%, F1 score of 94.95%, 
Matthews correlation coefficient (MCC) of 94.85%, false 
negative rate (FNR) of 4.72%, negative predictive value (NPV) 
of 95.15%, and false discovery rate (FDR) of 5.15%. In 
summary, the suggested model presents a promising option 
for improving communication in UASN. It gives a dependable 
and effective framework for securely transmitting data in 
difficult underwater conditions. Beyond academic 
significance, the findings offer substantial potential for real-
world applications in fields like underwater surveillance, 
marine resource monitoring, and environmental data 
collection. The robustness of the proposed model in dealing 
with fluctuating underwater conditions demonstrates its 
capability to improve UASN's practical deployment in various 
sectors, helping address critical challenges related to energy 
efficiency, data security, and network reliability. 
     Ant colony optimization and reinforcement learning will be 
used to improve the suggested model for underwater acoustic 
sensor networks (UASNs). Field testing in various underwater 
locations will assess the model's effectiveness in real-world 
situations, including concerns like variable acoustic 
characteristics and interference. We will also research other 
encryption approaches to improve security and energy 
efficiency, based on fully homomorphic encryption. Finally, we 
want to use IoT frameworks and cloud computing for real-time 
data processing and analytics to improve UASN scalability and 
performance. 
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