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Abstract: The segmentation task for brain tumors from magnetic resonance imaging (MRI) has been 
both challenging and crucial for radiologists in their decision-making process. Recent developments 
in attention mechanisms for natural language processing tasks have gained wide popularity and have 
shown potential applications in computer vision and related problems. This article proposes a 
generative ensembled vision transformer that achieves state-of-the-art (SOTA) performance in 
segmenting brain tumors from multiple modalities of MRI scans. The proposed method includes an 
encoder and decoder block with CNN and transformer components, forming the generative 
architecture. The discriminator distinguishes the predictions of the generator from the ground truth 
and consists of convolutional layers along with a softmax for the classification tasks. The model was 
trained using the BraTS 2021 Task 1 dataset for the segmentation, and the Task 2 dataset was applied 
to evaluate the classification task. The proposed model scores a DICE average of 91% in tumor-core 
(TC), enhancing-tumor (ET), and whole-tumor (WT) categories. The model also achieves a 99% ROC 
AUC score in the methylguanine‐methyltransferase (MGMT) classification task. 
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1. Introduction 
 
The tumor inside the brain is considered one of the most 
disastrous cancers in the world. It is a severe threat to human 
lives, with its variants spanning almost 100 categories. The 
disease is caused by the unnatural growth of glial and neural 
cells inside the skull. Thus, early detection of brain tumors is 
essential for proper planning of treatment, surgery, and 
follow-up appointments. Radiologists frequently utilize 
magnetic resonance imaging (MRI), a standard non-invasive 
method (Bauer et al., 2013), to identify brain malignancies 
since it produces noticeably different forms of tissue contrast. 
However, it might be difficult and time-consuming to 
segregate brain tumors from MRI scans manually. Therefore, 
creating automatic and reliable brain tumor segmentation 
techniques is particularly desirable. 

Recent advances in deep learning techniques, especially 
CNNs (Pereira et al., 2016; Ronneberger et al., 2015) for medical 
image segmentation and image generation (Chen et al., 2021), 
have found an essential application in diagnosing tumors and 
pre-assessing surgical interventions. MRI produces images 
with variant contrasts, well-known in medical terms as 
‘modalities.’ Four imaging modalities make up an entire MRI 
scan, including T2-Flair, T1-weighted (T1), T1-ce (enhanced 
contrast), and T2-weighted (T2). The underlying anatomical 
information of the brain is captured in specific ways by each of 
the four modalities. A sample for each type is presented below 
in Figure 1 from the BraTS 2021 dataset (Baid et al., 2021). 

 

 
 

Figure 1. The four modalities of MRI scans - T1, TI-ce, T2,  
and T2-flair (left to right). 

 
The method developed in this paper is an ensemble 

transformer-based generative encoder-decoder for image 
segmentation. The 3D convolutional neural networks (CNNs) 
and ensemble transformer blocks bridged between them help 
capture pixel-level information in the images. The attention 
mechanism (Vaswani et al., 2017) is the main reason behind 
the success of the transformer. The ensembling process is 
achieved by a novel bipolar attention mechanism proposed in 
this paper. Inception v3 (Szegedy et al., 2016) has been used as 
the backbone framework for the CNN. The decoder contains 
upsampling deconvolution layers. Skip connections have 
been added to facilitate the extraction of long- and short-
range spatial features of the MRI. 

The discriminative framework is inspired by SeGAN (Xue et 
al., 2018) and features an encoder module to extract features 

from the ground truth and the predictions from the Generator 
framework. The L1-Norm distance is calculated and used as 
one of the penalizing functions for the model. A sigmoid layer 
is added at the end for the tumor classification task. The flow 
diagram of the overall architecture of the method is shown 
below in Figure 2. 

 
 

Figure 2. The flow diagram for the proposed method. 
 
The rest of the work is well-presented and divided into the 

following sections: 
(1) Section 2 explores the previous research conducted 

on the segmentation of tumors in the brain. 
(2) Section 3 describes the proposed model in this paper 

in detail. 
(3) Section 4 shows the training details, DICE and ROC 

AUC scores, and a comparison with previous works in 
the area. 

(4) Section 5 elaborates further on the future work of the 
BT-transformer. 

 
2. Related work 

 
This section reviews previous research work related to the 
domain of our proposed architecture. These are mainly vision 
transformers, brain tumor segmentation, and GAN-related 
research work. 

 
2.1. Brain tumor segmentation 
In the past few years, deep learning has taken over the task of 
biomedical image segmentation in various modalities. CNNs 
have mainly dominated the domain of segmentation models. 
Researchers have also tried to introduce models to capture 
contextual information (Havaei et al., 2017) in images in 2D 
scenarios. To understand the 3D context, DeepMedic was 
introduced by Kamnitsas et al. (2017), which enabled the 
extraction of 3D patches but was slow during the inference 
process. This efficiency issue was overcome by fully connected 
CNN architectures such as U-Net (Weng & Zhu, 2021). 
However, these models were prone to class imbalance. To 
overcome the challenge, the MC strategy was adopted for 
cancer cell segmentation (Hu et al., 2017) and liver lesion 
segmentation tasks (Zhou et al., 2018). The strategy divides 
the segmentation tasks into multiple stages to enhance the 
tumor areas in the MRI. However, this strategy was more 
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complex and less convenient, ignoring the correlation 
between the stages. This issue was handled by Zhou et al. 
(2018) in their one-pass strategy, which takes only one-third of 
the total MC parameters. 
 
2.2. Vision transformers 
First introduced by Vaswani et al. (2017), they are used in NLP 
tasks to achieve SOTA results. In computer vision, the earliest 
research work included transformer-based CNN models, 
namely nnFormer (Zhou et al., 2021), which used transformers 
for encoding and decoding tasks, and CNN for up and 
downsampling of the images. Shortly after, the TransBTS 
(Wang et al., 2021) was introduced, which explores the 3D 
multi-modal aspect of brain tumor segmentation. It used a 3D 
CNN and transformers to extract local and global features. The 
BiTr-UNet (Jia & Shu, 2021) adds two vision transformers (VT) 
during the skip connections to ensure the modeling of the global 
features. It gave an excellent performance, but the extra layers of 
VTs resulted in increased parameters, making it sophisticated. To 
overcome this issue, a lightweight VT-Unet (Xie et al., 2021) was 
introduced, which uses just two self-attention layers during the 
encoding task, thus allowing hierarchical capturing of local and 
global information from the image. 

 
2.3. Generative AI 
The first generative model, GAN (Goodfellow et al., 2020), was 
introduced to generate images by training with a generator 
and discriminator. It is a type of machine learning model that 
has two neural networks – the generator and the 
discriminator. These networks compete with each other with 
the generator network producing synthetic data (images) 
while the former network evaluating it against real data, thus 
distinguishing between them. The continuous training of 
these networks results in a much-improved model capable of 
generating realistic images. The model has brought 
innovation in the area of training stability and diversified 
image generation. Afterward, GAN models were used in 
various applications (Mishra et al., 2022; Prasad et al., 2023) in 
the medical and robotics domains. However, in the problem 
of image segmentation, the original GAN is unable to balance 
the interaction between the generator and the discriminator. 
The SeGAN (Xue et al., 2018) model is based on a generative AI 
approach with multi-scale loss, which efficiently solves the 
issue by minimizing the distance between feature maps of 
masks and predictions in brain tumor segmentation tasks. A 
conditional GAN (CGAN) (Mirza & Osindero, 2014) based 
method was introduced by Ding et al., who implemented an 
encoder-decoder-based generator and CGAN discriminator 
for the brain tumor segmentation task. This method took an 
additional input, which was the image labels. 

There are notable differences and improvements in the 
proposed model apart from the previous efforts: 

1. The transformer bridge between the generator and 
discriminator is ensemble-based to fully utilize the 
power of vision transformers, which can work 
significantly on sparse datasets. 

2. The generative layer enhances the performance by 
introducing randomness, which the transformers later 
train on the attention layer. It ensures that the model is 
free from overfitting issues. 

3. The entire network is formed by a GAN and vision 
transformers; hence, it combines the advantages of 
both models and helps map the under-extracted 
features of the image. 

 
3. Proposed model 

 
The model architecture comprises an encoder-decoder-
enabled generator network with an ensemble vision 
transformer bridge. The transformer follows a novel bipolar 
attention scheme and applies the attention mechanism to the 
input patches and the latent features from the generator 
encoder in a mutual manner. Skip connections have been 
added to capture the extended- and short-range spatial 
features of every encoder stage. These features flow through 
the decoder network after the transformer, which uses 
transposed convolutions and deconvolutions along with the 
concatenated features at the intermediate layers. A softmax 
classifier is added to the last layer to classify the tumor. Each 
network is explained in detail in the subsections below. 

 
3.1. Generator network 
The generator network comprises an encoder and a decoder. 
The encoder downsamples the images. After the 
downsampling, the extracted patches and latent features are 
fed to the ensemble vision transformer with the Inceptionv3 
backbone, which implements the bipolar attention mechanism 
to extract global representations along with the context. 

The output of the transformer layer is upsampled in the 
decoder block, and the softmax layer obtains the segmented 
image, which is fed to the discriminator network. The step-by-
step process of the generator is described in the sections 
below, and the network diagram can be visualized in Figure 3. 

 
 
 
 
 
 
 
 
 

Figure 3. The generator network. 
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3.1.1.  The encoder block 
The encoder has seven convolutional layers that take an input 
of dimensions 240 × 240 × 160 input from the brain tumor 
dataset. The patches of input have four channels that 
represent each of the four modalities of the MRI scan. The next 
layers are downsampling layers, each consisting of Conv3D 
with dimensions 3 × 3 × 3 and stride 2. The layers are instantly 
normalized and activated by LeakyReLU (Maas et al., 2013) as 
it drops the zero-weighted features. Table 1 shows the details 
of each of the seven layers and the output size after passing 
through each layer of the downsampling stage in the encoder. 
The features, such as areas of the brain, edges of the image, 
and white areas, are extracted with the normalized 
convolution layers, which reduces the resolution due to the 
stride of 2. 

 
Table 1. Encoder layer details with the output size at each layer. 
 

Layer Details of the Layer Output size 
1 [Conv3D, LayerNorm, 

LeakyReLu, Dropout] 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 

96 × 240 × 240 × 160 

2 [Conv3D (stride =2), 
LayerNorm, LeakyReLu, 
Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

128 × 120 × 120 × 80 

3 [Conv3D (stride =2), 
LayerNorm, LeakyReLu, 
Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

192 × 60 × 60 × 40 

4 [Conv3D (stride =2), 
LayerNorm, LeakyReLu, 
Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

256 × 30 × 30 × 20 

5 [Conv3D (stride =2), 
LayerNorm, LeakyReLu, 
Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

384 × 15 × 15 × 10 

6 [Conv3D (stride =2), 
LayerNorm, LeakyReLu, 
Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

512 × 8 × 8 × 5 

7 [Conv3D (stride =2), 
LayerNorm, LeakyReLu, 
Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

786 × 4 × 4 ×4 

 
 
 

3.1.2.  The ensembled vision transformer block 
The downsampled image patches, as well as the latent output 
from the encoder, are fed into the transformer block. It works 
on the principle of the attention mechanism as described by 
Vaswani et al. (2017) but with mutual attention between the 
inputs and the latents. The input patches are fed into the 
attention layer as queries, keys, and values in three matrices. 
A single block of the transformer can be seen in Figure 4. 

The first layer inside the transformer is Layer Normalization, 
followed by the attention block, which leverages the power of 
both CNN and second-order mappings. In the proposed 
model, the attention layer is modified from the original (Xue et 
al. 2018) research. Here, the queries, keys, and values, are 
passed through a series of convolutional layers, GeLU, and 
softmax operations, promoting a second-order mapping for 
the input patches. The modified attention layer is described in 
Figure 5.  

As mentioned earlier, the Conv3D layer generates the 
required Q, K, and V matrices. The Q and K matrices are first 
linearly transformed and stacked with additional layers of 
Conv3D, GeLU, and Softmax. The V matrix is passed through 
the output of this operation through a skip connection. The 
element-wise product is calculated for Q and K matrices 
before sending the output to further layers. The overall 
operation can be summed up in the following equations: 

 
𝑦𝑦𝑖𝑖  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑖𝑖))𝑥𝑥𝑖𝑖  +  𝑥𝑥𝑖𝑖                    (1) 

 
Here, xi denotes the maps of features for the inputs and yi 

for the output. The Conv here is a sequence of operations 
involving convolution that generates the matrices Q, K, and V. 

 
(𝑄𝑄,𝐾𝐾,𝑉𝑉 )  ∈   𝑦𝑦𝑖𝑖                                                       (2) 

 
After the creation of the matrices, the product is taken for Q 

and K, and the result is passed to further Conv3D, GeLU, and 
Softmax as represented below: 

 
𝑦𝑦𝚤𝚤�  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄 ⋆ 𝐾𝐾))𝑉𝑉 +  𝑥𝑥𝑖𝑖                     (3) 

 
where ⋆ represents the elementwise product of the 

matrices. 
 

 
Figure 4. Overview of a single transformer layer. 
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Figure 5. The modified attention block. 
 
The overall output is again layer normalized and passed 

through a multilayer perceptron layer. Skip connections are 
added between the bottleneck formed by the previous two 
layers (LayerNorm and modified attention layer) and after the 
final layer of the transformer block.  

The ensembling of the transformers is achieved by passing 
the input patches with the latents (positional embeddings). 
Here, the attention mechanism for a single pass differs from 
the one above. The attention is calculated as: 

 

𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑄𝑄,𝐾𝐾,𝑉𝑉)  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑄𝑄𝐾𝐾
𝑇𝑇

√𝑑𝑑
)𝑉𝑉          (4) 

                                                                 
Here, d is the dimension of the matrices (which is the same 

for the three matrices). 
The output Y of the bipolar attention is a key-value pair that 

is then calculated using the following update rule: 
 
𝑌𝑌 =  𝑎𝑎(𝑄𝑄,𝐾𝐾,𝑉𝑉)  ∗  𝜔𝜔(𝑋𝑋)  +  𝑎𝑎(𝑞𝑞, 𝑘𝑘,𝑣𝑣)                     (5) 

 
where q, k, and v are the matrices obtained from the latents. 

𝜔𝜔 is a normalization function, which can be calculated as 
 
𝜔𝜔 =  𝑋𝑋− 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋)
                                          (6) 

 
3.1.3.  The decoder block 
The decoder is made up of upsampling layers along with skip 
connections. These layers enhance the recovery of the 
semantic information and the resolution of the patches from 
the transformer output. The first layer is implemented using 
the interpolation technique, followed by progressive 
deconvolution layers. The deconvolution layers have the same 
stride (2) as the encoder block. 

For better supervision of the contextual information, the 
outputs from the first three layers are processed with a 1 × 1 ×1 
convolution and fused with the successive layers. These 
successive layers include the output of the first three layers, 
thereby preserving most of the information from the patches.  

The last layer is the softmax classifier, which predicts the 
segmentation maps with varied resolutions. The whole  
 
 

encoder block ensures that the generated segmented images 
do not deviate significantly from the ground truth. Fusing the 
upsampled patches with the corresponding previous layers is 
useful in this step. The discriminator later ensures that the 
model does not overfit the task by using the loss to penalize 
the images segmented improperly. The discriminator is 
explained in detail in the next section. Table 2 contains 
information about the output sizes at each layer, including the 
outputs from the concatenated layers. 

 
Table 2. The details of each layer in the decoder block, along with 

the output sizes of the image patches. 
 

Layer Details of the Layer Output size 
6 Upsample using 

Interpolation 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] x 2 

512 × 8 × 8 × 5 

5 DeConvolution 
Concatenation 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 

384 × 15 × 15 × 10 

4 DeConvolution 
Concatenation 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 

256 × 30 × 30 × 20 

3 DeConvolution 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 
[Conv3D, LayerNorm, 

LeakyReLu, Dropout] 

192 × 60 × 60 × 40 

Output 
of Layer 

3 

[Conv1D + Softmax] 
DeConvolution 
Concatenation 

4 × 60 × 60 × 40 
128 × 120 × 120 × 80 

2 [Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

 

Output 
of Layer 

2 

[Conv1D + Softmax] 
DeConvolution 
 
Concatenation 

4 × 120 × 120 × 80 
96 × 240 × 240 × 160 

1 [Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

[Conv3D, LayerNorm, 
LeakyReLu, Dropout] 

 

Output 
of Layer 

1 

[Conv1D + Softmax] 3 × 240 × 240 × 160 
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3.2. The discriminator network 
The discriminator performs the task of differentiating the 
ground truth image from that generated by the generator 
block. It also implements the loss function, which penalizes 
the model to prevent premature convergence. The overall 
visualization of the discriminator is presented in Figure 6. The 
SeGAN (Xue et al. 2018) model largely inspired the loss 
function, which uses a multiscale L1 loss. The main difference 
between the latter and the proposed loss lies in using the 
squared difference between consecutive features. Hence, it is 
a multiscale L2 loss. 

 

 
 

Figure 6. The discriminator network. 
 
Each block of the discriminator contains 3D convolution 

layers with batch normalization and LeakyReLU activation 
functions. The stride for the convolution layers is 2. These 
blocks extract the features from the ground truth and the 
prediction and compute the squared norm distance between 
them. If one assumes the j-th feature extracted from the i-th 
layer from the feature space f, then for x′ and x features, the 
calculation is as follows: 

 

𝑙𝑙𝐷𝐷(𝑥𝑥, 𝑥𝑥′)  = ∑ ∑ (𝑓𝑓𝑗𝑗𝑖𝑖(𝑥𝑥) − 𝑓𝑓𝑗𝑗𝑖𝑖(𝑥𝑥′))2𝑀𝑀
𝑗𝑗=1

𝐿𝐿
𝑖𝑖=1                   (7) 

 
Here, L and M denote the number of layers and the number 

of features, respectively. 
Hence, according to the original GAN (Goodfellow et al., 

2020) and the above distance calculation, the overall loss can 
be calculated as shown in Equation (8) below: 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝐷𝐷ℒ(𝜃𝜃𝐺𝐺 ,𝜃𝜃𝐷𝐷)  = 𝑙𝑙𝐷𝐷 (𝐺𝐺(𝑥𝑥), 𝑦𝑦)  +

𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐺𝐺(𝑥𝑥), 𝑦𝑦)                                                                (8) 
 
where lDice denotes the Dice loss calculated on the 

segmentation maps of the generator G. Also, x and y represent 
the input and prediction, respectively. The dice loss is the 
weighted sum of the mask and prediction. 

 

4. Experiments and evaluation 
 

The developed model was trained on the benchmark BraTS 
dataset (Baid et al., 2021) for brain tumor classification tasks 

and evaluated using the Dice metric. The details about the 
implementation and evaluation are provided in the sub-
sections below. 
 
4.1. The BraTS 2021 dataset 
This multi-modal dataset is provided for the prestigious BraTS 
challenge on brain tumor classification. The challenge aims to 
compare the best state-of-the-art (SOTA) models for 3D MRI 
images. It contains 1,251 patients' training images labeled by 
physicians and 219 patients' testing images, which are 
unlabeled. The model developed in this paper used the 
training dataset divided into 1,000 samples for actual training, 
125 for validation, and the rest for testing purposes. The 
dataset has images for every patient for T1, T1ce, T2, and FLAIR 
modalities. The size of each image is 240 × 240 × 155. The label 
consists of 0 or 1, which represent scores in the O6-
Methylguanine-DNA Methyltransferase (MGMT) classification. 
For segmentation, the labels include four categories: 
background portion (label 0), non-enhancing and necrotic 
tumors (label 1), peritumoral edema (label 2), and GB-
enhanced tumors (label 4). The labels for segmenting the ET 
region (ET, label 4), the CT region (CT, labels 1 and 4), and the 
whole tumor region (WT, labels 1, 2, and 4) are used. Figure 7 
below visualizes a few samples with MGMT values of 0 and 1. 

 

 
 

Figure 7. A few samples of both classes from the  
BraTS dataset (Baid et al. 2021). 

 
4.2. Evaluation metrics 
The most common metric used to evaluate brain tumor 
segmentation is the Dice score (Crum et al., 2006), along with 
the Positive Predictive Value (PPV) and Sensitivity. For the 
region predicted (P) and the corresponding ground truth (G), 
the Dice score is calculated as in Equation 9: 

 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃,𝐺𝐺)  =  1

2
× |𝑃𝑃𝑡𝑡 ∩ 𝐺𝐺𝑡𝑡|

|𝑃𝑃𝑡𝑡| + |𝐺𝐺𝑡𝑡|
                                      (9) 

 
where the subscript t denotes the tumorous region in the 

segmented predictions and ground truths. The | | symbol 
denotes the voxel count inside the regions and ∩ denotes the 
intersection between two regions. 
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The PPV, however, measures the intersected regions with 
respect to predictions only, as shown in Equation 10: 

 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃,𝐺𝐺)  =  |𝑃𝑃𝑡𝑡 ∩ 𝐺𝐺𝑡𝑡|

|𝑃𝑃𝑡𝑡|
                                            (10) 

 
The sensitivity, on the other hand, takes into account the 

non-tumorous regions inside the segmentation. It can be 
calculated as follows: 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃,𝐺𝐺)  =  |𝑃𝑃0 ∩ 𝐺𝐺0|

|𝑃𝑃0|
                                 (11) 

 
where the subscript 0 represents other regions. 
The above three metrics range from 0 to 1, where 1 means 

higher accuracy and better model performance. 
For the classification task, the area under the receiver 

operating characteristic curve (ROC AUC Score) (Greiner et al., 
2000) was calculated on the datasets. It plots the true positive 
rate (TPR) against the false positive rate (FPR) at various 
thresholds levels. This metric distinguishes the classes in the 
dataset across these thresholds. It is also measured from 0 to 
1, where 1 means higher accuracy and better model 
performance. Equation 12 shows the calculation: 

 
𝑅𝑅𝑅𝑅𝑅𝑅_𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ (𝑇𝑇𝑇𝑇𝑇𝑇(𝐹𝐹𝐹𝐹𝐹𝐹−1(𝑥𝑥))𝑑𝑑𝑑𝑑1

0                     (12) 
 
 

4.3. Training details 
The data structure was divided into training, validation, and 
test sets from the original labeled training set for BraTS 2021. 
The experiments were also conducted on the BraTS 2015 
dataset. The experiments ran on a system configured with an 
NVIDIA 3080Ti, 32 GB RAM, and 1TB HDD. A cluster of seven 
systems was used for training. The images were resized to 240 
× 240 × 160 from the original size of 240 × 240 × 155.  

The learning rate was initially set at 0.001 with the AdamW 
optimizer (Loshchilov & Hutter, 2017), which is based on the 
Adam Optimizer (Kingma & Ba, 2014). The 
ReduceLRonPlateau (Chollet et al., 2015) Callback was used to 
reduce the learning rate gradually during the training 
procedure. The TensorFlow Keras Tuner was used to find the 
best model hyperparameters. The overall training was 
performed for 200 epochs. 
 
4.4. Evaluation and scores 
The model was trained intensively and tested on BraTS 2021 
and 2015 datasets for the DICE score, PPV, and sensitivity 
values for the segmentation task and the ROC AUC score for 
the classification task. Tables 3 and 4 summarize the ET, Core 
Tumor, and WT results. The DICE score variation during these 
200 epochs is plotted below in Figure 8. 

 

The discriminator and generator loss values were also 
monitored using the Tensorboard callback. The losses for the 
generator and the discriminator showed decreasing and 
increasing patterns over the number of iterations, 
respectively, as shown in Figure 9 (a) and (b) below. 

 
Table 3. The evaluation scores for the segmentation task on the 

2021 and 2015 datasets. 
 

Datas
et 

DICE PPV Sensitivity 

 ET Core WT ET Core WT ET Core WT 

BraTS 
2021 

0.81 0.89 0.91 0.78 0.81 0.89 0.85 0.87 0.93 

BraTS 
2015 

0.83 0.89 0.93 0.77 0.79 0.87 0.88 0.89 0.95 

 
Table 4. The ROC AUC scores for the 2021 and 2015 datasets. 

 
Dataset ROC AUC Scores 
BraTS 2021 97.35% 
BraTS 2015 99.89% 

 

 
 

Figure 8. The DICE Score of train and validation set throughout 
the training process. 

 

 
 

Figure 9 (a). The generator loss curve after training. 
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Figure 9 (b). The discriminator loss curve after training. 
 

5. Conclusions  
 

This paper presents and explores the application of generative 
AI and transformers for segmenting tumors inside the brain. 
The model uses a generator framework with ensemble vision 
transformers that act as an encoder to downsample and 
extract local and global spatial features. The transformer 
applies modified attention, and the decoder again upsamples 
the images to get segmented patches. The discriminator 
differentiates the predictions from the original image and 
applies the multiscale L2 loss. The model achieves SOTA 
performance in both segmentation and classification by 
scoring 91% and 97% in DICE and ROC AUC, respectively. 
     In the future, there is a scope to research the attention 
mechanism to improve overall performance. At the same time, 
the efficient combination of transformers and convolutional 
neural networks (CNNs) can be explored to reduce the model 
complexity. For instance, the downsampling of the ground 
truth and predictions can be done via a single encoder block 
that ignores positional embeddings when a ground truth 
image is passed, thus improving the stability of the model.  
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