

683Journal of Applied Research and Technology

Towards the Design of Safety-Critical Software

R. Rafeh1, A. Rabiee1, 2

1,2 Department of Computer Engineering Arak University
Arak, Iran
r-rafeh@araku.ac.ir
2 Department of IT, Education Organization
Arak, Iran
arvand.rabiee@gmail.com

ABSTRACT
Safety is the most important factor when developing software for safety-critical systems. Traditional approaches
attempted to achieve safety through testing the software. However, there might be some bugs in the software not
revealed in the test procedure. Formal verification is a new trend in developing safe software. In this paper, we
propose a multi-phase formal approach for safety management in safety-critical software. We use timed transition
Petri-net as a formal means to specify the properties of the model and their relations in each component of the
software. In addition, we use the Z language to specify textual and mathematical specifications of the model, as a
representative model to evaluate the proposed approach; we chose continuous infusion insulin pump (CIIP).

Keywords: Safety-critical software, hazard, formal languages, CIIP.

1. Introduction

Computers play a significant role in operating many
modern systems some of which are classified as
safety-critical. Any failure in safety-critical systems
may result in loss of life or significant damage to the
environment. Examples include medical systems,
aircraft flight control systems, weapons and nuclear
systems. When designing such systems, which
usually include both software and hardware, the most
important factor is safety. In this paper, we focus on
the design of safety-critical software.

The main approaches to improve the safety are
divided into three classes: Theorem proving [1],
model checking [2] and runtime verification [3].
Current safety paradigms usually use one of the
aforementioned approaches or a combination of
them. For example, runtime reflection [3] employs
runtime verification and the approach proposed in
[4] uses a combination of theorem proving and
model checking. Safety approaches like timed
automata [5] and Event-B [6] usually use formal
methods to specify the system requirements or
monitor the system behavior. Formal languages
such as Z [7], is usually used to specify the system.
For example, the approach proposed in [8] uses a
combination of Petri-net and the Z language to
verify medical software.

However, the main issue with current approaches is
that they are not taking into consideration all safety
angles. We believe safety must be observed in all
software production phases. Therefore, we propose a
formal approach which takes into account all software
production phases including planning, requirements
specification, designing, and implementation [9]. We
explain the proposed approach step by step using
continuous infusion insulin pump (CIIP) which is a
familiar safety-critical system.

The paper is organized as follows: In Section 2, we
explain briefly CIIP. In Section 3, we explain the
steps that must be taken for achieving safety in
CIIP based on the proposed approach. Finally,
Section 4 concludes the paper.

2. Continuous infusion insulin pump.

Diabetes is a disease originated when the human
body cannot produce enough insulin hormones.
Insulin metabolizes the available sugar in the blood.
The known therapy for diabetes consists in injecting
enough insulin to the patient's blood. High blood
sugar levels may hurt kidney, heart and eyes. Low
blood sugar levels may paralyze brain and cause
diabetic death. CIIP is a modern medical system for

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Vol. 11, October 2013 684

controlling the blood sugar levels by injecting the
adequate doses of insulin to the patient’s blood. This
system takes blood samples every 10 minutes and
checks its sugar level. Then the amount of necessary
insulin is computed for injection in the blood [7].

3. The proposed approach

In this section, we explain our approach in detail
and use CIIP as an example. Our proposed
approach consists of three steps as follows:

Step one: In the first Step, we specify all safety
requirements. For safety requirements we need to
investigate the system in detail which includes the
goals of the system, environments, users,
operators, and preliminary resources. These goals
are shown in Table 1 for CIIP.

Goals
To control sugar level in a diabetic
patient and to inject automatically the
correct insulin dose.

Environment Patient's body
Users Patient, doctor

Operators -

Table 1. Preliminary information about CIIP.

Some of the equipment needed in CIIP are sampling
and injecting equipment, insulin resource, processor,
LCD, and warning systems. A high level description
of CIIP behavior is as follows: The system takes a
sample of patient blood every 10 minutes, computes
suitable insulin dose, and injects insulin to the
patient’s blood. High level safety approach for CIIP is
depicted in Table 2.

No. Roadmap

1
Sugar status have to be reported to the
patient periodically

2
Warn to the user before insulin resource
gets empty

3 Warn to the user when power is low
4 System has not to hurt the patient

Table 2. Safety approach for CIIP.

For CIIP, the system requirements consist of real-
time operating systems, some modeling tools, real-
time programming languages and PCs. Hardware
requirements consist of processors, memories,
insulin reservoirs, sugar sampling equipment, insulin
injection equipment, LCDs and power supplies.
Functional requirements of CIIP are as follows:

1. The system receives a sample of sugar
blood every 10 minutes.

2. The system processes sugar blood and
computes the sugar level.

3. The system computes insulin dose
according to the last three sugar samples
and injects insulin to the patient’s blood.

Nonfunctional requirements are usually data
requirements extracted from medical documents.
These requirements are the following:

1. If the sugar level is smaller than the
minimum value, the insulin dose is 0.

2. If the sugar level is between the minimum
and the maximum value, then:

 If the third sugar sample is smaller or equal

to the second sample, insulin dose is 0.

 If the third sugar sample is greater than the
second sample and the second sample is
greater than the first one, and the
difference between the third sample and
the second one is smaller or equal than the
difference between the second sample and
the first one, insulin dose is 0.

 If the third sugar sample is greater than the

second sample and the second sample is
greater than the first one, and the difference
between the third sample and the second
one is smaller or equal than the difference
between the second sample and the first
one and the difference between the third
and the second sample is smaller than 4,
the insulin dose is the minimum value.

 If the third sugar sample is greater than the

second sample and the second sample is
greater than the first one, and the
difference between the third sample and
the second one is smaller or equal than the
difference between the second sample and
the first one and the difference between
the third and the second sample is greater
than 4, the insulin dose is the quotient of
the difference between the third and the
second sample by 4.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Journal of Applied Research and Technology 685

3. If the sugar level is greater than the
maximum value, then:

 If the third sugar sample is greater than the
second sample and their difference is
smaller than 4, the insulin dose is 0.

 If the third sugar sample is greater than the

second sample and their difference is
greater than or equal to 4, the insulin dose
is the quotient of dividing the difference
between the third sample and the second
sample by 4.

 If the third sugar sample is equal to the

second sample, the insulin dose is 0.

 If the third sugar sample is smaller than the

second sample and the difference between
the third sample and the second one is
smaller or equal than the difference between
the second sample and the first one, the
insulin dose is 0.

 If the third sugar sample is smaller than the
second sample and the difference between
the third sample and the second one is
greater than the difference between the
second sample and the first one, the
insulin dose is the minimum value.

After specifying functional and nonfunctional
requirements, we need to specify system hazards.
Most of the hazard standards propose four hazard
severity classes; catastrophic, critical, marginal,
and negligible [12]. High level hazards for CIIP are
shown in Table 3 according to this classification.
The risk of each hazard can be determined using a
combination of a digit and a letter which is shown
in Table 4 [13].

FMEA is a technique used in combination of
hazard analysis in the proposed approach. There
are three FMEA classes: Structural FMEA used for
hardware analysis, functional FMEA used for
system functions analysis and Combined FMEA
[13]. Structural FMEA worksheet and functional
FMEA worksheet for CIIP are shown in Table 5
and Table 6, respectively. These tables are
updated in the next phases of this step.

Safety requirements may be defined in terms of
constraints, chains of events, time constraints, fault
tolerance equipment and warning interfaces. Safety
requirements are classified as pure safety
requirements, significant safety requirements, system
safety requirements, and safety constraints [11]. This
classification for CIIP is explained in detail in the
following section. Each requirement must be mapped
to at least one row of FMEA worksheets.

Hazard Severity
Power supply fault Critical

Sampling equipment fault Critical
Insulin dose computing fault Catastrophic

Injection equipment fault Critical

Table 3. High level hazard classification for CIIP [12].

Severity

1. Catastrophic
2. Critical
3. Marginal
4. Negligible

Probability

A. Frequent
B. Probable
C. Occasional
D. Remote
E. Improbable

Table 4. Hazard risk factor 13.

Pure safety requirements:

 System has not to have a risk in 1A rate

Safety significant requirements:

 If power is lower than the min level, a low
power message has to be shown to the user
and sampling operation must be suspended
until power recharging takes place (rows 1, 2
from structural FMEA).

 Sampling equipment has to be tested
automatically. Sampling operation must be
stopped if this equipment does not work
perfectly (row 3 from structural FMEA).

 Injecting equipment has to be tested

automatically. Injecting operation must be
stopped if this equipment does not work
perfectly (row 6 from structural FMEA).

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Vol. 11, October 2013 686

 If the amount of insulin in the reservoir is
smaller than the min insulin dose or
specified injection dose, a low insulin
message has to be shown to the user and
injecting operation must be stopped (row 7
from structural FMEA).

 The amount of cumulative dose at the end of
every 24 hours can be at most 25 doses (row 4
from structural FMEA, medical rules).

Safety system requirements:

 An electricity-current evaluator system
equipped with current sensor, backup battery,
and LCD (rows 1, 2 from structural FMEA).

 Insulin-level determinant system for insulin
reservoir (row 7 from structural FMEA)

 Warning equipment (rows 1, 2 from structural
FMEA and rows 1, 2 from functional FMEA)

Safety constraints:

FMEA
System: CIIP Subsystem: -
Mode/Phase: Operating

Component
Failure
mode

Failure rate
Failure
reasons

Suddenly
effect

System
effect

Detection
method

Current
control

Hazard
Hazard

risk
Recommended

action
row

Power
supply

Failed
1.1 * 10-9

(manufacture
information)

Control
circuit failed

Electricity
current

disconnection

System
downs

Current
test

Quality
control

Sugar
level

increasing
2B

Using from a
current sensor
with backup

battery to warn
user power

supply is failed

1

Energy
decreasing

Not available

Battery
energy

decreasing

Electricity
current

decreasing

System
incorrect

action

Current
test

_

Sugar
level

increasing
2B

Using from a
current sensor
with backup

battery to warn
user change
the system

battery

2

Sampling
subsystem

Failed
5 * 10-4

(manufacture
information)

Hardware
fault

Not receiving
sugar sample

Not
computing

and
injecting
insulin
dose

Inspecting
Quality
control

Sugar
level

increasing
2B Automatic test 3

Insulin dose
computing
subsystem

Failed Not available

Hardware
fault

Not
computing

insulin dose

Not
injecting
insulin
dose

System
testing

_

Sugar
level

increasing
2B

_ 4

Computing
fault

_

Hardware
fault,

programming
fault

Not
computing

insulin dose

Unsafe
system

behavior

System
testing

Software
testing

Serious
hurt to
patient

1A Hard testing 5

Injecting
subsystem

Failed
5 * 10-4

(manufacture
information)

Hardware
fault

Not injecting
insulin dose

Not
injecting
insulin
dose

Inspection
Quality
control

Sugar
level

increasing
2B Automatic test 6

Not
enough
insulin

_

Not charging
insulin

reservoir

Not injecting
insulin dose

Not
injecting
insulin
dose

Resource
inspection

_

Sugar
level

increasing
2B

Using from a
sensor to
assess

reservoir insulin
level

7

Table 5. Worksheet of structural FMEA for CIIP.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Journal of Applied Research and Technology 687

Safety constraints obtained from recommended
reaction in FMEA worksheet with runtime
management tag are as follows:

 A sampling operation must be finished at most
10 seconds after sampling starts otherwise, a
sampling failure message must be shown to the
user and the system has to be turned off (row 1
from functional FMEA).

 An insulin injection is an atomic operation

(row 2 from functional FMEA).

 If the sugar level is low, the system must
avoid injecting insulin to the patient’s blood
(row 4 from functional FMEA).

 Insulin dose for injection must not exceed the

max dose (row 4 from functional FMEA).

 Injecting operation must be finished at most
30 seconds after sampling starts otherwise,

 an injection failure message must be shown
to the user and system has to be turned off
(row 2 from functional FMEA).

Step two: After identifying safety requirements, we
model the system such that it satisfies all safety
requirements [14]. We proposed two system units:
operation unit that interacts with the environment
(the patient) directly, and control unit that controls
and supports the operation unit. Figure 1 shows
this interactive model.

We use timed transition Petri-net as the formal
method because of its tractable behavior and its
support of time. In addition, we use Z [17] to
specify textual and mathematical specifications as
a complement for Petri-net. A Petri-net model
includes places, tokens, arcs and transitions. Each
transition associates with a condition which, when
holds, causes tokens on the transition to move to
the next place. A Petri-net model for logical
behavior of CIIP is shown in Figure 2.

All transitions in Figure 2 are explained in Table 7
similar to the proposed model in [8].

FMEA
System: CIIP Subsystem: -
Mode/Phase: Operating

Function
Failure
mode

Failure
rate

Failure
reasons

Suddenly
effect

System
effects

Detection
method

Current
control

Hazard
Hazard

risk
Recommended

action
Row

Sampling
Not

happening
Not

available

Hardware
fault,

software
fault

Not
receiving
sample

Nor
computing

nor
injecting
insulin

Not
resetting

new
sample

_

Face to
unsafe
status

2B

Warn to user
after 10 second
(runtime safety
management)

1

Insulin
injecting

Not
happening

Not
available

Insulin
reservoir
is empty,
hardware

fault,
software

fault

Not
injecting
insulin

Injecting
incorrect
dose in
the next
injection

Not
resetting

new
sample

_

Increasing
sugar
level

2B

Warn the user
after 30 second
(runtime safety
management)

2

Injecting
lower

dose than
specified

Not
available

leakage of
insulin in
reservoir,
hardware

fault,
software

fault

_

Injecting
incorrect
dose in
the next
injection

_

_

Increasing
sugar
level

2B

Transactional
injecting

(runtime safety
management)

3

Injecting
higher

dose than
specified

Not
available

Hardware
fault,

software
fault

_

Injecting
incorrect
dose in
the next
injection

_

_

Patient
going to a

coma
1A

Daily injection
control, hard

testing, injection
guards (runtime

safety
management)

4

Table 6. Worksheet of functional FMEA for CIIP.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Vol. 11, October 2013 688

Transition Events or conditions

T1 Sugar > SafeMax
T2 Sugar <= SafeMax
T3 Sugar < SafeMin
T4 Sugar >= SafeMin
T5 Time >= 10
T6 E1: EndSampling
T7 Time >= 10
T8 E1: EndSampling
T9 Time >= 10

T10 E1: EndSampling
T11 Time >= 10
T12 E1: EndSampling
T13 E2: EndComputing
T14 E3: EndInjecting

T15
Insulin < MinDose Or Insulin <
ComputedDose OR Charge <

MinCharge

T16
Insulin >= MinDose AND Insulin >=

ComputedDose AND Charge >=
MinCharge

T17 Charge < MinCharge
T18 Charge >= MinCharge
T19 Insulin < MinDose
T20 Insulin >= MinDose

Table 7. Transitions on the CIIP Petri-net model.

As shown in Figure 2, the operation unit has four
main states; Idle, Sampling, Computing, and
Injecting. A token moves from Idle state to Injecting
state when transitions are fired according to the
conditions in Table 7. Diagrams are not convenient
tools to specify the requirements; instead, we use Z
as a textual formal method to do so. Schemas 1 to 6
specify CIIP requirements similar to [8]. Each schema
has a declaration part and a predicate part. For
example schema 1 specifies states and their initial
values. In this schema, insulinAvailable shows the
available insulin in the reservoir. Also this schema
has a predicate minimumDose that specifies the
amount of minimum insulin for injection.

the sugar level is high and low, respectively. Last
three schemas specify computing state in the Petri-
net model. Because the lack of space, we Schema
2 specifies the behavior of the system when
running. Schema 3, specifies data requirements
when the sugar level is normal. Schemas 4 and 5
specify data requirements when the sugar level is
high and low, respectively. Last three schemas
specify computing state in the Petri-net model.
Because the lack of space, we ignore schemas for
other states including sampling and injecting.

Figure 1. The proposed interactive model for CIIP.

Sampling
equipments

Injecting
equipments

Warning
equipments

Insulin
resources

Power
supply

equipments

Central
computer

Environment (patient) Operation unit Control unit

Insulin/Warning

Sample Data

Process

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Journal of Applied Research and Technology 689

Figure 2. A Petri-net for logical behavior of CIIP

Environment (patient) Operation unit Control unit

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Vol. 11, October 2013 690

EMERGENCY
PUBLIC_STATES

insulinAvailable : N // amount of insulin in the reservoir
computedDose : N // amount of computed insulin dose
cumulativeDose : N // sum of insulin doses that were injected in current day
injectionDose : N // amount of insulin dose that must be injected
safeMin : N // one limit more or less than it means blood sugar is low
safeMax : N // one limit bigger than it means blood sugar is high
maxDailyDose : N // maximum insulin dose is legal to be injected in one day
maxSingleDose : N // maximum insulin dose is legal to be injected in a ten-minute cycle
minimumDose : N // minimum insulin dose can be injected
first_sample, second_sample, third_sample : N // three last blood sugar of diabetic
charge : {1, 2, 3, 4, 5, 6, 7, 8} // amount of the power charge
minCharge : {1, 2, 3, 4, 5, 6, 7, 8} // minimum allowed amount of the power charge
warningAlarm1! : {on, off} // to show a power warning to the diabetic
warningAlarm2! : {on, off} // to show a insulin warning to the diabetic
message1! : string // showing a warning about power charge
message2! : string // showing a warning about available insulin in the reservoir
systemStatus : { run, standby} // status of system running
systemState : {sampling, computing, injecting, sendingMessage} // states of system
clock? : TIME //inputted time
clock! TIME //outputted time
// configuration parameters
minimumDose = 1
safeMin = 6
safeMax = 14
maxDailyDose = 25
maxSingleDose = 4
minCharge = 2

Schema 1. Specification of public states for CIIP in the Z language.

RUNNING

△PUBLIC_STATES
clock? = 001000 (clock! = 000000) ∧ (injectionDose' = 0) ∧ (computedDose' = 0) ∧ (first_sample' =
second_sample) ∧ (second _sample' = third_sample) ∧ (third _sample' = 0)

systemStatus = run ∨ standby

// dose of insulin is computed depending on the blood sugar level
SUGAR_NORMAL ∨ SUGAR_HIGH ∨ SUGAR_LOW
// safety rules
SAFETY

cumulativeDose' = cumulativeDose + injectionDose

Schema 2. Specification of runtime CIIP behavior in the Z language.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Journal of Applied Research and Technology 691

SUGAR_NORMAL

systemStatus = run
systemState = Computing
(third_sample >= safeMin) ∧ (third_sample <= safeMax)

// sugar level stable or falling
(third_sample <= second_sample) (computedDose = 0)

// sugar level increases but rate of increase falls
(third_sample > second_sample) ∧(third_sample - second_sample) < (second_sample – first_sample)
(computedDose = 0)

// sugar level increases and rate of increase increases compute dose
// a minimum dose must be delivered if rounded to zero
(third_sample > second_sample) ∧(third_sample - second_sample) >= (second_sample – first_sample)
∧(round((third_sample - second_sample)/4) = 0) (computedDose = minimumDose)
(third_sample > second_sample) ∧(third_sample - second_sample) >= (second_sample – first_sample)
∧(round((third_sample - second_sample)/4) > 0) (computedDose = round((third_sample -
second_sample)/4))

Schema 3. Specification of CIIP behavior in the Z language when sugar is in normal level.

SUGAR_HIGH

S ystemStatus = run
systemState = Computing

third_sample > safeMax

// sugar level increasing. Round down if below 1 unit
(third_sample > second_sample) ∧(round((third_sample - second_sample)/4) = 0) (computedDose =
minimumDose)
(third_sample > second_sample) ∧(round((third_sample - second_sample)/4) > 0) (computedDose =
round((third_sample - second_sample)/4))

// sugarlevel stable
(third_sample = second_sample) (computedDose = minimumDose)

// sugar level falling and rate of increase decreasing
(third_sample < second_sample) ∧(third_sample - second_sample) <= (second_sample – first_sample)
(computedDose = 0)

// sugar level falling and rate of increase increasing
(third_sample < second_sample) ∧(third_sample - second_sample) > (second_sample – first_sample)
(computedDose = minimumDose)

Schema 4. Specification of CIIP behavior in the Z language when sugar is in high level.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Vol. 11, October 2013 692

SUGAR_LOW

systemStatus = run
systemState = Computing

third_sample < safeMin
computedDose = 0
warningAlarm! = on
message! = "Your sugar is very low. Please call your doctor."

Schema 5. Specification of CIIP behavior in the Z language when sugar is in low level.

SAFETY

charge < minCharge (warningAlarm1! = on) ∧ (message1! = "Low charge.") ∧ (systemStatus = standby)
charge >= minCharge (warningAlarm1! = off) ∧ (message1! = "") ∧ (systemStatus = run)

(insulinAvailable < minDose) ∨ (insulinAvailable < injectionDose) (warningAlarm2! = on) ∧ (message2! =
"Low insulin.") ∧ (systemStatus = standby)
(insulinAvailable >= minDose) ∧ (insulinAvailable >= injectionDose) (warningAlarm2! = off) ∧ (message2!
= '") ∧ (systemStatus = run)

cumulativeDose <= 25 injectionDose = computedDose
cumulativeDose > 25 injectionDose = 0

Schema 6. Specification of significant safety requirements for CIIP in the Z language.

MONITOR
△PUBLIC_STATES

systemState = sampling clock? <= 000010
systemState = injecting (injectionDose > 0) ∧ (insulinAvailable >= injectionDose) ∧ (charge >=
minCharge)
third_sample < safeMin injectionDose = 0
injectionDose <= maxDose
systemState = injecting clock? <= 000030

Schema 7. Prevention management for CIIP in the Z language.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Journal of Applied Research and Technology 693

Step three: Even using the most sophisticated
techniques for controlling the safety in both,
requirements layer and design layer, it is always
possible an unexpected error causes a system failure
at runtime. Therefore, to avoid any system failure, we
need to monitor the behavior of the system at runtime
to identify and manage unexpected faults. In the
proposed approach, all the main states of the system
are monitored continuously in a structure which
includes four units: Log management, change
management, prevention management and disaster
management which are based on information
technology infrastructure library (ITIL) 20.

Log management logs the main sates of the
system when they change. As a result, all required
states must be identified first. The main candidates
for logging are those which changes may result in
a critical behavior. Main critical behavior of CIIP is
insulin injection; because incorrect insulin injection
may hurt the patient seriously. Critical states that
are in our concern shown in Table 8. These states
must be logged.

Because critical behavior of the system may
change over time, we need a change management
unit to confirm that the change is safe. This unit is
constructed from the high level constraints of the
system and the environment conditions. Before
giving permission to any critical behavior, required
states are obtained from log management to
ensure that all of them are safe. Change
management unit plays a role in design, similar to
the role of exception management in programming.
Table 9 shows change permissions for the
beginning of injecting critical behavior of CIIP. We
can extend this table for other critical behaviors of
CIIP which are in the second level of importance.

To detect existing faults of the system before entering
to critical states at runtime, a prevention
management is required. Because CIIP is a real-time
system, it is better to design prevention management
such that it runs in parallel with the system. Schema
7 specifies prevention management in Z language for
CIIP. When any condition in this schema fails,
disaster management is called.

Disaster management unit is a complement for the
prevention unit. It tries to escape from faulty
situations of the system, those which cannot be
predicted in normal behavior and may lead to a

catastrophic status. Disaster management can be
as simple as showing a warning to the user, or as
complex as replacing a redundant hardware, or as
urgent as turning off the whole system. Disaster
management for CIIP can be designed to turn off
the system, show a message about system failure,
and send a message to the patient's doctor
through communication lines. Schema 8 specifies
disaster management for CIIP in Z language.

EMERGENCY

△PUBLIC_STATES

systemStatus = standby
systemState = sendingMessage
warnningAlarm1! – on
warnningAlarm2! = on
message1! = "System Failure"

Schema 8. Disaster management for CIIP

in the Z language.

State
name

Conception Log times Details

Charge
Power
supply
energy

Every minute,
after warning
enabled or

warning
disabled

_

insulinAva
ilable

Available
insulin in
reservoir

Every minute,
after warning
enabled or

warning
disabled

_

computed
Dose

Computed
dose

Immediately
after end of
computing
operation

After the
end of

the
injecting
operation

the
amount

of this log
become

zero

cumulativ
eDose

Cumulative
dose

Immediately
after the end

of the
injecting
operation

After
every 24
hours,

the
amount

of this log
become

zero

Table 8. Critical states of CIIP.

Towards the Design of Safety‐Critical Software, R. Rafeh /683‐694

Vol. 11, October 2013 694

Critical
behavior

Conditions Permission

Beginning
of the

injecting
operation

Charge > minCharge AND
insulinavailable > minDose
AND ComputedDose > 0

AND cumulativeDose <=25

True

~(Charge > minCharge AND
insulinavailable > minDose
AND ComputedDose > 0

AND cumulativeDose <=25)

False

Table 9. Change permissions for critical behavior of CIIP

4. Conclusions

Achieving a high degree of safety in safety-critical
software requires that designers think about it
carefully in each step of the software production.
However, current approaches usually focus on
safety in only one phase of the software production.
In this paper, we proposed a multi-phase approach
to achieve safety in safety-critical software. To
describe the behavior of the system formally, we
used timed transition Petri-net and the Z language.
To show the proposed approach practically, we
used CIIP as a sample model.

References

[1] J. Slagle and S. Shankar, "Theorem proving.
Chichester, UK: John Wiley and Sons Ltd, 2003.

[2] C. Baier and J. Katoen, Principles of Model Checking.
London, England: Cambridge, Mass. : MIT Press, 2008.

[3] M. Leucker, "Checking and Enforcing Safety:
Runtime Verification and Runtime Reflection," ERCIM
News, vol. 75, pp. 35-36, 2008, ERCIM EEIG, Sophia
Antipolis Cedex, France.

[4] S. Smetsers and M. Eekelen, "LaQuSo: Using Formal
Methods for Analysis, Verification and Improvement of
Safety-Critical Software," ERCIM News, vol. 75, pp. 36-
37, 2008, ERCIM EEIG, Sophia Antipolis Cedex, France.

[5] S Fischmeister and Azim, "A Design Choices for
High-Confidence Distributed Real-Time Software,"
Leveraging Applications of Formal Methods, Verification,
and Validation, Lecture Notes in Computer Science, vol.
6416, pp. 97-111, 2010, Springer.

[6] D Mery and N.K Singh, "Trustable Formal
Specification for Software Certification," Leveraging
Applications of Formal Methods, Verification, and
Validation, Lecture Notes in Computer Science, vol.
6416, pp. 312-326, 2010, Springer.

[7] I. Sommerville, Software Engineering, 8th ed. China:
Pearson Education, 2007.

[8] S.M. Babamir and M. Borhani, "Formal Verification of
Medical Monitoring Software Using Z Language: A
Representative Sample," Journal of Medical Systems,
2011, Springer, DOI: 10.1007/s10916-011-9739-5.

[9] S. Gabriele and W. Werner, "Practical Ways of
Improving Product Safety in Industry," Improvements In
system Safety, no. 6, pp. 177-193, 2008, Springer, DOI:
10.1007/978-1-84800-100-8_11.

[10] D. G. Firesmith, "Engineering Safety- and Security-
Related Requirements: Tutorial," in 15" IEEE
International Requirements Engineering Confencee,
New Delhi, India, 2007.

[11] D. G. Firesmith, "Engineering Safety-Related
Requirements for Software-Intensive Systems: Tutorial,"
in 27th International Conference on Software
Engineering (ICSE’2005) in, Louis, Missouri, USA, 2005.

[12] S. Tucker and M. Halbert, "Risk Assessment for
M42 Active Traffic Management," Developments in Risk-
Based Approaches to Safety, no. 2, pp. 25-45, 2006,
Springer, DOI: 10.1007/1-84628-447-3_2.

[13] C. A. Ericson, Hazard analysis techniques for
system safety. Hoboken, New Jersey, USA: Wiley-
Interscience, 2005.

[14] M.B. Swarup and P. S. Ramaiah, "An Approach to
Modeling Software Safety in Safety-Critical Systems,"
Journal of Computer Science, vol. 5, no. 4, pp. 311-
322, 2009.

[15] R. Patton, Software Testing. Indianapolis, Indiana,
USA: Sams, 2001.

[16] S. Sohn and P. Seong, "A Comprative Study of
Formal Methods for Safety Critical Software in Nuclear
Power Plant," Journal of the Korean Nuclear Society,
vol. 32, no. 6, pp. 537-548, 2000.

[17] J. M Spivey, The Z Notation: A Reference Manual,
2nd ed. Oxford, UK: Prentice Hall, 2001.

[18] National Aeronautics and Space Administration,
NASA Software Safety Guidebook, NASA-GB-8719.13B.
USA: NASA, 2004.

[19] J. D. Gahl, J. E. DijKstra, and C.A.R. Hoare, Notes
on Structured Programming. London, England:
Academic Press London, 1972.

[20] Office of Government Commerce, Intruduction to
ITIL. London, Britain: TSO, 2006.

