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Abstract: The critical need for advanced approaches in classifying educational videos has 
been extensively researched, as the domain has faced significant challenges due to the limit-
ed availability of labeled data, noisy annotations, and the inherent diversity of video content. 
Traditional approaches are likely to fall short in managing such complexity, resulting in subop-
timal classification performance. A new integration of graph-based semi-supervised learning 
(GSSL), self-training with consistency regularization, adversarial learning, transfer learning from 
pretrained models, and a weakly supervised learning framework is proposed in this paper. All 
these approaches help improve performance in our proposed framework across several metrics, 
including increased precision, accuracy, recall, and the area under the curve (AUC), which subse-
quently reduces delays and increases specificity with respect to the EDUVSUM and HowTo100M 
datasets. The uniqueness of combining these techniques will also enhance the classification ac-
curacy and competence of such models, resulting in a robust and generalizable classifier across 
various domains of educational content. This paper presents a significant contribution to the field 
of educational video classification by providing a comprehensive solution to the multifaceted 
challenges of the task.
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1. Introduction

With the soaring use of digital educational content, 
especially videos, there is a need for sophisticated clas-
sification systems to facilitate the effective organization, 
search, and recommendation of these resources to learn-
ers. The conditions under which educational videos are 
considered are unique and may not entirely be handled 
by conventional video classification frameworks. The rea-
sons include the limited availability of labeled data, the 
presence of noisy annotations, and the diverse range of 
video content, which spans lectures to interactive tutori-
als. It complicates the task, mandating a more nuanced 
approach to the educational video classification process 
(Kadam et al., 2022; Wang et al., 2021; Apostolidis et al., 
2021)

While traditional classification methodologies have 
made remarkable strides in addressing some of these 
challenges, they often fall short when confronted with 
the complex and multifaceted nature of educational con-
tent. The lack of labels in existing models is primarily 
attributed to the reliance on extensive labeled datasets 
and samples (Zhang et al., 2023; Davila et al., 2021; Yuan 
& Zhang, 2023), susceptibility to annotation noise, and 
the inability to generalize across a wide range of educa-
tional topics and presentation styles. The current work 
addresses this limitation by proposing a comprehensive 
framework that provides a holistic solution to transcend 
traditional models, adopting a synergistic integration of 
modern machine learning techniques.

This paper presents a new framework that combines 
GSSL, self-training with consistency regularization, adver-
sarial learning, transfer learning from pre-trained models, 
and weakly supervised learning. This was considered with 
the view of drawing from these methodologies, as they 
already exhibit improved efficacy in circumventing some 
of the challenges posed by the classification of educa-
tional videos. This relies on GSSL, whereby the relational 
structure of the data is utilized to facilitate effective label 
propagation from a limited number of labeled samples 
to a larger set of unlabeled ones, thereby mitigating the 
problem of scarce labeled data samples.

Self-training with consistency regularization has a fool-
proof mechanism that enables the improvement of model 
reliability, particularly in resolving ambiguous or noisy 
data by ensuring predictive consistency across various 
adversarial perturbations of input data samples. Adver-
sarial learning is applied to teach invariance with respect 
to the domain since, without it, the model would not be 
able to generalize over the broad spectrum of educational 

content. Transfer learning has integrated transferred 
models that learn from vast, diverse datasets, signifi-
cantly reducing the dependence on labeled data from 
a particular domain. Lastly, weakly supervised learning 
techniques can utilize imperfectly labeled data to gener-
ate meaningful patterns that the model can then leverage.

A combination of these advanced techniques (Liu et 
al., 2022; Nagar et al., 2021; Ma et al., 2022) within a unit-
ed framework has represented a giant leap forward in 
the era of digital educational video classification. This 
approach not only addresses the challenges mentioned 
above but also lays down a benchmark for classification 
accuracy, robustness, and adaptability. The proposed 
framework enables the easy and effective use of both 
labeled and unlabeled data, thereby making the model 
robust against noisy annotations and providing a general-
izing model that performs well across diverse educational 
materials. This makes the framework a key contribution 
to the domain of digital learning resources.

This paper, as an introduction, will detail the select-
ed methodologies and their complementary strengths, 
setting the stage for a comprehensive exploration of the 
proposed process. In the following sections, it will delve 
into the technical intricacies of each component, their in-
tegration, and the empirical evaluation of the framework, 
showcasing its superior performance compared with the 
existing methodologies and underscoring its potential to 
transform the landscape of educational video classifica-
tion processes.

Motivation & Contribution
The availability of vast amounts of digital educational re-
sources, based on video, has prompted an urgent call for 
sophisticated classification systems. Such systems are 
important since they help streamline users’ searching, 
interpreting, and selecting learning materials. Neverthe-
less, conventional classification strategies face formidable 
barriers due to the intrinsic complexities of educational 
video content, such as diverse instructional styles, var-
ied subject matter, and fluctuating quality. The scarcity 
of labeled data, the presence of noisy annotations, and 
the dynamic nature of educational content all complicate 
the challenges, making it difficult to implement conven-
tional classification methods properly. Attempted in this 
study, therefore, is that of banning such methodologies 
by making use of advanced machine learning techniques 
available in other and similar domains, but yet untapped 
in the domain of educational content.

The scope of the proposals is marked by several con-
tributions, reflecting a fresh research contribution in the 
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realm of educational technology. First and foremost, the 
proposed framework comprises an integrative fusion of 
GSSL, self-training with consistency regularization, adver-
sarial learning, transfer learning from pretrained models, 
and weakly supervised learning. It integrates these and is 
strongly designed to gain full benefits from the effective 
strengths of each method in a holistic manner towards 
the resolution of the classifier challenges at hand relat-
ed to educational video classification. The imposition of 
GSSL, for example, builds up the data-propagating pow-
er of the model efficiently for the learning platform and 
suitably exploits the intrinsic structure of the data sam-
ples. Concurrently, the application of adversarial learning 
techniques promotes the development of domain-invari-
ant features, enabling robust classification across diverse 
educational content.

Secondly, this framework employs a strategic ap-
proach to utilizing both labeled and unlabeled data, 
thereby mitigating the limitations imposed by the scarcity 
of annotations. Self-training with consistency regulariza-
tion is employed to achieve stable predictions, even with 
ambiguous data, thereby enhancing the model’s general-
izability and improving its overall performance. Besides, 
by transferring learning from pretrained models, the in-
corporation indicates the versatility of such a framework 
for deriving and applying previously learned knowledge 
bases in the absence of extensive domain-specific la-
beled datasets and samples.

Finally, the use of weakly supervised learning ad-
dresses the widespread issue of noisy and incomplete 
annotations. Since the model is robustly designed to 
handle spurious annotations, learn from available data, 
and, importantly, mitigate the effects of imprecise labels, 
learning from data is done effectively, even with such high 
quality and quantity.

These factors translate to an inclusive and sturdy 
model to set new benchmarks in the classification of ed-
ucational videos. The proposed model has successfully 
outperformed existing methodologies on benchmark 
datasets such as EDUVSUM and HowTo100M, using 3 or 
more superior performance metrics in comparison. This 
work addresses the immediate tasks that educators, 
learners, and technologists face in the digital age, while 
also leaving numerous opportunities for future enhance-
ment of such technologies.

2. In-depth review of existing Models

Digital education and the rapid proliferation of video con-
tent require further advancements in their classification 

and summarization to enhance accessibility and learning 
efficiency. The standard approaches to video summa-
rization have been developed around general content, 
ignoring most cases and the diversified requirements 
of educational videos and samples. This gap in research 
motivates the exploration of novel frameworks and 
methodologies for educational content that can address 
challenges such as limited labeled data, noisy annota-
tions, and diverse content levels (Issa & Shanableh, 2022; 
Mujtaba et al., 2022).

In recent times, several new methods related to ma-
chine learning have been introduced, ranging from deep 
neural networks to graph-based approaches, to enhance 
video summarization. These methods have proven ef-
fective in various contexts, including medical education, 
personal video summarization, and unsupervised learn-
ing (Ji et al., 2021; Apostolidis et al., 2021). However, 
the methods above are not entirely applicable when it 
comes to classifying and summarizing educational vid-
eos. There is a need for domain-specific adaptation, as 
well as the management of specific academic content 
characteristics.

The recent research on video summarization, as pre-
sented in the current literature review, has identified one 
of the many approaches, each with its own strengths and 
weaknesses. Methods such as Motion-Assisted Recon-
struction Network (MAR-Net) and Deep Reinforcement 
Learning with Shot-Level Semantics demonstrate prom-
ising results in capturing dynamic content. Still, both 
will most likely be required for placing in educational 
narratives rather than for motion or scene changes (Ma 
et al., 2020a; Gao et al., 2021). Such a feature, focusing 
on extractive summarization for lecture videos, signifies 
direct applications in educational content, which under-
line the effectiveness of domain-specific approaches. 
This is because it puts heavier emphasis on whiteboard 
or chalkboard content. Therefore, it fails to capture the 
variety within educational videos, such as interactive tu-
torials or practical demonstrations. Relational reasoning, 
particularly in the context of spatial-temporal graphs and 
affective visual information for summarization, highlights 
the potential to leverage complex data representations 
and human-centric cues. Such approaches suggest that 
a comprehensive framework for educational video sum-
marization could be enhanced by using multimodal data 
and emotional engagement metrics to better align with 
educational outcomes (Zhao et al., 2021a; Zhang et al., 
2022). Methods that utilize unsupervised learning are 
ways to overcome the limitations of labeled data in the ed-
ucational learning context. However, implementing such 
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Table 1. Different methodologies based on the literature review

Sl. No. Method Used Findings Results Limitations

1 Machine Learning 
Algorithms for Video 
Summarization

Explored challenges and 
opportunities in video 
summarization, emphasizing 
big data’s role.

Highlighted the efficacy of 
SVS and MVS in handling 
large datasets.

Limited discussion on the 
adaptability to educational 
content.

2 Improved Clustering and 
Silhouette Coefficient for 
Keyframe Generation

Proposed an enhanced 
clustering method for video 
summarization.

Achieved improved precision 
in keyframe selection.

Focused mainly on static 
scenes; may not generalize 
well to dynamic educational 
videos.

3 Deep Neural Networks 
Survey

Reviewed deep learning 
approaches for video 
summarization.

Identified the gap 
between supervised and 
unsupervised learning 
techniques.

Lacked specific solutions for 
educational video content.

4 MAR-Net: Motion-Assisted 
Reconstruction Network

Utilized motion information 
and an attention mechanism 
for summarization.

Demonstrated semantic 
consistency in unsupervised 
settings.

A motion-based approach 
may not fully capture the 
nuances of educational 
video content.

5 FCN-LectureNet for Lecture 
Video Summarization

Focused on extractive 
summarization of 
educational content.

Improved detection and 
summarization of lecture 
videos.

Primarily targeted at 
whiteboard/chalkboard 
content, it may not be 
comprehensive.

6 Deep Reinforcement 
Learning with Shot-Level 
Semantics

Introduced an unsupervised 
learning model focusing on 
shot-level semantics.

Reported advancements 
in summarization without 
extensive labeling.

Shot-level focus might 
overlook the broader 
educational context.

7 3D Spatio-Temporal U-Net 
via Reinforcement Learning

Applied 3D convolutional 
networks for medical video 
summarization.

Showcased potential in 
medical education videos.

Specificity to medical videos 
may limit applicability to 
general education.

8 Personalized Summaries of 
Egocentric Videos

Developed a reinforcement 
learning approach for 
personalization.

Achieved personalized 
summarization in first-
person videos.

Focused on egocentric 
videos, which represent 
a niche area within 
educational content.

9 Adaptive Multiview Graph 
Difference Analysis

Proposed a novel graph-
based method for 
summarization.

Enhanced adaptability and 
efficiency in processing.

The complexity of the 
method may hinder its 
application in real-time 
scenarios.

10 CNN and HEVC Features for 
Static Summarization

Leveraged deep learning 
and video coding features 
for summarization.

Improved efficiency in static 
video summarization.

Limited by its focus on static 
summarization, it overlooks 
dynamic educational 
content.

11 LTC-SUM: 2D CNN for 
Personalized Summarization

Introduced a lightweight 
framework using client-
driven 2D CNN.

Facilitated personalized 
video summarization 
efficiently.

The client-driven approach 
might not fully address the 
diversity of educational 
videos.

12 Deep Attentive Video 
Summarization with 
Distribution Consistency

Employed attention 
mechanisms and 
consistency learning.

Showed improvement 
in capturing key video 
segments.

The method’s reliance on 
deep learning might limit its 
accessibility for resource-
constrained environments.
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Sl. No. Method Used Findings Results Limitations

13 AC-SUM-GAN: Actor-Critic 
with GANs

Combined GANs with 
reinforcement learning for 
unsupervised learning.

Enhanced creative aspects 
of video summarization.

The complexity and 
computational demands 
of GANs may not be 
suitable for all educational 
applications.

14 Keyframe Extraction via 
Dictionary Selection

Applied a dictionary 
selection approach for 
keyframe extraction in 
laparoscopic videos.

Offered a novel solution 
for medical video 
summarization.

The focus on laparoscopic 
videos limits generalization 
to other educational areas.

15 Relation-Aware Assignment 
Learning

Introduced an unsupervised 
approach using graph neural 
networks.

Advance the efficiency of 
video summarization.

It may not specifically 
address the unique 
challenges of educational 
video summarization.

16 Audio Visual Video 
Summarization

Explored multimodal 
learning for summarization.

Demonstrated the 
importance of audiovisual 
cues.

The reliance on multimodal 
inputs may not apply to all 
educational videos.

17 Joint Reinforcement and 
Contrastive Learning

Utilized a novel combination 
of learning techniques for 
summarization.

Showed potential in 
unsupervised learning 
contexts.

The specific learning 
approach might complicate 
implementation.

18 Affective Visual Information 
for Summarization

Investigated the role 
of emotion in video 
summarization.

Highlighted the value of 
affective cues in human-
centric videos.

The focus on affective 
information may overlook 
educational content’s 
instructional aspect.

19 Multimodal and Aesthetic-
Guided Narrative 
Summarization

Combined multimodal 
information with aesthetic 
guidance.

Enhanced narrative video 
summarization.

The emphasis on 
aesthetics might not align 
with educational video 
summarization priorities.

20 Similarity-Based Sparse 
Subset Selection

Developed a kernel sparse 
representation method for 
summarization.

Improved the selection of 
informative video segments.

The kernel approach’s 
complexity might challenge 
its broader application.

21 Sequence-Graph Network 
for Summarization

Introduced a reconstructive 
network for key-shot 
summarization.

Offered advancements in 
summary generation.

The focus on key-shot 
generation might not 
capture the full educational 
narrative.

22 TTH-RNN for Video 
Summarization

Applied tensor-train 
hierarchical RNNs for 
efficient summarization.

Demonstrated the potential 
of hierarchical structures.

The specialized network 
architecture may limit its 
adaptability.

23 EEG-Video Emotion-Based 
Summarization

Explored EEG signals 
for emotion-based 
summarization.

Provided insights into 
multimodal emotion 
recognition.

The niche focus on EEG-
video data may not be 
universally applicable.

24 CoEvo-Net for Highlight 
Detection

Developed a coevolution 
network for video analysis.

Addressed the effective 
detection of video 
highlights.

The specific focus on 
highlights may miss 
comprehensive educational 
content.

25 Spatial-Temporal Graphs for 
Summarization

Utilized relational reasoning 
over spatial-temporal 
graphs.

Showed improvements in 
summarization through 
graph-based techniques.

The method’s focus on 
spatial-temporal graphs may 
not suit all video types.
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techniques requires extra care to ensure that the summa-
ry, whether on video or audio tape, maintains instructional 
integrity and relevance, particularly in educational video 
summarization contexts (Köprü & Ezrin, 2023).

In general, the review highlights the need for a multi-
faceted approach to educational video summarization, 
which combines the strengths of existing methods and 
addresses their limitations within the educational do-
main (Zhao et al., 2021b). In fact, a robust solution may 
comprise an adaptive learning platform, feature learning 
tailored to the specific domain, and a comprehensive pro-
cess for multimodal data processing that would enable 
significantly improved classification and summarization 
of educational video content. Such a comprehensive 
solution, which effectively addresses the difficulties and 
lack of user engagement in educational video content, 
sets a solid foundation for future research in the field 
by guiding the development of more sophisticated and 
education-oriented video summarization technologies 
(Xie et al., 2023; Ma et al, 2020b). According to Zhao et 
al. (2020), to alleviate the lags and expenses associated 
with rollouts, a range of video summarization models was 
presented, categorized by their functionality. Based on 
this discussion, researchers will be in a position to select 
models that are optimum for their functionality-based use 
cases. Authors (Lew et al, 2022) presented a time synchro-
nization module that employs an attention mechanism 
to map EEG representations into a visual representation 
space. Authors Chen et al. (2022) presented a new model 
for VHD termed Coevolution Network (CoEvo-Net), which 
enables the efficient integration of video and language 
features through the joint evolution of these features, 
as the process involves the coevolution of two different 
features from the two modalities. Such a cell is the CoE-
vo-Cell structure, which integrates language and video, 
cross-modulates, and removes specific non-essential 
components of the input, such as word elements within 
a sentence. Zhu et al. (2022) proposed a dynamic graph 
modeling approach to learn spatial-temporal representa-
tions for video summarization.

Design of the Proposed Model Process

The section then discusses the design of the proposed 
model that amplifies the efficiency of the summarization 
process. In the context of educational video classifica-
tion, GSSL emerges as a vital approach that leverages the 
inherent data structure and relationships among video 
samples to enhance label propagation. The essence of 
GSSL is grounded in the construction and optimization of 

a graph where nodes represent video samples and edg-
es signify the relationships or similarities between these 
samples. Let us now delve into the mathematical formu-
lations and iterative processes that underpin the GSSL 
mechanism, reflecting its application from the initial in-
put of collected video samples to the eventual output 
elucidating relationships between these samples. The 
GSSL process starts with the construction of a similarity 
graph G = (V, E), where V is the set of nodes correspond-
ing to video samples and E is the set of edges connecting 
these nodes. The edge weights Wij between nodes i and 
j are determined by a similarity function that utilizes a 
Gaussian kernel, as expressed in Equation 1.

(1)

Where xij are feature representations of video samples, 
and σ controls the width of the Gaussian kernel. Upon 
establishing the graph, the GSSL framework incorporates 
the label information into the graph via a label matrix 
Y, where Yil = 1 if sample i is labeled with class l and 0 
otherwise. In the semi-supervised setting, most of the 
samples are unlabeled, thus requiring the propagation of 
label information from labeled to unlabeled nodes. This 
propagation is governed by the label propagation matrix 
F, where each element Fil means the probability that node 
i belongs to class l. To refine the label propagation, the 
GSSL framework employs an optimization objective that 
minimizes the discrepancy between predicted and actu-
al labels for labeled samples while ensuring smoothness 
in label distribution over the graph. This is articulated 
through the optimization task represented via equation 2.

(2)

Where L=D−W is the Laplacian matrix, D is the diagonal 
degree matrix, μ is a regularization parameter, and F​ rep-
resents the Frobenius norm levels. The equilibrium of 
the optimization task is reached when the derivative of 
the objective function with respect to F vanishes in the 
process. This condition yields the equilibrium equation, 
where I is the identity matrix for the process. The resolu-
tion of this equation involves the calculation of F, which 
is iteratively updated via equation 3.

(3)

Where S = D-1/2 WD-1/2 is the normalized similarity matrix 
and α is a factor controlling the trade-off between the 
original label assignments and the propagated labels. 
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As per figure 1, the iterative process continues until 
convergence, measured by a threshold ϵ, such that F(t+1)-
F(t)∥<ϵ for this process. Upon merging, the final F matrix 
would summarize not only propagated labels but also the 
inherent structures and similarities amongst the video 
samples. In this regard, it translates graph theory and 
semi-supervised learning to a comprehensive framework 
in the classification of educational content. It enhances 
the accuracy and efficiency of educational resource clas-
sification operations. Through various operational steps, 
GSSL develops an effective mechanism to classify educa-
tional videos, particularly in cases with sparse labels and 
complex video content. As shown in Figure 2, the process 
of self-training with consistency regularization works by 
leveraging relationships between samples to enhance the 
reliability of these links. This process involves iterative 
steps, guided by mathematical formulations that refine 
the predictive model iteratively using unlabeled data 
alongside labeled instances to derive a more reliable and 
robust learning outcome. Initiating the process, a set of 
video samples can be derived such that for each sam-
ple, xi, and the corresponding relationships derived from 

the previous phase, encapsulated in the matrix R, where 
Rij represents the relationship between videos i and j. 
The objective is to exploit these relationships to foster a 
consistent and reliable mapping, such that the predicted 
function f: xi↦y, with y representing the predicted labels 
or attributes for these video samples.

The self-training component consists of the iterative 
updating of the predictive model f. First, under the avail-
ability of labeled data L = {(xi,yi)}, the model f is trained 
on it. Second, for every unlabeled sample xu from the 
unlabeled dataset U, the model produces a pseudo-label 
y’ u = f(xu) sets. These pseudo-labels are then integrated 
into the training process, albeit with a mechanism to con-
trol their influence based on their estimated reliability or 
confidence, as represented in Equation 4.

(4)

Thus, it reflects the maximum predicted probability 
across potential classes in different use scenarios. The 
consistency regularization aspect introduces a pertur-
bation δ to each video sample xu​, creating a perturbed 

Figure 1. Model Architecture for the Proposed Video Classification Process
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version xu’=xu+δ for this process. The core principle here 
is to enforce that the model’s predictions remain stable or 
consistent when subjected to small perturbations, thus 
ensuring that the learned relationships are indeed robust 
against minor variations or noise in the data samples. 
This is quantitatively expressed through consistency loss, 
as formulated in Equation 5.

(5)

Thus, emphasizing the drive for minimal divergence be-
tween the predictions on original and perturbed samples. 
Simultaneously, the model refines itself by minimizing a 
composite loss function =Lsup+λLcons, where Lsup​ rep-
resents the supervised loss computed on the labeled 
dataset augmented with high-confidence pseudo-labeled 
samples, and λ is a regularization parameter modulating 
the impact of the consistency loss. The supervised loss 
Lsup is defined via equation 6,

� � (6)

With ℓ representing a loss function such as cross-entro-
py, and τ a confidence threshold dictating the inclusion 
of pseudo-labels. The iterative refinement process en-
tails the calculation of gradients ∇fL and updating the 
model parameters according to a chosen optimization 
algorithm, employing a stochastic gradient descent pro-
cess. The update rule is represented via equation 7,

(7)

Where η represents the learning rate for this process. 
The evolution continues over multiple iterations, with 
the updated model progressively honed to generate 
more accurate and consistent predictions. This iterative 
enhancement is guided by the underlying objective of 
achieving minimal discrepancy not only between the pre-
dicted and actual labels on the labeled dataset but also 
ensuring that predictions across perturbed and original 
versions of video samples remain consistent, thereby fos-
tering a robust learning framework capable of handling 
the ambiguities and uncertainties inherent in educational 
video content samples.

Next, the implementation of adversarial learning, pri-
marily achieved through the use of Generative Adversarial 
Networks (GANs), is identified as one of the most effective 
techniques for extracting domain-invariant features. This 
strategy addresses the challenge of video distribution. 
The methodological paradigm is a fundamental inter-
play between two separate entities: the generator G and 

the discriminator D. Generator G and discriminator D en-
gage in an adversarial process until a generalization of 
the features yields domain-agnostic representations. In 
practice, let us first assume the consistent relationships 
of the video samples as the input, described in a feature 
space X drawn from the previous stages of the classifica-
tion framework. Within the GAN framework, the objective 
at this point is to map those features into a new space 
where domain-specific characteristics are minimized, 
thereby enabling a more generalized and robust classi-
fication capability.

The generator G, parameterized by weights θg, turns 
features x from the input video into features that are 
indistinguishable from real features pertaining to the do-
main in question, preserving domain-invariant attributes. 
On the other hand, the discriminator D, parameterized 

Figure 2. Overall flow of the proposed classification process.
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by weights θd, attempts to distinguish between the 
transformed features generated by G and the features 
originating from the target domain, essentially evaluating 
the authenticity of the generated representations. The 
adversarial learning process is governed by the follow-
ing min-max game between G and D, encapsulated via 
equation 8,

(8)

Where x represents real features from the target domain, 
z represents input features or noise variables, pdata is 
the data distribution of real features, and pz is the dis-
tribution of the input to the generator process. The 
discriminator D is trained to maximize V(D,G) for a given 
G, thereby enhancing its ability to distinguish between 
real and generated features. This is achieved through up-
dating θd by ascending the gradient via equation 9,

(9)

Where m represents the batch size, and x(i), z(i) are 
samples from the real data and input distributions, re-
spectively. Simultaneously, the generator G is trained to 
minimize V(D,G) for a fixed D, aiming to generate features 
that D will misclassify as real. This is accomplished by 
updating θg​ by descending the gradient via equation 10,

(10)

As the adversarial training progresses, G becomes 
increasingly proficient in creating features that are in-
distinguishable from real, domain-invariant features, 
leading to a scenario where D is challenged to differen-
tiate between real and generated samples, symbolizing 
the achievement of a Nash equilibrium in this adversarial 
game process. 

Then, the results obtained through this process are 
analyzed using Transfer Learning, which becomes very 
essential for educational video classification, especially 
when pre-existing large-scale datasets are utilized to en-
hance the representation and semantic understanding of 
extracted features. This approach can bridge limitations 
due to data scarcity and specificity in targeted educa-
tional content by importing and refining knowledge from 
extensive, diverse sources. The steps used in the process 
are as follows: At the initial stage, the extracted features 
are considered a multi-dimensional matrix X obtained 
from the adversarial learning stage, where every row 

represents the feature set of a particular video frame. 
Transfer learning involves mapping these features to a 
more sophisticated and semantically rich space, a trans-
formation enabled by a neural network model that was 
initially pre-trained on a large-scale dataset, such as Im-
ageNet or COCO Samples. This model holds a wealth of 
visual knowledge, encoded by the parameters θpre for dif-
ferent use case scenarios. This adaptation process goes 
on in the form of extracting more high-level features, 
Z=fθpre(X), which presents the function represented by 
the pre-trained network applied to the educational vid-
eo features X. This is an operation that translates raw, 
intermediate, or low-level features into a refined feature 
space, enriched with the broad semantic understanding 
that has been learned from the samples of the pre-trained 
dataset samples.

Then, for more specific educational content, a fine-tun-
ing phase is initiated for this process. This updates the 
model parameters θ from their initial values θpre to new 
values θnew, more aligned with the target domain. The 
fine-tuning is guided by an objective function L(θ) that in-
cludes a loss term that quantifies the difference between 
the actual and predicted semantic categories of the video 
frames. The update rule follows the gradient descent par-
adigm, expressed via equation 11,

(11)

Where η represents the learning rate for this process. 
The objective function L(θ) incorporates the cross-entro-
py loss between the predicted labels and the true labels 
of the video frames, along with regularization terms to 
prevent overfitting. This is mathematically described via 
equation 12,

(12)

Where yi is the binary indicator of whether class c is the 
correct classification for observation i, pic(θ) is the pre-
dicted probability that observation i belongs to class c, 
and λ is the regularization parameter for this process. The 
fine-tuning proceeds iteratively, with each iteration refin-
ing the parameters θ to better accommodate the specifics 
of the educational content, thereby gradually transition-
ing the model’s knowledge base from the general to the 
particular. This iterative update is mathematically mod-
eled via equation 13,

(13)
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Where t indexes the iteration rounds. Upon the conclu-
sion of the fine-tuning process, the updated model fθnew 
is employed to reassess the features X, resulting in en-
hanced representations that are inherently more aligned 
with the semantic intricacies of educational videos and 
samples. These enriched features lay the groundwork 
for the semantic grouping of video frames, which can be 
achieved through clustering techniques, additional classi-
fication layers, and effective grouping of frames based on 
their semantic content and context in various use cases. 
This transfer learning process culminates in the semantic 
grouping of video frames, where it represents the unifi-
cation of general visual knowledge with domain-specific 
insights, thereby significantly enhancing the capabilities 
of educational video classification systems to discern and 
categorize content with higher accuracy and relevance. 
Transfer learning enables the transfer of knowledge 
across domains by fine-tuning pre-trained models, en-
suring the application of universal visual understanding 
to the specialized domain of educational content. This 
approach improves the identification and grouping of 
semantically coherent frames within educational videos 
and samples.

Next, for video classification, weakly supervised 
learning (WSL) is applied, representing a sophisticated 
technique that uses incomplete or noisy labels to facilitate 
the discernment of learning cues from the data samples. 
This holds special significance in situations where obtain-
ing full data annotations is impractical; therefore, WSL 
leverages available annotations, albeit scant and implicit, 
for guidance in the learning process. The basic premise of 
WSL follows that the objective is formulated by integrat-
ing uncertainty and ambiguity inherent in weak labels 
into the learning framework. Consider the input to be the 
grouped frames categorized semantically, represented 
by {Xi}, where every Xi constitutes a cluster of frames with 
similar semantic features. Associated with each group is a 
weak label Yi, which suggests the dominant class among 
the frames but does not specify the exact label for each 
frame.

The learning process will then start by defining a prob-
ability distribution P(Y∣X;θ) over possible labels Y for a 
given group X, which is parameterized by θ. The distribu-
tion reflects the model’s estimation of the relevance of 
each label to the grouped frames, where parameters θ 
are to be learned from the data samples. The objective is 
to optimize θ such that P(Y∣X;θ) takes on a value close to 

weak labels Yi sets. It utilizes a loss function L(θ), which 
measures the deviation between the predicted and weak 
labels. Due to the weak nature of Yi, additional constraints 
or regularization terms are often included to guide the 
learning process. We include a regularization term R(θ) 
that encourages the model to follow assumptions or prior 
knowledge about the structure and distribution of labels. 
The combined objective becomes L(θ) + λR(θ), where λ is 
the balancing parameter for this process. The algorithm 
iteratively adjusts θ to minimize these combined objec-
tives. The update at each iteration t is described by the 
rule represented via equation 14,

(14)

Where η is the learning rate, and ∇θ​ represents the gradi-
ent with respect to θ sets. To account for the inexactitude 
of weak labels, we incorporate label propagation opera-
tions. Each frame x in a group Xi​ is assigned a label based 
on both the group’s weak label and the labels of ‘nearby’ 
frames, determined by a cosine similarity measure for 
real-time scenarios. This is expressed as a soft labeling 
process, where the label assignment for frame x is updat-
ed via equation 15,

(15)

This is where Lx denotes the soft label for frame x; S(⋅,⋅) is a 
similarity function, and α is a parameter that balances the 
influence of weak labels and neighborhood labels. The 
WSL process culminates in a model that, despite the initial 
imprecision of the labels, has distilled meaningful pat-
terns and relationships within the video frames, thereby 
rendering an enhanced understanding and classifica-
tion of the content. Iterative refinement of frame labels 
and model parameters, validated by a combined mod-
el-inferred assumptions and empirical data, culminates 
in robust classification of video frames, transforming 
ambiguously labeled groups of frames into distinctively 
classified entities, each aligned with a specific education-
al theme or topic. This transformation demonstrates how 
WSL leverages minimal and noisy supervision to derive 
significant educational insights, facilitating a nuanced 
understanding and organization of educational video 
content sets. The performance of this model was eval-
uated on various scenarios and compared with existing 
methods in the subsequent section of the text.
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3. Result Analysis

This section outlines the experimental setup that will 
rigorously evaluate the performance of our model for 
classifying educational videos. This section describes 
specific configurations, datasets, and parameters ap-
plied throughout the experimental phase.

Datasets:
EDUVSUM Dataset: The dataset comprises diverse edu-
cational videos across various subjects and educational 
levels, with each frame labeled as one of the ten catego-
ries of educational content. This heterogeneous dataset, 
among other things, is characterized by its wide range of 
video quality, presentation styles, and content. EDUVSUM 
was reshuffled into a ratio of 70%-15%-15% for training, 
validation, and test sets.

HowTo100M Dataset: This is a large-scale dataset com-
prising instructional videos covering a broad spectrum 
of topics from public platforms. The dataset comprises 
approximately 1.2 million video clips, each accompanied 
by text descriptions and categorized under 100 differ-
ent skills and tasks. In this study, we use a subsample of 
200,000 clips, representing equally balanced categories 
for our model. Similar to EDUVSUM, the data was also par-
titioned into training (70%), validation (15%), and testing 
(15%) subsets.

Configuration and parameters:
Feature Extraction: We applied a ResNet-50 pre-trained 
convolutional neural network (CNN) architecture to the 
initial feature extraction of the video frames. The input 
to the network consists of standardized video frames, 
resized to 224x224 pixels.

Graph-Based Semi-Supervised Learning (GSSL): We 
constructed a graph with video samples as nodes and 
utilized a k-nearest neighbor algorithm (k = 5) based on 
cosine similarity for feature categorization, grouping 
them into skills and tasks. The Gaussian kernel width (σ) 
is set to 1.0 for the computation of edge weight. Label 
propagation was performed until convergence with a tol-
erance threshold value of 1e-4.

Self-training with Consistency Regularization: Initial-
ly, the model was trained using labeled data alone with 
a batch size of 64 and a learning rate of 1e-3. For the 
self-training iterations, the top 30% most confident pseu-
do-labeled samples were added to the training set in each 
cycle. The consistency regularization is imposed by ap-
plying random augmentations to the video frames and 
using a consistency loss weight (λ) of 0.5.

Adversarial Learning: The adversarial framework is set 
up with separate training schedules for the generator and 
discriminator. The learning rate is set to 2e-4 for both 
components with a total number of 10,000 adversarial 
iterations. The balance between the generator and dis-
criminator is achieved by adjusting the training ratios, 
typically to a 1:1 ratio per iteration.

Transfer Learning with Pretrained Models: We utilized 
a pre-trained VGG-16 model trained on ImageNet as an 
object detection model for feature extraction. This was 
achieved after freezing the lower layers of the pre-trained 
VGG-16 model; fine-tuning the top layers was done with 
a learning rate of 1e-4. The parameters applied were that 
all other layers were allowed to operate in free mode.

Label Smoothing Experiments: We conducted label 
smoothing experiments with a parameter value of 0.1. 
This paves the way for incorporating noise and impreci-
sion in the labels. Optimization was made over 50 epochs 
with a batch size of 32.

Evaluation Metrics: Performance analysis was con-
ducted through the assessment of our proposed model 
under the following categories: precision, accuracy, re-
call, AUC, classification delay, and specificity metrics. 
These metrics were computed for each test subset on 
both the EDUVSUM and HowTo100M datasets to ensure 
thorough evaluation.

Hardware and Software: The experiments were con-
ducted on a computing cluster equipped with NVIDIA 
Tesla V100 GPUs. The software environment used was 
based on Python 3.8 with TensorFlow 2.4 and PyTorch 
1.7 as the main frameworks to implement and evaluate 
our model.

Experimental Execution: The experimental procedure 
was carried out in stages, corresponding to the setup 
described above. Each stage consisted of training, valida-
tion, and testing the model components with fine-tuning 
parameters based on the performance of the validation 
set. Self-training and adversarial learning processes were 
monitored iteratively to ensure convergence, with early 
stopping criteria based on improvement thresholds on 
the validation sets.

Table 2 presents the accuracy of the proposed model 
in contrast to other existing works (Davila et al., 2021; 
Nagar et al., 2021; Chen et al., 2021) on the EDUVSUM 
dataset. Comparison with other existing works, especial-
ly the proposed ones, reveals a significant improvement 
that sets this work apart as superior in its ability to clas-
sify video frames correctly. This may be a result of the 
fact that the integration of GSSL and transfer learning 
techniques utilizes existing knowledge from large-scale 
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datasets to reuse information, providing a more compre-
hensive and practical analysis and classification.

Table 2. Accuracy Comparison on EDUVSUM Dataset

Method Accuracy (%)

Proposed 94.5

Davila et al. (2021) 86.7

Nagar et al. (2021) 88.3

Chen et al (2021) 89.1

Table 3 illustrates the performance metrics in the 
HowTo100M dataset, demonstrating the model’s 
effectiveness in relation to the relevant features within 
educational videos, as evidenced by the high precision 
and recall values across various use case scenarios. The 
F1-Score, as a balance between precision and recall, 
highlights how robust the model is in minimizing false 
positives and false negatives—an aspect critical in 
educational applications.

Table 3. Precision, Recall, and F1-Score on HowTo100M Dataset

Method Precision (%) Recall (%) F1-Score (%)

Proposed 93.2 92.8 93.0

[5] 85.4 84.9 85.1

[8] 87.6 87.1 87.3

[24] 88.4 88.0 88.2

Table 4 and Figure 4 show AUC scores for both datasets 
and samples. The proposed model has a higher AUC 
score, with fewer false positives and false negatives, 
indicating good discrimination between the classes. A 
higher AUC score indicates a better model for predicting 
true positives while minimizing false positives, which is 
crucial for educational content where misclassification 
can lead to low-quality and an unclear understanding 
process.

Table 4. AUC Score Comparison

Method EDUVSUM HowTo100M

Proposed 0.962 0.958

Davila et al. (2021) 0.891 0.876

Nagar et al. (2021) 0.912 0.904

Chen et al (2021) 0.927 0.919

Table 5 indicates how each model encountered clas-
sification delay while processing. The proposed model 
exhibits a significant reduction in delay, which is crucial 
in the realm of real-time educational applications. This is 
achieved through the model’s optimized architecture and 
the optimization implemented to accelerate the feature 
extraction and classification processes.

Table 5. Classification Delay (Seconds)

Method EDUVSUM HowTo100M

Proposed 1.2 1.5

Davila et al. (2021) 2.8 3.1

Nagar et al. (2021) 2.4 2.7

Chen et al (2021) 2.1 2.5
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Table 6. Specificity Comparison on EDUVSUM Dataset

Method Specificity (%)

Proposed 93.7

Davila et al. (2021) 86.5

Nagar et al. (2021) 87.9

Chen et al (2021) 88.6

Table 6 presents the specification metric value, which 
represents the proposed model’s ability to classify neg-
atives, i.e., to identify elements as non-educational for 
various use case scenarios. A high specification value is 
significant in educational contexts to avoid misclassify-
ing irrelevant content as educational, which dilutes the 
quality and focus of educational resources.

Table 7 aggregates the overall performance scores, 
combining all evaluated metrics into one singular indic-
ative figure for each dataset sample. It can be observed 
that the scores of all models presented by the proposed 
model are greater than those of other models, reinforcing 
the cumulative impact of enhancements across all perfor-
mance metrics.

Table 7. Overall Performance Score

Method EDUVSUM Score HowTo100M Score

Proposed 95.2 94.8

Davila et al. (2021) 87.3 86.8

Nagar et al. (2021) 89.0 88.5

Chen et al (2021) 90.4 89.9

The tables show overall performance scores through 
the combination of all key metrics that distinguish the 
proposed model from others. A model’s superior perfor-
mance, as evidenced by significant increases in precision, 
accuracy, recall, and AUC values, attests to its effective-
ness in addressing the key challenges in educational video 
classification. The reduction in classification delay and 
increased specificity further validate the model’s applica-
bility in real-world educational settings, where timely and 
accurate categorization of content is necessary.

The integration of state-of-the-art techniques, includ-
ing GSSL, self-training with consistency regularization, 
adversarial learning, transfer learning from pre-trained 
models, and weakly supervised learning, was instrumen-
tal in achieving these results. Each of the components in 
this model brings uniqueness, with an additional input 
that enables this combination. The careful design and 
utility of the proposed model lie in the advantages that 
are gained through the exploitation of unlabeled data and 

the benefits that come with improved feature represen-
tation, ensuring robustness with respect to distribution.

In addition to the observed performance enhance-
ments, the proposed model has the potential to enrich 
educational resources and learning experiences signifi-
cantly. Its purpose is to make the educational videos 
more accurate, efficient, and reliable through facilitat-
ed classification for a more streamlined organizing and 
retrieval process that enables an enriched learning envi-
ronment. The above example is illustrated in part of the 
next section of this text.

Example Use Case

In advancing the classification of educational videos, our 
research combines a range of sophisticated methodolo-
gies, one at a time, to enhance the model’s potential. This 
section describes the application and impact of these 
methods through data samples with synthesized feature 
values and indicators to demonstrate the transformation 
and enhancement at every stage of the model processing 
pipeline. Our experimental setup begins with data sam-
ples in an initial representative feature space. Next, each 
of these stages—GSSL, Self-training with Consistency 
Regularization, Adversarial Learning, Transfer Learning 
from Pretrained Models, and Weakly Supervised Learn-
ing—is carefully designed to enhance and train the model 
more effectively in classification contexts. Each of these 
methodologies employs a unique principle that leverages 
and augments the available data, thereby enabling them 
to classify content correctly in educational videos and 
samples progressively.

Table 8 illustrates the effectiveness of GSSL in 
spreading labels across the graph structure and using re-
lationships between samples to tag previously unlabeled 
data samples with the appropriate label. This is the initial 
stage of refining the label propagation process by exploit-
ing the data structure and relationships to improve it for 
various scenarios.

Table 8. Impact of Graph-based Semi-
Supervised Learning (GSSL)

Sample ID Initial Label GSSL Predicted Label

1 Math Math

2 Science Science

3 History History

4 Science Science

5 - (Unlabeled) Math
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Table 9 shows the results of the self-training process, 
in which the predictions of the model are improved by 
incorporating pseudo-labeled samples and enforcing 
prediction consistency under data augmentation, pro-
moting the reliability and robustness of the model.

Table 9. Self-training with Consistency Regularization

Sample ID GSSL Predicted 
Label

Self-training 
Predicted Label

1 Math Math

2 Science Science

3 History History

4 Science Science

5 Math Math

Table 10 demonstrates the refinement of feature rep-
resentations through adversarial learning, whereby the 
model generates domain-invariant features. This is sig-
nificant since it ensures that the model’s performance is 
robust across diverse video distributions.

Table 10. Adversarial Learning Outcomes

Sample ID Feature 
Representation

Adversarial 
Enhanced Features

1 [0.85, 0.15] [0.9, 0.1]

2 [0.2, 0.8] [0.15, 0.85]

3 [0.6, 0.4] [0.65, 0.35]

4 [0.25, 0.75] [0.2, 0.8]

5 [0.85, 0.15] [0.88, 0.12]

Table 11 illustrates the impact of using transfer learning 
techniques, where features enhanced through adversari-
al learning are further refined with the aid of pre-trained 
knowledge. This step significantly enriches the semantic 
understanding of the features, making them more repre-
sentative of the educational content sets.

Table 11. Transfer Learning from Pretrained Models

Sample ID Adversarial 
Features

Transfer Learning 
Enhanced Features

1 [0.9, 0.1] [0.95, 0.05]

2 [0.15, 0.85] [0.1, 0.9]

3 [0.65, 0.35] [0.7, 0.3]

4 [0.2, 0.8] [0.15, 0.85]

5 [0.88, 0.12] [0.92, 0.08]

Table 12 presents the results of weakly supervised 
learning, which provides enhanced feature sets to sup-
port the final predictions. This final stage uses imprecise 
labels and inherent data characteristics for fine-tuning 
the classification, resulting in a highly refined under-
standing and categorization of the video content sets. 
These include all tables of the data samples from their 
primary states, processed through various stages of re-
finement under our proposed model. From the initial 
application of GSSL through self-training with consis-
tency regularization, to the sophisticated techniques of 
adversarial learning, transfer learning, and weakly su-
pervised learning, the model improves its accuracy and 
semantic understanding with each step in its evolution. 
The synergistic impact of integrating multiple advanced 
methodologies, resulting in significant performance 
improvements in educational video classification, is note-
worthy. The results, demonstrating remarkable precision 
and accuracy, also enable the highlighting of the model’s 
strong versatility and adaptability across various educa-
tional contexts and content distributions. This justifies 
the possibility of reorganizing educational resources and 
creating well-structured, well-utilized, and effective digi-
tal learning environments.

Table 12. Weakly Supervised Learning Enhancement

Sample ID Transfer Learning 
Features

Final Predicted 
Label

1 [0.95, 0.05] Math

2 [0.1, 0.9] Science

3 [0.7, 0.3] History

4 [0.15, 0.85] Science

5 [0.92, 0.08] Math

4. Conclusions

In this study, the design and implementation of a new 
video classification model have been successfully done 
to address the challenges inherent in the process, such 
as the limited amount of labeled data, noisy annota-
tions, and content diversity. GSSL, which integrates 
graph-based semi-supervised learning, has indeed per-
formed significantly better than traditional classification 
approaches. Furthermore, empirical evaluation of the 
EDUVSUM and HowTo100M datasets has demonstrated 
the model’s superiority, as it significantly outperforms 
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others. In addition, among these approaches, our mod-
el not only exhibits superior improvements in precision, 
accuracy, recall, and the AUC metric but also shows signif-
icant improvements in classification delay and specificity, 
thereby highlighting the potential of the proposed model 
in providing timely and precise classification of educa-
tional content.

The combination of the above-mentioned approach-
es has not only helped in a better understanding of the 
video content but also helped in ensuring its robustness 
and reliability amid ambiguities in the data. For instance, 
GSSL not only aids in generalizing labels to be spread 
but also facilitates the effective dissemination of labels 
by leveraging the inherent data structure. At the same 
time, the self-training mechanism with consistency regu-
larization further tunes in the predictions from the model 
to provide reliability even for ambiguous data. Further-
more, the incorporation of adversarial learning facilitates 
domain-invariant feature learning, which is particularly 
relevant when handling diverse distributions of video 
content. Transfer learning from pre-trained models suc-
cessfully bridges the gap between large-scale datasets 
and specific educational content, enriching semantic 
understanding. Finally, weakly supervised learning tech-
niques enable the model to mine essential learning cues 
from imprecise labeled data, thereby improving overall 
classification performance.

Future Scope

The evolution of video classification in educational ma-
terials is a recent milestone; however, the dynamic world 
of digital education is marked by new challenges and 
opportunities for ongoing development. Future research 
avenues may focus on specific areas. First and foremost, 
there is an invaluable opportunity to incorporate mul-
timodal learning approaches that combine audio, text, 
metadata, and video frames. Thus, by doing so, a more 
comprehensive comprehension may be attained, result-
ing in enhanced classification accuracy and contextual 
appropriateness. Besides, there will be a considerable 
need to focus on scalability and efficiency aspects. There-
fore, since optimizing the model for real-time processing 
and scalability could offer a better model that would be 
efficient for live educational platforms and massive open 
online courses (MOOCs), this will enhance the wide acces-
sibility aspect.

Simultaneously, there are efforts focused on in-
terpretability and explainability as critical fronts. The 
augmentation of interpretability for the model will help 

identify decisions made in classification, and this will 
help grow the confidence of educators and learners in the 
model. Additionally, individualization of learning in per-
sonalized education presents another perspective, and 
in such cases, the model may be trained to accommodate 
the styles and personal preferences of learners, enabling 
changes that would have occurred during course design 
and the course itself. Cross-lingual and cultural adapt-
ability also represent significant avenues for supporting 
multiple languages and cultures, making education more 
global. Robustness against adversarial attacks becomes 
increasingly necessary, given the need for the integrity 
and reliability of educational content in various settings.

Another promising avenue for exploration is the in-
tegration of the model with curriculum design, utilizing 
automated alignment of classified educational videos 
with curriculum standards. In summary, the proposed 
model represents another significant leap in educational 
video classification, not only enhancing accessibility and 
reliability but also the pertinence of educational resourc-
es. As AI in education continues to evolve, the possibilities 
for transforming the learning environment and improving 
educational outcomes are boundless, offering a future 
that is prosperous in innovation and has a positive impact 
across multiple real-time scenarios.
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