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Abstract: The critical need for advanced approaches in classifying educational videos has
been extensively researched, as the domain has faced significant challenges due to the limit-
ed availability of labeled data, noisy annotations, and the inherent diversity of video content.
Traditional approaches are likely to fall short in managing such complexity, resulting in subop-
timal classification performance. A new integration of graph-based semi-supervised learning
(GSSL), self-training with consistency regularization, adversarial learning, transfer learning from
pretrained models, and a weakly supervised learning framework is proposed in this paper. All
these approaches help improve performance in our proposed framework across several metrics,
including increased precision, accuracy, recall, and the area under the curve (AUC), which subse-
quently reduces delays and increases specificity with respect to the EDUVSUM and HowTo100M
datasets. The uniqueness of combining these techniques will also enhance the classification ac-
curacy and competence of such models, resulting in a robust and generalizable classifier across
various domains of educational content. This paper presents a significant contribution to the field
of educational video classification by providing a comprehensive solution to the multifaceted
challenges of the task.
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1. Introduction

With the soaring use of digital educational content,
especially videos, there is a need for sophisticated clas-
sification systems to facilitate the effective organization,
search, and recommendation of these resources to learn-
ers. The conditions under which educational videos are
considered are unique and may not entirely be handled
by conventional video classification frameworks. The rea-
sons include the limited availability of labeled data, the
presence of noisy annotations, and the diverse range of
video content, which spans lectures to interactive tutori-
als. It complicates the task, mandating a more nuanced
approach to the educational video classification process
(Kadam et al., 2022; Wang et al., 2021; Apostolidis et al.,
2021)

While traditional classification methodologies have
made remarkable strides in addressing some of these
challenges, they often fall short when confronted with
the complex and multifaceted nature of educational con-
tent. The lack of labels in existing models is primarily
attributed to the reliance on extensive labeled datasets
and samples (Zhang et al., 2023; Davila et al., 2021; Yuan
& Zhang, 2023), susceptibility to annotation noise, and
the inability to generalize across a wide range of educa-
tional topics and presentation styles. The current work
addresses this limitation by proposing a comprehensive
framework that provides a holistic solution to transcend
traditional models, adopting a synergistic integration of
modern machine learning techniques.

This paper presents a new framework that combines
GSSL, self-training with consistency regularization, adver-
sarial learning, transfer learning from pre-trained models,
and weakly supervised learning. This was considered with
the view of drawing from these methodologies, as they
already exhibit improved efficacy in circumventing some
of the challenges posed by the classification of educa-
tional videos. This relies on GSSL, whereby the relational
structure of the data is utilized to facilitate effective label
propagation from a limited number of labeled samples
to a larger set of unlabeled ones, thereby mitigating the
problem of scarce labeled data samples.

Self-training with consistency regularization has a fool-
proof mechanism that enables the improvement of model
reliability, particularly in resolving ambiguous or noisy
data by ensuring predictive consistency across various
adversarial perturbations of input data samples. Adver-
sarial learning is applied to teach invariance with respect
to the domain since, without it, the model would not be
able to generalize over the broad spectrum of educational

content. Transfer learning has integrated transferred
models that learn from vast, diverse datasets, signifi-
cantly reducing the dependence on labeled data from
a particular domain. Lastly, weakly supervised learning
techniques can utilize imperfectly labeled data to gener-
ate meaningful patterns that the model can then leverage.

A combination of these advanced techniques (Liu et
al., 2022; Nagar et al., 2021; Ma et al., 2022) within a unit-
ed framework has represented a giant leap forward in
the era of digital educational video classification. This
approach not only addresses the challenges mentioned
above but also lays down a benchmark for classification
accuracy, robustness, and adaptability. The proposed
framework enables the easy and effective use of both
labeled and unlabeled data, thereby making the model
robust against noisy annotations and providing a general-
izing model that performs well across diverse educational
materials. This makes the framework a key contribution
to the domain of digital learning resources.

This paper, as an introduction, will detail the select-
ed methodologies and their complementary strengths,
setting the stage for a comprehensive exploration of the
proposed process. In the following sections, it will delve
into the technical intricacies of each component, their in-
tegration, and the empirical evaluation of the framework,
showcasing its superior performance compared with the
existing methodologies and underscoring its potential to
transform the landscape of educational video classifica-
tion processes.

Motivation & Contribution
The availability of vast amounts of digital educational re-
sources, based on video, has prompted an urgent call for
sophisticated classification systems. Such systems are
important since they help streamline users’ searching,
interpreting, and selecting learning materials. Neverthe-
less, conventional classification strategiesfaceformidable
barriers due to the intrinsic complexities of educational
video content, such as diverse instructional styles, var-
ied subject matter, and fluctuating quality. The scarcity
of labeled data, the presence of noisy annotations, and
the dynamic nature of educational content all complicate
the challenges, making it difficult to implement conven-
tional classification methods properly. Attempted in this
study, therefore, is that of banning such methodologies
by making use of advanced machine learning techniques
available in other and similar domains, but yet untapped
in the domain of educational content.

The scope of the proposals is marked by several con-
tributions, reflecting a fresh research contribution in the
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realm of educational technology. First and foremost, the
proposed framework comprises an integrative fusion of
GSSL, self-training with consistency regularization, adver-
sarial learning, transfer learning from pretrained models,
and weakly supervised learning. It integrates these and is
strongly designed to gain full benefits from the effective
strengths of each method in a holistic manner towards
the resolution of the classifier challenges at hand relat-
ed to educational video classification. The imposition of
GSSL, for example, builds up the data-propagating pow-
er of the model efficiently for the learning platform and
suitably exploits the intrinsic structure of the data sam-
ples. Concurrently, the application of adversarial learning
techniques promotes the development of domain-invari-
ant features, enabling robust classification across diverse
educational content.

Secondly, this framework employs a strategic ap-
proach to utilizing both labeled and unlabeled data,
thereby mitigating the limitations imposed by the scarcity
of annotations. Self-training with consistency regulariza-
tion is employed to achieve stable predictions, even with
ambiguous data, thereby enhancing the model’s general-
izability and improving its overall performance. Besides,
by transferring learning from pretrained models, the in-
corporation indicates the versatility of such a framework
for deriving and applying previously learned knowledge
bases in the absence of extensive domain-specific la-
beled datasets and samples.

Finally, the use of weakly supervised learning ad-
dresses the widespread issue of noisy and incomplete
annotations. Since the model is robustly designed to
handle spurious annotations, learn from available data,
and, importantly, mitigate the effects of imprecise labels,
learning from data is done effectively, even with such high
quality and quantity.

These factors translate to an inclusive and sturdy
model to set new benchmarks in the classification of ed-
ucational videos. The proposed model has successfully
outperformed existing methodologies on benchmark
datasets such as EDUVSUM and HowTol00M, using 3 or
more superior performance metrics in comparison. This
work addresses the immediate tasks that educators,
learners, and technologists face in the digital age, while
also leaving numerous opportunities for future enhance-
ment of such technologies.

2. In-depth review of existing Models

Digital education and the rapid proliferation of video con-
tent require further advancements in their classification

and summarization to enhance accessibility and learning
efficiency. The standard approaches to video summa-
rization have been developed around general content,
ignoring most cases and the diversified requirements
of educational videos and samples. This gap in research
motivates the exploration of novel frameworks and
methodologies for educational content that can address
challenges such as limited labeled data, noisy annota-
tions, and diverse content levels (Issa & Shanableh, 2022;
Mujtaba et al., 2022).

In recent times, several new methods related to ma-
chine learning have been introduced, ranging from deep
neural networks to graph-based approaches, to enhance
video summarization. These methods have proven ef-
fective in various contexts, including medical education,
personal video summarization, and unsupervised learn-
ing (Ji et al., 2021; Apostolidis et al., 2021). However,
the methods above are not entirely applicable when it
comes to classifying and summarizing educational vid-
eos. There is a need for domain-specific adaptation, as
well as the management of specific academic content
characteristics.

The recent research on video summarization, as pre-
sented in the current literature review, has identified one
of the many approaches, each with its own strengths and
weaknesses. Methods such as Motion-Assisted Recon-
struction Network (MAR-Net) and Deep Reinforcement
Learning with Shot-Level Semantics demonstrate prom-
ising results in capturing dynamic content. Still, both
will most likely be required for placing in educational
narratives rather than for motion or scene changes (Ma
et al., 2020a; Gao et al., 2021). Such a feature, focusing
on extractive summarization for lecture videos, signifies
direct applications in educational content, which under-
line the effectiveness of domain-specific approaches.
This is because it puts heavier emphasis on whiteboard
or chalkboard content. Therefore, it fails to capture the
variety within educational videos, such as interactive tu-
torials or practical demonstrations. Relational reasoning,
particularly in the context of spatial-temporal graphs and
affective visual information for summarization, highlights
the potential to leverage complex data representations
and human-centric cues. Such approaches suggest that
a comprehensive framework for educational video sum-
marization could be enhanced by using multimodal data
and emotional engagement metrics to better align with
educational outcomes (Zhao et al.,, 2021a; Zhang et al.,
2022). Methods that utilize unsupervised learning are
ways to overcome the limitations of labeled data in the ed-
ucational learning context. However, implementing such
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Table 1. Different methodologies based on the literature review

Sl. No. Method Used Results Limitations

1 Machine Learning Explored challenges and Highlighted the efficacy of ~ Limited discussion on the
Algorithms for Video opportunities in video SVS and MVS in handling adaptability to educational
Summarization summarization, emphasizing large datasets. content.

big data’s role.

2 Improved Clustering and Proposed an enhanced Achieved improved precision Focused mainly on static
Silhouette Coefficient for clustering method for video in keyframe selection. scenes; may not generalize
Keyframe Generation summarization. well to dynamic educational

videos.

3 Deep Neural Networks Reviewed deep learning Identified the gap Lacked specific solutions for
Survey approaches for video between supervised and educational video content.

summarization. unsupervised learning
techniques.

4 MAR-Net: Motion-Assisted Utilized motion information Demonstrated semantic A motion-based approach
Reconstruction Network and an attention mechanism consistency in unsupervised may not fully capture the

for summarization. settings. nuances of educational
video content.

5 FCN-LectureNet for Lecture  Focused on extractive Improved detection and Primarily targeted at
Video Summarization summarization of summarization of lecture whiteboard/chalkboard

educational content. videos. content, it may not be
comprehensive.

6 Deep Reinforcement Introduced an unsupervised Reported advancements Shot-level focus might
Learning with Shot-Level learning model focusing on  in summarization without ~ overlook the broader
Semantics shot-level semantics. extensive labeling. educational context.

7 3D Spatio-Temporal U-Net  Applied 3D convolutional Showcased potential in Specificity to medical videos
via Reinforcement Learning networks for medical video  medical education videos.  may limit applicability to

summarization. general education.

8 Personalized Summaries of Developed a reinforcement  Achieved personalized Focused on egocentric
Egocentric Videos learning approach for summarization in first- videos, which represent

personalization. person videos. a niche area within
educational content.

9 Adaptive Multiview Graph Proposed a novel graph- Enhanced adaptability and ~ The complexity of the
Difference Analysis based method for efficiency in processing. method may hinder its

summarization. application in real-time
scenarios.

10  CNNand HEVC Features for  Leveraged deep learning Improved efficiency in static Limited by its focus on static
Static Summarization and video coding features video summarization. summarization, it overlooks

for summarization. dynamic educational
content.

11 LTC-SUM: 2D CNN for Introduced a lightweight Facilitated personalized The client-driven approach
Personalized Summarization framework using client- video summarization might not fully address the

driven 2D CNN. efficiently. diversity of educational
videos.

12 Deep Attentive Video Employed attention Showed improvement The method’s reliance on

Summarization with
Distribution Consistency

mechanisms and
consistency learning. segments.

in capturing key video

deep learning might limit its
accessibility for resource-
constrained environments.
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Sl. No. Method Used Findings Results Limitations
13 AC-SUM-GAN: Actor-Critic Combined GANs with Enhanced creative aspects ~ The complexity and
with GANs reinforcement learning for ~ of video summarization. computational demands
unsupervised learning. of GANs may not be
suitable for all educational
applications.
14 Keyframe Extraction via Applied a dictionary Offered a novel solution The focus on laparoscopic
Dictionary Selection selection approach for for medical video videos limits generalization
keyframe extraction in summarization. to other educational areas.
laparoscopic videos.
15 Relation-Aware Assignment Introduced an unsupervised Advance the efficiency of It may not specifically
Learning approach using graph neural video summarization. address the unique
networks. challenges of educational
video summarization.
16  Audio Visual Video Explored multimodal Demonstrated the The reliance on multimodal
Summarization learning for summarization. importance of audiovisual  inputs may not apply to all
cues. educational videos.
17 Joint Reinforcement and Utilized a novel combination Showed potential in The specific learning
Contrastive Learning of learning techniques for unsupervised learning approach might complicate
summarization. contexts. implementation.
18  Affective Visual Information Investigated the role Highlighted the value of The focus on affective
for Summarization of emotion in video affective cues in human- information may overlook
summarization. centric videos. educational content’s
instructional aspect.
19 Multimodal and Aesthetic- ~ Combined multimodal Enhanced narrative video The emphasis on
Guided Narrative information with aesthetic ~ summarization. aesthetics might not align
Summarization guidance. with educational video
summarization priorities.
20  Similarity-Based Sparse Developed a kernel sparse  Improved the selection of The kernel approach’s
Subset Selection representation method for  informative video segments. complexity might challenge
summarization. its broader application.
21  Sequence-Graph Network Introduced a reconstructive Offered advancements in The focus on key-shot
for Summarization network for key-shot summary generation. generation might not
summarization. capture the full educational
narrative.
22 TTH-RNN for Video Applied tensor-train Demonstrated the potential The specialized network
Summarization hierarchical RNNs for of hierarchical structures. architecture may limit its
efficient summarization. adaptability.
23 EEG-Video Emotion-Based  Explored EEG signals Provided insights into The niche focus on EEG-
Summarization for emotion-based multimodal emotion video data may not be
summarization. recognition. universally applicable.
24 CoEvo-Net for Highlight Developed a coevolution Addressed the effective The specific focus on
Detection network for video analysis.  detection of video highlights may miss
highlights. comprehensive educational
content.
25  Spatial-Temporal Graphs for Utilized relational reasoning Showed improvements in The method’s focus on

Summarization

over spatial-temporal
graphs.

summarization through
graph-based techniques.

spatial-temporal graphs may
not suit all video types.
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techniques requires extra care to ensure that the summa-
ry, whetheronvideo oraudio tape, maintainsinstructional
integrity and relevance, particularly in educational video
summarization contexts (Kopri & Ezrin, 2023).

In general, the review highlights the need for a multi-
faceted approach to educational video summarization,
which combines the strengths of existing methods and
addresses their limitations within the educational do-
main (Zhao et al., 2021b). In fact, a robust solution may
comprise an adaptive learning platform, feature learning
tailored to the specific domain, and a comprehensive pro-
cess for multimodal data processing that would enable
significantly improved classification and summarization
of educational video content. Such a comprehensive
solution, which effectively addresses the difficulties and
lack of user engagement in educational video content,
sets a solid foundation for future research in the field
by guiding the development of more sophisticated and
education-oriented video summarization technologies
(Xie et al., 2023; Ma et al, 2020b). According to Zhao et
al. (2020), to alleviate the lags and expenses associated
with rollouts, a range of video summarization models was
presented, categorized by their functionality. Based on
this discussion, researchers will be in a position to select
models that are optimum for theirfunctionality-based use
cases. Authors (Lew et al, 2022) presented a time synchro-
nization module that employs an attention mechanism
to map EEG representations into a visual representation
space. Authors Chen et al. (2022) presented a new model
for VHD termed Coevolution Network (CoEvo-Net), which
enables the efficient integration of video and language
features through the joint evolution of these features,
as the process involves the coevolution of two different
features from the two modalities. Such a cell is the CoE-
vo-Cell structure, which integrates language and video,
cross-modulates, and removes specific non-essential
components of the input, such as word elements within
a sentence. Zhu et al. (2022) proposed a dynamic graph
modeling approach to learn spatial-temporal representa-
tions for video summarization.

Design of the Proposed Model Process

The section then discusses the design of the proposed
model that amplifies the efficiency of the summarization
process. In the context of educational video classifica-
tion, GSSL emerges as a vital approach that leverages the
inherent data structure and relationships among video
samples to enhance label propagation. The essence of
GSSL is grounded in the construction and optimization of

a graph where nodes represent video samples and edg-
es signify the relationships or similarities between these
samples. Let us now delve into the mathematical formu-
lations and iterative processes that underpin the GSSL
mechanism, reflecting its application from the initial in-
put of collected video samples to the eventual output
elucidating relationships between these samples. The
GSSL process starts with the construction of a similarity
graph G = (V, E), where V is the set of nodes correspond-
ing to video samples and E is the set of edges connecting
these nodes. The edge weights Wij between nodes i and
j are determined by a similarity function that utilizes a
Gaussian kernel, as expressed in Equation 1.
Wij = emp(—M) (1)

202

Where xij are feature representations of video samples,
and o controls the width of the Gaussian kernel. Upon
establishing the graph, the GSSL framework incorporates
the label information into the graph via a label matrix
Y, where Vil = 1 if sample i is labeled with class [ and 0
otherwise. In the semi-supervised setting, most of the
samples are unlabeled, thus requiring the propagation of
label information from labeled to unlabeled nodes. This
propagation is governed by the label propagation matrix
F, where each element Fil means the probability that node
i belongs to class [. To refine the label propagation, the
GSSL framework employs an optimization objective that
minimizes the discrepancy between predicted and actu-
al labels for labeled samples while ensuring smoothness
in label distribution over the graph. This is articulated
through the optimization task represented via equation 2.

ki 2
min(FTLF) +p || F-Y || F? (2)

Where [=D-W is the Laplacian matrix, D is the diagonal
degree matrix, u is a regularization parameter, and F rep-
resents the Frobenius norm levels. The equilibrium of
the optimization task is reached when the derivative of
the objective function with respect to F vanishes in the
process. This condition yields the equilibrium equation,
where / is the identity matrix for the process. The resolu-
tion of this equation involves the calculation of F, which
is iteratively updated via equation 3.

F(t+1)=aSF(t)+ (1 - )Y (3)

Where S = D'V/2 WD/? is the normalized similarity matrix
and «a is a factor controlling the trade-off between the
original label assignments and the propagated labels.
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Figure 1. Model Architecture for the Proposed Video Classification Process

As per figure 1, the iterative process continues until
convergence, measured by a threshold €, such that F(t+1)-
F(t)ll<e for this process. Upon merging, the final F matrix
would summarize not only propagated labels but also the
inherent structures and similarities amongst the video
samples. In this regard, it translates graph theory and
semi-supervised learning to a comprehensive framework
in the classification of educational content. It enhances
the accuracy and efficiency of educational resource clas-
sification operations. Through various operational steps,
GSSL develops an effective mechanism to classify educa-
tional videos, particularly in cases with sparse labels and
complex video content. As shown in Figure 2, the process
of self-training with consistency regularization works by
leveraging relationships between samples to enhance the
reliability of these links. This process involves iterative
steps, guided by mathematical formulations that refine
the predictive model iteratively using unlabeled data
alongside labeled instances to derive a more reliable and
robust learning outcome. Initiating the process, a set of
video samples can be derived such that for each sam-
ple, xi, and the corresponding relationships derived from

the previous phase, encapsulated in the matrix R, where
Rij represents the relationship between videos i and j.
The objective is to exploit these relationships to foster a
consistent and reliable mapping, such that the predicted
function f: xiy, with y representing the predicted labels
or attributes for these video samples.

The self-training component consists of the iterative
updating of the predictive model f. First, under the avail-
ability of labeled data L = {(xi,yi)}, the model f is trained
on it. Second, for every unlabeled sample xu from the
unlabeled dataset U, the model produces a pseudo-label
V' u = f(xu) sets. These pseudo-labels are then integrated
into the training process, albeit with a mechanism to con-
trol their influence based on their estimated reliability or
confidence, as represented in Equation 4.

c(zu) = maz(f(zu)) (4)

Thus, it reflects the maximum predicted probability
across potential classes in different use scenarios. The
consistency regularization aspect introduces a pertur-
bation 6 to each video sample xu, creating a perturbed
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version xu’=xu+6 for this process. The core principle here
is to enforce that the model’s predictions remain stable or
consistent when subjected to small perturbations, thus
ensuring that the learned relationships are indeed robust
against minor variations or noise in the data samples.
This is quantitatively expressed through consistency loss,
as formulated in Equation 5.

Leons =3, v || f(zu) — f(a;u ]) & (5)

Thus, emphasizing the drive for minimal divergence be-
tween the predictions on original and perturbed samples.
Simultaneously, the model refines itself by minimizing a
composite loss function =Lsup+ALcons, where Lsup rep-
resents the supervised loss computed on the labeled
dataset augmented with high-confidence pseudo-labeled
samples, and A is a regularization parameter modulating
the impact of the consistency loss. The supervised loss
Lsup is defined via equation 6,

Lsup = Z(zi,yi)EL E(f(m), yl) + EzueU,c(zu)>r E(f(zu), y’u) (6)

With £ representing a loss function such as cross-entro-
py, and T a confidence threshold dictating the inclusion
of pseudo-labels. The iterative refinement process en-
tails the calculation of gradients VfL and updating the
model parameters according to a chosen optimization
algorithm, employing a stochastic gradient descent pro-
cess. The update rule is represented via equation 7,

f(t+1) = f(t) —nVIL (7)

Where 1 represents the learning rate for this process.
The evolution continues over multiple iterations, with
the updated model progressively honed to generate
more accurate and consistent predictions. This iterative
enhancement is guided by the underlying objective of
achieving minimal discrepancy not only between the pre-
dicted and actual labels on the labeled dataset but also
ensuring that predictions across perturbed and original
versions of video samples remain consistent, thereby fos-
tering a robust learning framework capable of handling
the ambiguities and uncertainties inherent in educational
video content samples.

Next, the implementation of adversarial learning, pri-
marily achieved through the use of Generative Adversarial
Networks (GANs), is identified as one of the most effective
techniques for extracting domain-invariant features. This
strategy addresses the challenge of video distribution.
The methodological paradigm is a fundamental inter-
play between two separate entities: the generator G and

the discriminator D. Generator G and discriminator D en-
gage in an adversarial process until a generalization of
the features yields domain-agnostic representations. In
practice, let us first assume the consistent relationships
of the video samples as the input, described in a feature
space X drawn from the previous stages of the classifica-
tion framework. Within the GAN framework, the objective
at this point is to map those features into a new space
where domain-specific characteristics are minimized,
thereby enabling a more generalized and robust classi-
fication capability.

The generator G, parameterized by weights 8g, turns
features x from the input video into features that are
indistinguishable from real features pertaining to the do-
main in question, preserving domain-invariant attributes.
On the other hand, the discriminator D, parameterized

Collect Video Samples.

Apply_Transfer Learning
Fine Tune Model

End Loop

‘End Adversarial Loop Gnil_\Ve:\kly_Supervised_Lenming)

Apply Semantic Grouping
—clumy_vmmes

Figure 2. Overall flow of the proposed classification process.
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by weights 6d, attempts to distinguish between the
transformed features generated by G and the features
originating from the target domain, essentially evaluating
the authenticity of the generated representations. The
adversarial learning process is governed by the follow-
ing min-max game between G and D, encapsulated via
equation 8,

minGmazDV (D, G) = Ez ~ pdata(z)[logD(z)] + Ez ~ pz(2)[log(1 — D(G(z)))] (8)

Where x represents real features from the target domain,
z represents input features or noise variables, pdata is
the data distribution of real features, and pz is the dis-
tribution of the input to the generator process. The
discriminator D is trained to maximize V(D,G) for a given
G, thereby enhancing its ability to distinguish between
real and generated features. This is achieved through up-
dating 6d by ascending the gradient via equation 9,

VOd-L 3 [logD(x(i)) + log(1 — D(G(2(4))))] 9)

Where m represents the batch size, and x(i), z(i) are
samples from the real data and input distributions, re-
spectively. Simultaneously, the generator G is trained to
minimize V(D,G) for a fixed D, aiming to generate features
that D will misclassify as real. This is accomplished by
updating 6g by descending the gradient via equation 10,

VgL 3 log(1 — D(G(2(i)))) (10)

As the adversarial training progresses, G becomes
increasingly proficient in creating features that are in-
distinguishable from real, domain-invariant features,
leading to a scenario where D is challenged to differen-
tiate between real and generated samples, symbolizing
the achievement of a Nash equilibrium in this adversarial
game process.

Then, the results obtained through this process are
analyzed using Transfer Learning, which becomes very
essential for educational video classification, especially
when pre-existing large-scale datasets are utilized to en-
hance the representation and semantic understanding of
extracted features. This approach can bridge limitations
due to data scarcity and specificity in targeted educa-
tional content by importing and refining knowledge from
extensive, diverse sources. The steps used in the process
are as follows: At the initial stage, the extracted features
are considered a multi-dimensional matrix X obtained
from the adversarial learning stage, where every row

represents the feature set of a particular video frame.
Transfer learning involves mapping these features to a
more sophisticated and semantically rich space, a trans-
formation enabled by a neural network model that was
initially pre-trained on a large-scale dataset, such as Im-
ageNet or COCO Samples. This model holds a wealth of
visual knowledge, encoded by the parameters Gpre for dif-
ferent use case scenarios. This adaptation process goes
on in the form of extracting more high-level features,
Z=fOpre(X), which presents the function represented by
the pre-trained network applied to the educational vid-
eo features X. This is an operation that translates raw,
intermediate, or low-level features into a refined feature
space, enriched with the broad semantic understanding
that has been learned from the samples of the pre-trained
dataset samples.

Then, for more specificeducational content, a fine-tun-
ing phase is initiated for this process. This updates the
model parameters 0 from their initial values Bpre to new
values 6, , more aligned with the target domain. The
fine-tuning is guided by an objective function L(0) that in-
cludes a loss term that quantifies the difference between
the actual and predicted semantic categories of the video
frames. The update rule follows the gradient descent par-
adigm, expressed via equation 11,

Onew = fpre — nVOL(0) (11)

Where n represents the learning rate for this process.
The objective function L(0) incorporates the cross-entro-
py loss between the predicted labels and the true labels
of the video frames, along with regularization terms to
prevent overfitting. This is mathematically described via
equation 12,

L(0) = — 32 Y yi*clog(pic(6)) + A || 6] (12)

Where yi is the binary indicator of whether class c is the
correct classification for observation i, pic(6) is the pre-
dicted probability that observation i belongs to class c,
and A is the regularization parameter for this process. The
fine-tuning proceeds iteratively, with each iteration refin-
ing the parameters 0to better accommodate the specifics
of the educational content, thereby gradually transition-
ing the model’s knowledge base from the general to the
particular. This iterative update is mathematically mod-
eled via equation 13,

o(t + 1) = 0(t) — nVOL(O(t)) (13)
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Where tindexes the iteration rounds. Upon the conclu-
sion of the fine-tuning process, the updated model f@new
is employed to reassess the features X, resulting in en-
hanced representations that are inherently more aligned
with the semantic intricacies of educational videos and
samples. These enriched features lay the groundwork
for the semantic grouping of video frames, which can be
achieved through clustering techniques, additional classi-
fication layers, and effective grouping of frames based on
their semantic content and context in various use cases.
This transfer learning process culminates in the semantic
grouping of video frames, where it represents the unifi-
cation of general visual knowledge with domain-specific
insights, thereby significantly enhancing the capabilities
of educational video classification systems to discern and
categorize content with higher accuracy and relevance.
Transfer learning enables the transfer of knowledge
across domains by fine-tuning pre-trained models, en-
suring the application of universal visual understanding
to the specialized domain of educational content. This
approach improves the identification and grouping of
semantically coherent frames within educational videos
and samples.

Next, for video classification, weakly supervised
learning (WSL) is applied, representing a sophisticated
technique thatusesincomplete or noisy labels to facilitate
the discernment of learning cues from the data samples.
This holds special significance in situations where obtain-
ing full data annotations is impractical; therefore, WSL
leverages available annotations, albeit scant and implicit,
for guidance in the learning process. The basic premise of
WSL follows that the objective is formulated by integrat-
ing uncertainty and ambiguity inherent in weak labels
into the learning framework. Consider the input to be the
grouped frames categorized semantically, represented
by {Xi}, where every Xi constitutes a cluster of frames with
similar semantic features. Associated with each groupis a
weak label Yi, which suggests the dominant class among
the frames but does not specify the exact label for each
frame.

The learning process will then start by defining a prob-
ability distribution P(Y|X;6) over possible labels Y for a
given group X, which is parameterized by 6. The distribu-
tion reflects the model’s estimation of the relevance of
each label to the grouped frames, where parameters 6
are to be learned from the data samples. The objective is
to optimize 6 such that P(Y|X;6) takes on a value close to

weak labels Yi sets. It utilizes a loss function L(8), which
measures the deviation between the predicted and weak
labels. Due to the weak nature of i, additional constraints
or regularization terms are often included to guide the
learning process. We include a regularization term R(6)
that encourages the model to follow assumptions or prior
knowledge about the structure and distribution of labels.
The combined objective becomes L(6) + AR(6), where A is
the balancing parameter for this process. The algorithm
iteratively adjusts 6 to minimize these combined objec-
tives. The update at each iteration t is described by the
rule represented via equation 14,

O(t + 1) = 8(t) — nVO(L(O(t)) + AR(6(t))) (14)

Where n is the learning rate, and V@ represents the gradi-
ent with respect to 0 sets. To account for the inexactitude
of weak labels, we incorporate label propagation opera-
tions. Each frame x in a group Xi is assigned a label based
on both the group’s weak label and the labels of ‘nearby’
frames, determined by a cosine similarity measure for
real-time scenarios. This is expressed as a soft labeling
process, where the label assignment for frame x is updat-
ed via equation 15,

Lz =aS(z, Xi)Yi+ (1 —a)) S(z,2’ )Lz’ (15)

z'Eneighbors(z)

Thisis where Lx denotes the soft label for frame x; S(-,-) isa
similarity function, and ais a parameter that balances the
influence of weak labels and neighborhood labels. The
WSL process culminates in a model that, despite the initial
imprecision of the labels, has distilled meaningful pat-
terns and relationships within the video frames, thereby
rendering an enhanced understanding and classifica-
tion of the content. Iterative refinement of frame labels
and model parameters, validated by a combined mod-
el-inferred assumptions and empirical data, culminates
in robust classification of video frames, transforming
ambiguously labeled groups of frames into distinctively
classified entities, each aligned with a specific education-
al theme or topic. This transformation demonstrates how
WSL leverages minimal and noisy supervision to derive
significant educational insights, facilitating a nuanced
understanding and organization of educational video
content sets. The performance of this model was eval-
uated on various scenarios and compared with existing
methods in the subsequent section of the text.
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3. Result Analysis

This section outlines the experimental setup that will
rigorously evaluate the performance of our model for
classifying educational videos. This section describes
specific configurations, datasets, and parameters ap-
plied throughout the experimental phase.

Datasets:

EDUVSUM Dataset: The dataset comprises diverse edu-
cational videos across various subjects and educational
levels, with each frame labeled as one of the ten catego-
ries of educational content. This heterogeneous dataset,
among other things, is characterized by its wide range of
video quality, presentation styles, and content. EDUVSUM
was reshuffled into a ratio of 70%-15%-15% for training,
validation, and test sets.

HowTol00M Dataset: This is a large-scale dataset com-
prising instructional videos covering a broad spectrum
of topics from public platforms. The dataset comprises
approximately 1.2 million video clips, each accompanied
by text descriptions and categorized under 100 differ-
ent skills and tasks. In this study, we use a subsample of
200,000 clips, representing equally balanced categories
for our model. Similar to EDUVSUM, the data was also par-
titioned into training (70%), validation (15%), and testing
(15%) subsets.

Configuration and parameters:

Feature Extraction: We applied a ResNet-50 pre-trained
convolutional neural network (CNN) architecture to the
initial feature extraction of the video frames. The input
to the network consists of standardized video frames,
resized to 224x224 pixels.

Graph-Based Semi-Supervised Learning (GSSL): We
constructed a graph with video samples as nodes and
utilized a k-nearest neighbor algorithm (k = 5) based on
cosine similarity for feature categorization, grouping
them into skills and tasks. The Gaussian kernel width (o)
is set to 1.0 for the computation of edge weight. Label
propagation was performed until convergence with a tol-
erance threshold value of 1e-4.

Self-training with Consistency Regularization: Initial-
ly, the model was trained using labeled data alone with
a batch size of 64 and a learning rate of le-3. For the
self-training iterations, the top 30% most confident pseu-
do-labeled samples were added to the training setin each
cycle. The consistency regularization is imposed by ap-
plying random augmentations to the video frames and
using a consistency loss weight (A) of 0.5.

Adversarial Learning: The adversarial framework is set
up with separate training schedules for the generator and
discriminator. The learning rate is set to 2e-4 for both
components with a total number of 10,000 adversarial
iterations. The balance between the generator and dis-
criminator is achieved by adjusting the training ratios,
typically to a 1:1 ratio per iteration.

Transfer Learning with Pretrained Models: We utilized
a pre-trained VGG-16 model trained on ImageNet as an
object detection model for feature extraction. This was
achieved after freezing the lower layers of the pre-trained
VGG-16 model; fine-tuning the top layers was done with
a learning rate of 1e-4. The parameters applied were that
all other layers were allowed to operate in free mode.

Label Smoothing Experiments: We conducted label
smoothing experiments with a parameter value of 0.1.
This paves the way for incorporating noise and impreci-
sion in the labels. Optimization was made over 50 epochs
with a batch size of 32.

Evaluation Metrics: Performance analysis was con-
ducted through the assessment of our proposed model
under the following categories: precision, accuracy, re-
call, AUC, classification delay, and specificity metrics.
These metrics were computed for each test subset on
both the EDUVSUM and HowTol00M datasets to ensure
thorough evaluation.

Hardware and Software: The experiments were con-
ducted on a computing cluster equipped with NVIDIA
Tesla V100 GPUs. The software environment used was
based on Python 3.8 with TensorFlow 2.4 and PyTorch
1.7 as the main frameworks to implement and evaluate
our model.

Experimental Execution: The experimental procedure
was carried out in stages, corresponding to the setup
described above. Each stage consisted of training, valida-
tion, and testing the model components with fine-tuning
parameters based on the performance of the validation
set. Self-training and adversarial learning processes were
monitored iteratively to ensure convergence, with early
stopping criteria based on improvement thresholds on
the validation sets.

Table 2 presents the accuracy of the proposed model
in contrast to other existing works (Davila et al., 2021;
Nagar et al., 2021; Chen et al., 2021) on the EDUVSUM
dataset. Comparison with other existing works, especial-
ly the proposed ones, reveals a significant improvement
that sets this work apart as superior in its ability to clas-
sify video frames correctly. This may be a result of the
fact that the integration of GSSL and transfer learning
techniques utilizes existing knowledge from large-scale
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datasets to reuse information, providing a more compre-
hensive and practical analysis and classification.

Table 2. Accuracy Comparison on EDUVSUM Dataset

Method Accuracy (%)
Proposed 94.5
Davila et al. (2021) 86.7
Nagar et al. (2021) 88.3
Chen et al (2021) 89.1

Table 3 illustrates the performance metrics in the
HowTol00M dataset, demonstrating the model’s
effectiveness in relation to the relevant features within
educational videos, as evidenced by the high precision
and recall values across various use case scenarios. The
F1-Score, as a balance between precision and recall,
highlights how robust the model is in minimizing false
positives and false negatives—an aspect critical in
educational applications.

Table 3. Precision, Recall, and F1-Score on HowTo100M Dataset

Method Precision (%) Recall (%) F1-Score (%)
Proposed 93.2 92.8 93.0
(5] 85.4 84.9 85.1
[8] 87.6 87.1 87.3
[24] 88.4 88.0 88.2

Table 4 and Figure 4 show AUC scores for both datasets
and samples. The proposed model has a higher AUC
score, with fewer false positives and false negatives,
indicating good discrimination between the classes. A
higher AUC score indicates a better model for predicting
true positives while minimizing false positives, which is
crucial for educational content where misclassification
can lead to low-quality and an unclear understanding
process.

Table 4. AUC Score Comparison

Precision, Recall, and F1-Score
on HowTo1l00M Dataset

100
90 II
. amm END NN

Proposed [5] [8] [24]

M Precision (%) M Recall (%) F1-Score (%)

Figure 3. Precision, Recall, and F1-Score
on HowTol00M Dataset

AUC Analysis
1
0,95
0,9
- 1l huil
0,8
EDUVSUM HowTo100M
W Proposed W[5] [8] m[24]

Figure 4. AUC Analysis

Table 5 indicates how each model encountered clas-
sification delay while processing. The proposed model
exhibits a significant reduction in delay, which is crucial
in the realm of real-time educational applications. This is
achieved through the model’s optimized architecture and
the optimization implemented to accelerate the feature
extraction and classification processes.

Table 5. Classification Delay (Seconds)

Method EDUVSUM HowTol00M
Proposed 0.962 0.958
Davila et al. (2021) 0.891 0.876
Nagar et al. (2021) 0.912 0.904
Chen et al (2021) 0.927 0.919

Method EDUVSUM HowTol00M
Proposed 1.2 1.5
Davila et al. (2021) 2.8 3.1
Nagar et al. (2021) 2.4 2.7
Chen et al (2021) 2.1 2.5
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Table 6. Specificity Comparison on EDUVSUM Dataset

Method Specificity (%)
Proposed 93.7
Davila et al. (2021) 86.5
Nagar et al. (2021) 87.9
Chen et al (2021) 88.6

Table 6 presents the specification metric value, which
represents the proposed model’s ability to classify neg-
atives, i.e., to identify elements as non-educational for
various use case scenarios. A high specification value is
significant in educational contexts to avoid misclassify-
ing irrelevant content as educational, which dilutes the
quality and focus of educational resources.

Table 7 aggregates the overall performance scores,
combining all evaluated metrics into one singular indic-
ative figure for each dataset sample. It can be observed
that the scores of all models presented by the proposed
model are greater than those of other models, reinforcing
the cumulative impact of enhancements across all perfor-
mance metrics.

Table 7. Overall Performance Score

Method EDUVSUM Score  HowTol00M Score
Proposed 95.2 94.8
Davila et al. (2021) 87.3 86.8
Nagar et al. (2021) 89.0 88.5
Chen et al (2021) 90.4 89.9

The tables show overall performance scores through
the combination of all key metrics that distinguish the
proposed model from others. A model’s superior perfor-
mance, as evidenced by significant increases in precision,
accuracy, recall, and AUC values, attests to its effective-
nessin addressing the key challengesin educational video
classification. The reduction in classification delay and
increased specificity further validate the model’s applica-
bility in real-world educational settings, where timely and
accurate categorization of content is necessary.

The integration of state-of-the-art techniques, includ-
ing GSSL, self-training with consistency regularization,
adversarial learning, transfer learning from pre-trained
models, and weakly supervised learning, was instrumen-
tal in achieving these results. Each of the components in
this model brings uniqueness, with an additional input
that enables this combination. The careful design and
utility of the proposed model lie in the advantages that
are gained through the exploitation of unlabeled data and

the benefits that come with improved feature represen-
tation, ensuring robustness with respect to distribution.

In addition to the observed performance enhance-
ments, the proposed model has the potential to enrich
educational resources and learning experiences signifi-
cantly. Its purpose is to make the educational videos
more accurate, efficient, and reliable through facilitat-
ed classification for a more streamlined organizing and
retrieval process that enables an enriched learning envi-
ronment. The above example is illustrated in part of the
next section of this text.

Example Use Case

In advancing the classification of educational videos, our
research combines a range of sophisticated methodolo-
gies, one at a time, to enhance the model’s potential. This
section describes the application and impact of these
methods through data samples with synthesized feature
values and indicators to demonstrate the transformation
and enhancement at every stage of the model processing
pipeline. Our experimental setup begins with data sam-
ples in an initial representative feature space. Next, each
of these stages—GSSL, Self-training with Consistency
Regularization, Adversarial Learning, Transfer Learning
from Pretrained Models, and Weakly Supervised Learn-
ing—is carefully designed to enhance and train the model
more effectively in classification contexts. Each of these
methodologies employs a unique principle that leverages
and augments the available data, thereby enabling them
to classify content correctly in educational videos and
samples progressively.

Table 8 illustrates the effectiveness of GSSL in
spreading labels across the graph structure and using re-
lationships between samples to tag previously unlabeled
data samples with the appropriate label. This is the initial
stage of refining the label propagation process by exploit-
ing the data structure and relationships to improve it for
various scenarios.

Table 8. Impact of Graph-based Semi-
Supervised Learning (GSSL)

Sample ID Initial Label GSSL Predicted Label
1 Math Math
2 Science Science
3 History History
4 Science Science
5 - (Unlabeled) Math
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Table 9 shows the results of the self-training process,
in which the predictions of the model are improved by
incorporating pseudo-labeled samples and enforcing
prediction consistency under data augmentation, pro-
moting the reliability and robustness of the model.

Table 9. Self-training with Consistency Regularization

Sample ID GSSL Predicted Self-training
Label Predicted Label
1 Math Math
2 Science Science
3 History History
4 Science Science
5 Math Math

Table 10 demonstrates the refinement of feature rep-
resentations through adversarial learning, whereby the
model generates domain-invariant features. This is sig-
nificant since it ensures that the model’s performance is
robust across diverse video distributions.

Table 10. Adversarial Learning Outcomes

Sample ID Feature Adversarial
Representation Enhanced Features
1 [0.85, 0.15] [0.9, 0.1]
2 [0.2,0.8] [0.15, 0.85]
3 [0.6, 0.4] [0.65, 0.35]
4 [0.25, 0.75] [0.2,0.8]
5 [0.85, 0.15] [0.88,0.12]

Table 11 illustrates the impact of using transfer learning
techniques, where features enhanced through adversari-
al learning are further refined with the aid of pre-trained
knowledge. This step significantly enriches the semantic
understanding of the features, making them more repre-
sentative of the educational content sets.

Table 11. Transfer Learning from Pretrained Models

Sample ID Adversarial Transfer Learning
Features Enhanced Features
1 [0.9, 0.1] [0.95, 0.05]
2 [0.15, 0.85] [0.1,0.9]
3 [0.65, 0.35] [0.7,0.3]
4 [0.2,0.8] [0.15, 0.85]
5 [0.88, 0.12] [0.92, 0.08]

Table 12 presents the results of weakly supervised
learning, which provides enhanced feature sets to sup-
port the final predictions. This final stage uses imprecise
labels and inherent data characteristics for fine-tuning
the classification, resulting in a highly refined under-
standing and categorization of the video content sets.
These include all tables of the data samples from their
primary states, processed through various stages of re-
finement under our proposed model. From the initial
application of GSSL through self-training with consis-
tency regularization, to the sophisticated techniques of
adversarial learning, transfer learning, and weakly su-
pervised learning, the model improves its accuracy and
semantic understanding with each step in its evolution.
The synergistic impact of integrating multiple advanced
methodologies, resulting in significant performance
improvements in educational video classification, is note-
worthy. The results, demonstrating remarkable precision
and accuracy, also enable the highlighting of the model’s
strong versatility and adaptability across various educa-
tional contexts and content distributions. This justifies
the possibility of reorganizing educational resources and
creating well-structured, well-utilized, and effective digi-
tal learning environments.

Table 12. Weakly Supervised Learning Enhancement

Sample ID Transfer Learning Final Predicted
Features Label
1 [0.95, 0.05] Math
2 [0.1,0.9] Science
3 [0.7,0.3] History
4 [0.15, 0.85] Science
5 [0.92, 0.08] Math

4. Conclusions

In this study, the design and implementation of a new
video classification model have been successfully done
to address the challenges inherent in the process, such
as the limited amount of labeled data, noisy annota-
tions, and content diversity. GSSL, which integrates
graph-based semi-supervised learning, has indeed per-
formed significantly better than traditional classification
approaches. Furthermore, empirical evaluation of the
EDUVSUM and HowTol00OM datasets has demonstrated
the model’s superiority, as it significantly outperforms
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others. In addition, among these approaches, our mod-
el not only exhibits superior improvements in precision,
accuracy, recall, and the AUC metric but also shows signif-
icantimprovementsin classification delay and specificity,
thereby highlighting the potential of the proposed model
in providing timely and precise classification of educa-
tional content.

The combination of the above-mentioned approach-
es has not only helped in a better understanding of the
video content but also helped in ensuring its robustness
and reliability amid ambiguities in the data. For instance,
GSSL not only aids in generalizing labels to be spread
but also facilitates the effective dissemination of labels
by leveraging the inherent data structure. At the same
time, the self-training mechanism with consistency regu-
larization further tunes in the predictions from the model
to provide reliability even for ambiguous data. Further-
more, the incorporation of adversarial learning facilitates
domain-invariant feature learning, which is particularly
relevant when handling diverse distributions of video
content. Transfer learning from pre-trained models suc-
cessfully bridges the gap between large-scale datasets
and specific educational content, enriching semantic
understanding. Finally, weakly supervised learning tech-
niques enable the model to mine essential learning cues
from imprecise labeled data, thereby improving overall
classification performance.

Future Scope

The evolution of video classification in educational ma-
terials is a recent milestone; however, the dynamic world
of digital education is marked by new challenges and
opportunities for ongoing development. Future research
avenues may focus on specific areas. First and foremost,
there is an invaluable opportunity to incorporate mul-
timodal learning approaches that combine audio, text,
metadata, and video frames. Thus, by doing so, a more
comprehensive comprehension may be attained, result-
ing in enhanced classification accuracy and contextual
appropriateness. Besides, there will be a considerable
need to focus on scalability and efficiency aspects. There-
fore, since optimizing the model for real-time processing
and scalability could offer a better model that would be
efficient for live educational platforms and massive open
online courses (MOOCs), this will enhance the wide acces-
sibility aspect.

Simultaneously, there are efforts focused on in-
terpretability and explainability as critical fronts. The
augmentation of interpretability for the model will help

identify decisions made in classification, and this will
help grow the confidence of educators and learnersin the
model. Additionally, individualization of learning in per-
sonalized education presents another perspective, and
in such cases, the model may be trained to accommodate
the styles and personal preferences of learners, enabling
changes that would have occurred during course design
and the course itself. Cross-lingual and cultural adapt-
ability also represent significant avenues for supporting
multiple languages and cultures, making education more
global. Robustness against adversarial attacks becomes
increasingly necessary, given the need for the integrity
and reliability of educational content in various settings.

Another promising avenue for exploration is the in-
tegration of the model with curriculum design, utilizing
automated alignment of classified educational videos
with curriculum standards. In summary, the proposed
model represents another significant leap in educational
video classification, not only enhancing accessibility and
reliability but also the pertinence of educational resourc-
es.As Al in education continues to evolve, the possibilities
for transforming the learning environment and improving
educational outcomes are boundless, offering a future
thatis prosperousininnovation and has a positive impact
across multiple real-time scenarios.
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