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ABSTRACT 
The measurement origin uncertainty and target (dynamic or/and measurement) model uncertainty are two 
fundamental problems in maneuvering target tracking in clutter. The multiple hypothesis tracker (MHT) and multiple 
model (MM) algorithm are two well-known methods dealing with these two problems, respectively. In this work, we 
address the problem of single maneuvering target tracking in clutter by combing MHT and MM based on the Gaussian 
mixture reduction (GMR). Different ways of combinations of MHT and MM for this purpose were available in  previous 
studies, but in heuristic manners. The GMR is adopted  because it provides a theoretically appealing way to reduce 
the exponentially increasing numbers of measurement association possibilities and target model trajectories. The 
superior performance of our method, comparing with the existing IMM+PDA and IMM+MHT algorithms, is 
demonstrated by the results of Monte Carlo simulation. 
 
Keywords: Maneuvering target tracking, clutter, multiple model, multiple-hypothesis tracker, Gaussian mixture reduction. 
 

 
1. Introduction 
 
Two difficulties arise in the problem of single 
maneuvering target tracking in clutter: target 
(dynamic or/and measurement) model uncertainty 
and measurement origin uncertainty. Algorithms 
dealing with these two problems individually 
abound in previous studies [1-6]. 
 
First, target maneuvers incur target dynamic model 
uncertainty in tracking. The multiple model (MM) 
algorithms [6-9] were proposed and have been 
gaining prevalence to address this problem. 
Instead of modeling a target motion by a single 
dynamic model, a set of models are implemented 
in parallel in MM and the result is computed based 
on the outputs from all of these models. 
 
Second, measurement origin uncertainty arises 
when false measurements (measurements not 
originated from a target) are received in a sensor 
scan. Many factors could contribute to the 
reception of false measurements. For example, 
clutter, thermal noise, electronic counter-
measurements, so on and so forth. The multiple-
hypothesis tracker (MHT) [4, 10-15] is a powerful 

 
 
tool for this problem. It branches all possible (or 
several most probable) association hypotheses 
and the tracking result is obtained based on the 
results of all available hypotheses. 
 
One similarity between MM and MHT is that their 
optimal implementations require exponentially 
increasing numbers of model sequences and 
hypotheses respectively, which make their optimal 
solutions infeasible in practice. In this work, MHT 
and MM are combined, and the numbers of model 
sequences and hypotheses are reduced in a joint 
way based on the Gaussian mixture reduction 
(GMR) [16-22]. Combinations of MHT and MM, 
especially the interacting-multiple model (IMM), 
were proposed in previous studies, but, in a 
straightforward and somewhat crude manner. That 
is, the two algorithms were simply put together to 
tackle the two problems one at a time and each 
algorithm functions separately without exploring 
the connection to the other one and to the mutual 
effects on the final performance. We propose the 
reduction based on GMR, which provides a more 
solid and appealing way than existing methods to 
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reduce jointly the numbers of model sequences 
and hypotheses. The density of a target state is a 
Gaussian mixture with each component 
corresponding to a model sequence and a 
hypothesis (under a linear Gaussian assumption). 
In our method, the number of Gaussian 
components is reduced by merging the “similar” 
ones, which are selected by a “distance” defined 
between two Gaussian components. Clearly, our 
method does a joint reduction instead of reducing 
the numbers of model sequences and hypotheses 
separately. Furthermore, GMR attempts to 
minimize the impact of merging to the original 
Gaussian mixture, which is theoretically more solid 
and better justified than conventional methods, 
e.g., GPBn or IMM. The superior performance of 
our method is demonstrated by the results of 
Monte Carlo simulation by comparing with the 
existing IMM+PDA and IMM+MHT algorithms. 
 
This paper is organized as follows. The problem of 
single maneuvering target tracking in clutter is 
formulated in Section 2. The Gaussian mixture 
reduction is elaborated in Section 3. Multiple mode 
algorithm based on Gaussian mixture reduction is 
presented in Section 4 and its combination with 
MHT is given in Section 5. Numerical examples are 
given in Section 6 and conclusion remarks are 
made in Section 7. 
 
2. Problem formulation  
 
We consider the problem of single maneuvering 
target tracking in clutter, that is, we assume that 
only one target is presented in the surveillance 
region and it has the following first-order Markov 
jump linear motion models 
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and the measurement model is 
 

kkkk vxHz 
    (2) 

 
Where p=1,...,m, and m are the index and total 

number of motion models, respectively, 
p
kw and kv  

are mutually uncorrelated zero-mean white 

Gaussian noise sequences with covariances 
P
KQ  

and kR , respectively, and are independent of the 

initial target state. Denote  p
k

q
k mmPpq 1|),(   

as the model transition probability, where 
p
km  is 

the event that the pth model is in effect at time k. 
The model uncertainty problem must be addressed 
in a tracking algorithm because in most 
applications (except for a cooperative target) we 
are not certain which model is in effect at each 
time k. The prevailing method is MM [6]. 
 
Furthermore, false measurements from clutter or 
thermal noise may present in each sensor scan. 
That is, multiple measurements may be received at 
each sensor scan, rendering their origins 
uncertain. Most target tracking algorithms dealing 
with clutter need to address this data association 
problem explicitly, for example, the nearest or 
strongest neighbor filter [23-25], probabilistic data 
association filter [26] and the more powerful (of 
course, more complicated) multiple hypothesis 
tracker (MHT) [10,11]. In this work, it is assumed 
that: a) all the measurements are independent; b) 
false measurements are also independent to the 
target state: c) one and only one measurement is 
originated from a target. 
 
Combinations of MM and data association algorithms 
to deal with maneuvering target tracking in clutter 
exist. However, for most cases they were combined 
in rather heuristic ways that their connections and 
their mutual effects on the final performance are not 
explored. In this work, we propose an algorithm 
based on MM and MHT, where they are integrated 
by Gaussian mixture reduction. 
 
3. Gaussian mixture reduction 
 
Approximating a Gaussian mixture density with 
another Gaussian mixture density of a reduced 
number of components by minimizing the 
“approximation error” in some sense leads to the 
Gaussian mixture reduction (GMR) problem [16-
22]. Constraints, for example, maintaining the 
grand mean and covariance, may be further 
imposed to the problem. The optimal solution may 
be obtained by solving a high dimensional 
constrained nonlinear optimization problem which is 
mathematically intractable for most applications. 
Rather than direct search of Gaussian components
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for the reduced mixture, the approximation can 
be obtained by merging the components in the 
original mixture. Components to be merged are 
selected based on their “distance”, to be defined. 
However, this is actually equivalent to an 
assignment problem, which is NP hard. Note that 
even if the optimal merging is achieved, it is not 
necessary the optimal solution to the GMR 
problem in general, because the Gaussian 
components in the optimal solution may not be 
able to be obtained by merging. 
 
There were many distances proposed for two 
Gaussian components. They can be categorized 
into two classes: global distance and local distance. 
Denote f(x) the original Gaussian mixture density, 
and fij(x) the reduced Gaussian mixture density by 
merging the ith and jth components. Then, the 
global distances of components i and j in a mixture 
are defined by the difference between the densities 
f(x) and fij(x), while local distances are defined in 
terms of the difference between the two Gaussian 
components. The global distance is preferred for 
GMR problem because it considers the overall 
performance of merging. The PDF correlation 
coefficient is a distance like measures widely used 
in statistics [27,28]. The Kullback-Leibler (KL) 
divergence may be another option [21], but they 
cannot be evaluated analytically between two 
Gaussian mixtures, see [29] and reference therein 
for some numerical methods. Runnalls [21] 
proposed an upper bound of KL divergence to 
serve as a distance which is, however, a local one. 
We adopt the distance proposed by Williams and 
Mayback [18,19]---the integral squared difference 
(ISD), which can be analytically evaluated between 
two Gaussian mixture densities f(x) and g(x). The 
ISD is defined as 
 

  dxxgxfD 2))()((
  

(3) 

 
It is a global distance and can be evaluated 
analytically between any two Gaussian mixture 
densities: 
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and , ,i i iw P  and  , ,i i iw P  are the weights, 

means and covariances of the ith Gaussian 
components in f(x) and g(x), respectively. Efficient 
algorithms to compute the distance were 
proposed in [19]. 
 
Once the distance between Gaussian components 
is defined, “close” components should be merged. 
For n Gaussian components with weights wi, 

means i and covariance Pi, they are merged by 
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Therefore, the grand mean and covariance are 
preserved. As mentioned before, optimal merging is 
difficult to achieve, hence, many efficient suboptimal 
procedures were proposed. The top-down reduction 
algorithms based on greedy methods were 
proposed in [18,19,21], where two of the 
components are selected to merge at each iteration. 
The iteration stops until the number of components 
reduces to a threshold M. Besides, the reduction 
algorithm based on clustering was proposed in [30]. 
The dissimilarity matrix, which contains pairwise 
distances between any two components, is 
computed and all Gaussian components are 
clustered into M clusters. The components in the 
same cluster are merged. Different clustering 
algorithms [30-32] (e.g., k-means, k-medoids, 
hierarchical clustering, etc.) are optional. 
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4. Multiple model algorithm based on Gaussian 
mixture reduction 
 
First, we elaborate the MM algorithm based on 
GMR. As explained in the next section, it can be 
readily extended to incorporate the MHT. The 
optimal MM has to consider all the possible model 
trajectories, which is infeasible in practice due to 
the combinatorial explosion. Many algorithms were 
proposed to reduce the number of model 
trajectories [6]. They can be classified as: a) 
methods based on hard decision, such as the B-
Best algorithm, which keeps the most probable one 
or a few model sequences and prunes the rest; b) 
methods based on soft decision, such as the GPBn 
algorithm, which merges those sequences with 
common model trajectories in the last n steps. In 
general, the algorithms based on soft decision 
outperform those based on hard decision. However, 
in GPBn there is no solid ground to justify why 
sequences with some common parts should be 
merged. These common histories do not 
necessarily make the resulting Gaussian 
components being “close” to each other. 
Consequently, the merging may not lead to a good 
performance. Comparing with the merging methods 
in GPBn or IMM, the MM based on GMR [18] is 
better justified—the Gaussian components with 
“small distance”, rather than “similar model 
trajectory”, are combined. Although the reduction 
procedures elaborated in the previous section do 
not merge the Gaussian components optimally, it is 
suffice to rely on these suboptimal but efficient 
procedures to achieve a better performance than 
the existing methods. The idea is straightforward. All 
the combinations of Gaussian components up to 
time k-1 and m system models at time k are 
considered, resulting in a larger set of Gaussian 
components. Then, GMR is used to reduce the 
number of components to a pre-specified number 
M. One cycle of MM based GMR is given below: 
 
(1). Assume the Gaussian mixture density of target 
state at k-1 is 
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Meaning that there are M Gaussian components 
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estimate and its MSE matrix respectively, in the 
jth Gaussian component. Assume the component-

to-model transition probability }|{ 1
j
k

p
kmP   at k-

1 is available (computation of this probability is 
given in step 6). 
 
(2). Model conditional filtering at time k: 
 

Denote 
i
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the ith event in the set
mp
Mj
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p
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,...,11},{ 
 . Then the conditional posterior 

density ),|( ki
kk ZCxf  can be computed by 

Bayesian rule. For a linear Gaussian system 
(conditioned on a model sequence), Kalman filter 

applies. Clearly, there are mM different events 
i
kC  

and each ),|( ki
kk ZCxf  is Gaussian distributed. 

 
(3). Component probability update: 
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i
kC , its posterior probability is updated by 
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Note that as mentioned in Step 1,  }|{ 1
j
k

p
kmP  is 

computed at time k-1. 
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(4). Gaussian mixture reduction: 
 
Reduce the Gaussian mixture 
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to a mixture with M components based on a GMR 
procedure elaborated in the previous section, that is, 
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Because 
j
k  is obtained by merging the Gaussian 

components corresponding to some
i
kC , an m × 1 

auxiliary vector 
i
ka  is constructed for each 

j
k  to 

record the weight (or portion) of each model 
p
km  in

j
k , that is, 
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Where I(·) is the indicator function. Note that 
unlike GPBn method, after merging, each 

component 
j
k  does not have a clear physical 

meaning. 
 
(5). Estimation fusion: 
 
The overall density of target state is 
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(6). component-to-model transition probability: 
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Where :),( p  is the pth row of the transition 

probability matrix   and ])(),...,1([  maaa j
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(7). k=k+1 and loop to Step 2. 
 
If dealing with a nonlinear system, each conditional 

density ),|( ki
kk ZCxf  can be approximated by a 

moment matching Gaussian density, similar as the 
Gaussian filter [33] does. Although the GMR 
algorithms do not reduce the Gaussian mixture 
optimally, they are based on a more solid guideline 
for merging than the GPBn methods, hence should 
result in better performance. 
 
5. Combining MM and MHT based on GMR 
 
Similar to MM, which was proposed to address the 
problem of target model uncertainty, MHT was 
proposed [10, 11] to address the problem of 
measurement origin uncertainty for single or 
multiple targets tracking in clutter. 
 
The MHT is a multi-scan association method. For 
simplicity, we assume: a) perfect detection 
probability, i.e., Pd =1 (for Pd < 1, all the derivation 
follows similarly but more tedious); b) each 
measurement only has one source (either the 
target or clutter) and one target can at most 
generate one measurement; c) the clutter and true 
target measurement are independent. Based on 
these assumptions, MHT generates and 

propagates hypotheses
i
k . Each hypothesis 

specifies one possible association between the 
measurements Zk = {z1,...,zk} and the target, where 

},...,,{ 21 z
km

kkkk zzzz  , and 
z
km  is the total 

(validated) number of measurements at scan k. 

For single target tracking, each 
j

kz  leads to two 

association possibilities: 
 
a) It is a continuation of the existing track. 
 
b) It is from clutter. 
 
Similar to MM algorithm, the combinatorial 
explosion must be addressed to make the MHT 

practical. Denote 
q
kh  the event that 

q
kz  is
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associated to the target at time k. Actually the MHT 
for single target tracking can be viewed as a MM 

algorithm. At each sensor scan, each 
q
kh  can be 

viewed as a “model”. Note that the number of the 
“models” depends on actual number of 
measurements at each scan k. Validation gate may 

be applied to reduce the number of false 

measurements. Combing with 
i
k 1 , new set of 

hypotheses 
z
k

k

mq

mj

j
k

q
kh ,...1

,...,11
1

},{ 
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
  are generated and 

they specify all the association histories up to time k, 
analogous to the model trajectories in MM algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

l Initialized the filter: 

Only one Gaussian component ),;( 1
0

1
0

1
0 PxxN

 is initialized;  

mjjaw m ,...,1,)(,1 11
0

1
0  . 

2 Model conditional filter at time k: 

For each Gaussian component ),;( 111
j

k
j

k
j
k PxxN   

, 

estimate 
lj
kx


and 
lj

kP by Kalman filter based on each model },{ q
k

p
k

l
k hmm   

lj
kkk

lj
kk

p
k

p
k

j
k

p
K

lj
kk xHzuBxFx 1|1|11111| ,   

 

)()( 111111|  
p

k
p

k
p

k
p

k
j

k
p

k
lj
kk GQGFpFP  

1
| 1 | 1( ) ,lj lj lj lj

k k k k k k k k k k kS H P H R K P H S
      

)( 1|1|
lj

kk
q
kk

lj
kk

lj
k zzKxx   

 

kkkkk
lj
kkkk

lj
k KRKHKIPHKIP   )()( 1|  

Where 
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kz is the hypothesized true measurement based on 
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4 Gaussian mixture reduction: 

If the number of
i
kC is less than M, then no reduction is needed. 

Otherwise, compute dissimilarity matrix mD  for all the components
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Cluster all
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kC into M clusters. 
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Table 1. Algorithm of MM-MHT based on GMR. 
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The MM method based on GMR can be directly 
extended to deal with clutter. The resulting 
algorithm is denoted as MMG (MM-MHT based on 

GMR). Based on each motion model 
p
km  and each 

association event
q
kh , a set of new “models” can be 

generated 1,...
1,...,{ } { , }

z
kq ml p q

k k k p mm m h 


at time k. The 

MM algorithm in previous section can be directly 
applied with only minor modifications. First, the 
model transition probability  is replaced by 
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Where the assumption that the target model and 
association event are conditionally independent is 
made. Second, the likelihood function becomes 
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Where C is a constant which depends on the 

clutter density, and 
q
kz  is the hypothesized true 

measurement. A detailed algorithm for a linear 
Gaussian system with first-order Markovian model 
jumps is given in Table 1. 
 
Clearly, MMG reduces the numbers of model 
trajectories and association hypotheses jointly that 
is, the target models and association hypotheses 
which to be merged depend on the “closeness” of 
their resulting estimates. Existing methods made 
the reduction separately. For example, the 
IMM+MHT method [18,20] reduces the number of 
association hypotheses by GMR, and IMM is used 
in each hypothesis. The separate reduction 
ignores the connection between the hypotheses 
and model trajectories as well as their mutual 
effects on the resulting estimation accuracy. 
 
 
 
 
 

6. Numerical examples 
 
The performance of our algorithm is demonstrated 
by the Monte Carlo simulation. All the performance 
measures are calculated based on 1000 runs. 
 
6.1 Simulation scenario 
 
Define the target state as: 
 

kk yyxxx ],,,[  
 

 
Where },{ yx  are the Cartesian coordinates of target 

position in a 2D plane and },{ yx   are the 

corresponding velocities. The target dynamic models 
are given in Equation 1 with five constant 

acceleration input levels pu , which are given in Table 
2. The matrices in Equation 1 are given below: 
 

model acceleration 
p=1 [0, 0]’ 
p =2 [0, 2]’ 
p =3 [2, 0]’ 
p =4 [0, -2]’ 
p =5 [-2, 0]’ 

 

Table 2.  Acceleration input
pu . 
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Where T=1s is the sample interval. Assume a 
linear measurement model (Equation 2): 
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The covariances of the process noise and the 
measurement noise are: 
 

diag([1 1])p
kQ Q 

 
 

diag([10 10])P
KR R 

 
 
Note that the target follows an (almost) constant 
velocity (CV) model if the acceleration input is 
zero, and it follows an (almost) constant 
acceleration (CA) model for non-zero input. In 
each MC run, 45 steps are simulated. The target 
starts with the CV model and has random model 
switches at k=16 and k=30. The numbers of false 
measurements are i.i.d. Poisson distributed with 
spatial density . The false measurements are 
uniformly distributed over the surveillance region. 
Validation gate may be used to reduce the number 
of false measurements in the algorithm. All the 
filters have the same initial estimate 
   

]300,*2000000,*100,*250000[0 x  
 

0 diag([1000,10,1000,10])P 
 

 
The true initial state of the target in each MC run is 
generated by: 
 

),;( 000 PxxNx


～
 

 
Note that the set of target dynamic models used in 
each filter matches the model set of true target 
motion, that is, there is no model-set mismatch 
between the truth and filters. Admittedly, this is 
ideal and most often not true in practice. However, 
tackling the problem of model-set mismatch is 
beyond this work. 
 
6.2 Performance measure 
 
The following performance measures are evaluated: 
 
1. Root mean square errors (RMSE) of position and 
velocity. They reveal the estimation accuracy of 
each algorithm. 
 
2. Non-credibility index (NCI): 
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And [i] is the index of MC runs. The filter is credible 
if NCI is close to zero, meaning that the estimated 
MSE is close to the true MSE. I.I. shows the 
inclination (pessimistic or optimistic) of the filter. If 
I.I. is larger than zero, then the filter tends to be 
optimistic, meaning that the estimated MSE is 
smaller than the truth. If I.I. is smaller than zero, 
then the filter is pessimistic. See [34,35] for more 
details about NCI and I.I.. 
 
6.3 Comparative methods 
 
Our method is compared with the following algorithms: 
 
IMM+PDA: The IMM method is used to deal with 
the model uncertainty. The standard KF in IMM is 
replaced by the PDA filter which deals with the 
measurement origin uncertainty. 
 
IMM+MHT: The MHT is modified by replacing KF 
by IMM. The numbers of hypotheses are reduced 
by GMR. Each Gaussian component corresponds 
to a hypothesis and is approximated by the fusion 
output of IMM. 
 
6.4 Simulation results 
 
Case 1: A moderate density of clutter is considered. 

We set 3103  (unit m-2). M=10 Gaussian 
components (or hypotheses) are maintained in 
MMG and IMM+MHT. The results are given in 
Figure 1.  MMG has the best performance in terms 
of the position RMSE and velocity RMSE, where 
the two peaks of MMG correspond to the 
occurrences of model switch. The IMM based 
methods are more robust to the switch from CV 
model to the other models because there is no 
error peak at the time of the first model switch. 
Also, MMG has the lowest NCI for most of the time. 
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From I.I., it is clear that MMG is constantly 
pessimistic except at the transient steps while 
IMM+PDA is constantly optimistic. The IMM+MHT 
method does not show any consistent pattern. 
 
Case 2: The clutter density is increased to 

3103  (unit m-2). M=15 components (or 
hypotheses) are maintained in MMG and IMM+MHT 
methods. Again, MMG outperforms the other two

algorithms in terms of estimation accuracy for most of 
the time. Similar to Case 1, IMM+PDA and 
IMM+MHT are not sensitive to the switch from CV 
model to the other models. All the filters have larger 
estimation errors than those in Case 1. This makes 
sense due to the increase of clutter density. The NCI 
and I.I. of IMM+PDA become much worse than the 
other two algorithms, meaning that the PDA is more 
sensitive to the clutter density. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Position RMSE                                                        (b) Velocity RMSE 
 

 
 

(c) NCI                                                                              (d) Ⅱ 
 

Figure 1. Simulation results for Case 1. Figures. 1(a) and 1(b) show the position RMSE and velocity  
RMSE, respectively. The NCI and I.I. are given in Figures. 1(c) and 1(d), respectively. MMG has 

 better performance for most of the time, except for the steps right after a model switch. 
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7. Conclusions 
 
An algorithm (i.e., MMG) combining multiple model 
(MM) method and multiple hypothesis tracker 
(MHT) based on Gaussian mixture reduction 
(GMR) is proposed in this work to address the 
problem of single maneuvering target tracking in 
clutter. MM and MHT are two well-known methods 
to cope with the target model uncertainty and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
measurement origin uncertainty, respectively. 
Existing methods combined these two algorithms 
heuristically, where the number of hypotheses in 
MHT and the number of model trajectories in MM 
are reduced separately. In MMG, they are reduced 
jointly based on GMR. It is theoretically more 
appealing and has superior performance, which is 
demonstrated when comparing with the existing 
IMM+PDA algorithm and IMM+MHT algorithm. 
 
 

 
 

 (a) Position RMSE                                                          (b) Velocity RMSE 
 

 
  

(c) NCI                                                                             (d) Ⅱ 
 

Figure 2. Simulation results for Case 2. Figures 2(a) and 2(b) show the position RMSE and 
 velocity RMSE, respectively. The NCI and I.I. are given in Figures 2(c) and 2(d), respectively. 
 Comparing with Case 1, due to the increase of clutter density, all the algorithms have slightly  

larger position RMSE and velocity RMSE, as expected. However, the IMM+PDA has  
much worse NCI and I.I. than those in Case 1. 
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