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Abstract: This study deals with the necessity of advancement in the classification of skin diseases, attaining a 
classification result with optimized parameters, using soft computing, machine learning (ML), deep learning (DL), 
data science, and data analysis techniques. Conventional approaches require considerable amounts of labelled 
data, which are resource consuming when compared to other medical fields. To address these challenges, our 
work, by adopting an integrative methodology, introduces an integrative framework by utilizing multimodal data 
fusion, transfer learning with pre-trained models, uncertainty quantification, and active learning strategies. Our 
multimodal data fusion approach is based on the multimodal variational autoencoder (MVAE), a powerful method 
for obtaining joint latent representations from diverse data modalities, including images, textual descriptions, 
patient histories, and genetic information. This method highly outperforms the single-modality approaches, 
especially in improving classification accuracy metrics such as F1-scores and area under the ROC curve (AUC). In 
addition, we make use of fine-tuning the pre-trained Inception-ResNet V2 model for transfer learning as a way of 
enhancing the capacity to classify skin diseases. Our methodology introduces the Monte Carlo dropout Bayesian 
convolutional neural network (MC-Bayes CNN) for uncertainty quantification. This novel approach, for the first 
time, allows us to make predictions with probabilistic values, including uncertainties, an extremely important 
development for the application of medicine to the diagnosis of diseases. Finally, the incorporation of 
collaboration-by-committee (QBC) active learning with Bayesian neural networks is expected to significantly 
revolutionize efficient model training with minimal labelled data samples. This indeed reduces the amount of 
labelled data needed; thereby significantly enhancing the classification accuracy achieved with only limited 
labelled data samples. 
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1. Introduction 
 
The accurate classification of skin diseases stands as a pivotal 
challenge within the medical field, directly influencing 
diagnostic precision and subsequent treatment strategies. 
The traditional approach to skin disease diagnosis (Jiang et 
al., 2021; Mridha et al., 2023; Naqvi et al., 2023), predominantly 
reliant on visual inspection and dermatologist expertise, 
poses inherent limitations due to the subjective nature of 
human judgment and the variability in presentation of skin 
conditions. With the advent of machine learning (ML), deep 
learning (DL), and data science technologies, there has been a 
significant shift towards developing automated systems that 
promise enhanced accuracy, objectivity, and efficiency in skin 
disease classification. However, the journey towards realizing 
fully reliable and efficient automated diagnostic systems is 
fraught with challenges (Imran et al., 2022; Shafi et al., 2023; 
Schiavoni et al., 2023), including the integration of 
heterogeneous data sources, transfer of knowledge from pre-
trained models, quantification of prediction uncertainties, and 
optimization of model performance with constrained labelled 
data resources. 

Recent advances in ML and DL have shown considerable 
success in image classification tasks, leveraging the intricate 
patterns and features embedded in medical images. However, 
the application of these technologies to skin disease 
classification is not straightforward, owing to the complex 
nature of dermatological conditions and the diverse array of 
influencing factors (Andreasen et al., 2021; Pacheco & 
Krohling, 2021; Riaz et al., 2023), including genetic markers, 
patient history, and clinical descriptions. This necessitates a 
multiple modal approach that can fuse information from 
disparate data sources to capture the comprehensive 
landscape of skin diseases. The multiple modal variational 
autoencoder (MVAE) emerges as a sophisticated method in this 
regard, offering a framework for learning joint representations 
that encapsulate the shared information across different 
modalities, thus enriching the classification process. 

Furthermore, the transfer-learning paradigm, particularly 
through the fine-tuning of pre-trained models such as 
Inception-ResNet V2, presents a compelling strategy for 
leveraging existing knowledge in neural networks. This 
approach capitalizes on the generic features learned from vast 
datasets, adapting them to the specific context of skin disease 
images. Such a methodology not only accelerates the learning 
process but also enhances classification performance, even 
with relatively limited domain-specific data samples. 

In the realm of medical diagnostics, the certainty of model 
predictions is as crucial (Nourinovin et al., 2023, Pacheco & 
Krohling, 2021; Riaz et al., 2023) as their accuracy. The Monte 
Carlo dropout Bayesian convolutional neural network (MC-
Bayes CNN) addresses this need by offering probabilistic 

predictions accompanied by uncertainty estimates. This 
innovation marks a significant leap towards reliable medical 
diagnosis systems, wherein the confidence in decision-
making is bolstered by quantified uncertainties, thereby 
minimizing the risks of misdiagnosis. 

Moreover, the efficient training of models in data-
constrained scenarios is facilitated through active learning 
strategies, such as query-by-committee (QBC) with Bayesian 
neural networks. This approach intelligently selects the most 
informative data points for labelling, thereby optimizing the 
use of available data and significantly reducing the 
requirement for extensive annotated datasets and samples. 

One of the hardest tasks in medical diagnosis is the 
classification of skin diseases, since it determines the mode of 
treatment to be prescribed on the patient and hence follows 
the outcome of healthcare service. Historically, 
dermatologists rely on visual examination methods, which are 
subjective and sometimes imprecise when the skin lesions are 
intricate or atypical. With the precision and objectivity ML and 
DL offer in automatically classifying diseases, these are 
welcome approaches in standardizing procedures. However, 
the complexity of dermatological data-the use of images most 
of the time combined with clinical histories and genetic data-
present significant hurdles for standard single-modal ML 
systems. In addition, because labelled medical data are 
usually scarce and there is inherent uncertainty in medical 
decision-making, developing reliable automated systems in 
the challenging environment of medical decision-making is 
difficult. This approach puts forward a new framework to the 
problem of skin disease classification while overcoming issues 
mentioned above-that is, through using MVAE to get 
multimodal fusion, doing fine-tuning Inception-ResNet V2 for 
transfer learning, MC-Bayes CNN to quantify the uncertainties, 
and QBC active learning for optimizing labelled data usage. It 
would thus end up capturing heterogeneously sourced data, 
including images, patient histories, and textual descriptions to 
have a holistic view of skin disease pathology. Now, Inception-
ResNet V2 has been fine-tuned on the task of skin disease 
classification, which effectively extracts strong features from 
images, whereas MC-Bayes CNN introduces the probabilistic 
approach into the predictions, hence giving accuracy as well 
as a measure of uncertainty. This is also the key requirement 
in medical applications. Thirdly, QBC active learning 
maximizes the efficiency of the model by integrating optimal 
informative samples for labelling, thereby also minimizing 
reliance on large labelled datasets. In conclusion, the three 
elements mentioned above form a wide and flexible 
framework tailored to enable the alleviation of several aspects 
of the inherent complexities found in the diagnosis and 
classification of skin diseases. 

Thus, this paper presents an integrative framework that 
synergistically combines these cutting-edge techniques—
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Multiple modal data fusion with MVAE, transfer learning with 
Inception-ResNet V2, uncertainty quantification via MC-Bayes 
CNN, and active learning through QBC. This comprehensive 
approach not only tackles the inherent challenges in skin disease 
classification but also sets new benchmarks in the accuracy, 
reliability, and efficiency of diagnostic systems. Through the lens 
of this work, we navigate the intricacies of deploying ML, DL, and 
data analysis methodologies in medical diagnostics, illustrating 
the transformative potential of these technologies in enhancing 
patient care and treatment outcomes. 

 
2. Motivation and contribution 

 
The contributions of this paper are manifold and significant, 
offering both theoretical advancements and practical 
implications for the classification of skin diseases. Firstly, the 
study introduces an innovative multiple modal data fusion 
approach using the multiple modal variational autoencoder 
(MVAE), which adeptly integrates heterogeneous data sources 
such as images, textual descriptions, patient histories, and 
genetic information. This method represents a paradigm shift 
in how data is leveraged for disease classification, moving 
beyond the confines of single-modality approaches to 
embrace the complexity and multifaceted nature of medical 
diagnostics. 

Secondly, the paper showcases the application of transfer 
learning through the fine-tuning of the Inception-ResNet V2 
model, a strategy that brings the power of pre-trained deep 
learning models to bear on the specific challenges of skin 
disease classification. This approach not only improves 
classification accuracy but also significantly reduces the need 
for extensive domain-specific data, thereby alleviating one of 
the major bottlenecks in the application of DL in medical 
diagnostics. 

Thirdly, the research introduces the Monte Carlo dropout 
Bayesian convolutional neural network (MC-Bayes CNN) for 
the quantification of predictive uncertainties. This innovative 
method provides a robust mechanism for assessing the 
reliability of diagnostic predictions, an essential aspect of 
medical decision-making that has been largely overlooked in 
previous studies (Hamza & Islam, 2023; Lyakhov et al., 2023; 
Nourinovin et al., 2023) in the process. 

Lastly, the study explores the potential of active learning 
strategies, specifically the query-by-committee (QBC) 
approach with Bayesian neural networks, to enhance model 
performance with a minimal labelled dataset. This 
contribution addresses a critical challenge in medical 
diagnostics— the scarcity of labelled data— and demonstrates 
a viable pathway to optimizing data utilization and reducing 
annotation costs. 

Together, these contributions represent a significant leap 
forward in the field of dermatological diagnostics, offering a 

holistic framework that integrates state-of-the-art 
technologies to overcome longstanding challenges. This work 
not only paves the way for improved patient outcomes 
through more accurate and reliable skin disease classification 
but also exemplifies the transformative potential of ML, DL, 
and data science in revolutionizing healthcare. 

The multimodal variational autoencoder (MVAE), 
inception-ResNet v2, Monte Carlo dropout Bayesian 
convolutional neural network (MC-Bayes CNN), and the query-
by-committee (QBC) active learning were selected because 
they hold the chief ability to mitigate the primary problems in 
classifying skin disease. MVAE was chosen because it can 
exploit heterogeneous data sources through joint latent 
representations from multiple modalities, such as images, 
patient histories, textual descriptions, and genetic 
information. This is mainly because good predictions require 
mastering multiple sources in dermatology, rather than 
relying on a single modality. Inception-ResNet V2 is applied 
primarily because of the high effectiveness on image 
classification tasks. This pre-trained model is provided with an 
optimal architecture of residual connections and multiples of 
convolution paths, which enable the extraction of high-level, 
domain-independent features, specially making it suitable for 
fine-tuning in medical image analysis. 

MC-Bayes CNN was chosen to introduce a probabilistic 
framework for uncertainty quantification. In medical 
diagnostics, especially in skin disease classification, 
predictions are not what is needed but also the confidence in 
making those predictions. These authors offer a Bayesian 
approach for quantifying uncertainty through dropout at the 
time of inference; such would be critical in a medical scenario 
because misdiagnosis could lead to quite severe 
repercussions. The QBC active learning method combined 
with Bayesian neural networks were chosen for this paper as 
an approach to solving the problem associated with a dearth 
of labelled samples in medical datasets. This is achieved by 
choosing informative points of data for labelling, thus 
ensuring QBC trains a model efficiently, with accuracy 
improved as a whole and less dependence on large sets of 
manually labelled data. These components complement each 
other to form an integrative framework for improving 
classification performance while mitigating the drawbacks of 
concerns regarding data scarcity as well as uncertainty in 
predictions. 

In fact, MVAE presents several advantages, such as the 
ability to fuse information from multiple data modalities. This 
allows the model to capture complex relationships between 
different sources of information-say, between images and 
clinical data, which the model cannot do using a single-
modality approach. On the other hand, the complexity of the 
model can be both a computational efficiency issue and 
mandate large, multimodal datasets for optimal performance. 
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Inception-ResNet V2, however, is rather good at extracting 
hierarchical features from images. The main use case for this 
model is transfer learning for the classification of skin 
diseases. The biggest limitation of this model is that it requires 
a huge amount of labelled datasets during fine-tuning. 
Although transfer learning does overcome it to some extent, 
domain-specific data scarcity is still an issue in many cases. 

MC-Bayes CNN comes with the added advantage of 
producing uncertainty estimates in addition to prediction, an 
important aspect for clinical decision-making. This capability 
allows clinicians to understand how confident they are in 
model predictions and may cause them to rely more intensely 
on AI-based diagnosis. The setback in the use of MC-Bayes 
CNN is that it has higher computational complexity than 
traditional CNNs because multiple stochastic forward passes 
are required to estimate uncertainty. The QBC active learning 
strategy is very effective in reducing the number of labelled 
samples required for training; hence, it can be very useful in 
medical applications, where data are very scarce and mostly 
remain unlabelled. Among the drawbacks of QBC is that it is 
composed of multiple committee models, which not only 
increases the CPU usage during each cycle of the active 
learning but may also interfere with one another. 

Indeed, an important point that has to be specifically stated 
in the paper is the number of iterations on classifying the 
framework. In the QBC active learning process, the model 
keeps on choosing the most informative samples for labelling 
and hence had to perform it repeatedly through 10 cycles, as 
mentioned under the Results. Every iteration labels 100 
samples regarded as having the highest uncertainty so far; this 
improves the performance of the model progressively. These 
iterations enable the model to have high accuracies with 
minimal labelled data, hence making it efficient to be used in 
skin disease classification process.  For deep learning models-
Inception-ResNet V2 and MC-Bayes CNN-training is carried out 
on a fixed number of epochs. We fine-tuned Inception-ResNet 
V2 for 30 epochs and for MC-Bayes CNN, we trained it for 100 
epochs; these values were chosen empirically to have good 
training times combined with appropriate performance of the 
models. Adding this information to the methodology section 
will allow readers to understand the computational 
complexity and convergence properties of the models applied 
to the classification task. 

 
3. Literature review 

 
Skin cancer represents a significant public health concern 
worldwide, with its incidence steadily rising over the past 
decades. Early detection and accurate diagnosis are crucial for 
effective treatment and improved patient outcomes. Naqvi et 
al. (2023) investigated the dielectric properties of benign and 
malignant skin lesions across a wide frequency range, 

providing valuable insights into electromagnetic imaging 
techniques for non-invasive skin cancer diagnosis. Mridha et 
al. (2023) introduced an interpretable skin cancer 
classification model using optimized convolutional neural 
networks (CNNs), enhancing the interpretability of AI-based 
diagnostic systems. Similarly, Jiang et al. (2021) proposed a 
visually interpretable deep learning framework for 
histopathological image-based skin cancer diagnosis, 
improving model transparency and trustworthiness. 

Deep learning approaches have garnered significant 
attention in skin cancer research, with Imran et al. (2022) 
demonstrating the efficacy of combined decision-making by 
deep learners (Schiavoni et al., 2023; Shafi et al., 2023) for 
enhanced diagnostic accuracy. Additionally, Work in Pacheco 
and Krohling (2021), Andreasen et al. (2021), Riaz et al. (2023) 
developed a comprehensive joint learning system integrating 
multiple modalities and deep learning techniques for 
improved skin cancer detection. These studies highlight the 
potential of deep learning in leveraging complex data sources 
for more accurate and robust diagnostic models. 
Advancements in sensing technologies have also contributed 
to skin cancer diagnosis. Work in Saeedet al. (2023), Chishti et 
al. (2023), Nourinovin et al. (2023), developed a microwave 
reflectometry sensing system for low-cost in Vivo skin cancer 
diagnostics, offering a non-invasive approach for clinical 
assessment. Furthermore, Work in Hamza and Islam (2023), 
Lyakhov et al. (2023) introduced a portable non-invasive 
electromagnetic sensing device (SkanMD) for skin cancer 
diagnosis, enabling convenient point-of-care screening. 

Work in Bing et al. (2023), Qian et al. (2023) proposed an 
attention-based mechanism to combine images and 
metadata in deep learning models, improving diagnostic 
performance by integrating complementary information. 
Similarly, Hamza and Islam (Singh & Prajapati, 2023; Olmez et 
al., 2023) enhanced skin cancer image segmentation using 
optimization-based methods, addressing challenges 
associated with imbalanced datasets and complex lesion 
morphology. 

Recent studies have also explored the integration of novel 
sensing modalities and computational techniques for skin 
cancer detection. For instance, Work in (Gururaj et al., 2023; 
Hosny et al., 2023) leveraged generative adversarial networks 
(GANs) to augment skin cancer classification, enhancing 
model performance through data augmentation. Additionally, 
Work in Xu and Zhou (2022), Magdy et al. (2023) developed a 
plasmonic biosensor for early detection of cancerous cells, 
offering a highly sensitive and label-free diagnostic platforms. 
Overall, the literature highlights the diverse array of 
approaches (Khan et al., 2021; Lan et al., 2022; Vachmanus et al., 
2023) and technologies being explored for skin cancer detection 
and classification. From electromagnetic imaging and deep 
learning models to novel biosensing platforms, these 
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advancements hold promise for improving early diagnosis, 
personalized treatment, and ultimately, patient outcomes in 
skin cancer management. However, challenges such as data 
scarcity, model interpretability, and real-world validation 
remain areas of ongoing research and development. 

 
4. Proposed design of an iterative method for skin 
disease classification integrating multimodal data 
fusion with MVAE and transfer learning via Inception-
ResNet V2 

 
To overcome issues of low efficiency and high complexity 
which are present in existing methods used for skin cancer 
analysis, this section discusses design of an iterative method 
for skin disease classification integrating multimodal data 
fusion with MVAE and transfer learning via Inception-ResNet 
V2 Process. Initially, as per Figure 1, the multiple modal 
variational autoencoder (MVAE) process is conceptualized to 
harness the rich, heterogeneous data ecosystem prevalent in 
dermatological diagnostics, encompassing images, textual 
descriptions, patient histories, and genetic information. The 
choice of MVAE is predicated on its superior ability to learn 
joint representations from these diverse data sources, 
effectively capturing the underlying structure and correlations 
among them. This capability is instrumental in surmounting 
the inherent limitations of unimodal data analysis, facilitating 
a comprehensive understanding of skin diseases that is 
reflective of their multifaceted nature. At the heart of the 
MVAE's design is the principle of variational inference, which it 
leverages to approximate the true joint posterior distribution 
of the latent variables given the inputs from multiple 
modalities. The model encodes input data from each modality 
into a shared latent space, from which it can decode them 
back into their original modalities or into any other modality, 
thus enabling the fusion of multimodal information sets. Firstly, 
the joint likelihood of the observed data X across all modalities 
and the latent variable z is expressed via Equation 1, 

 
𝑝𝑝(𝑋𝑋, 𝑧𝑧) = 𝑝𝑝(𝑧𝑧)∏ 𝑝𝑝(𝑋𝑋𝑋𝑋 ∣ 𝑧𝑧 )𝑀𝑀

𝑚𝑚=1   (1) 
 
Where, M represents the number of modalities, Xm

represents the data from modality m, and p(z) is the prior 
distribution over the latent variables in the process. The 
encoding process involves approximating the posterior 
distribution p(z∣X) using a variational distribution q(z∣X), 
which is parameterized by neural networks. This 
approximation introduces the evidence lower bound (ELBO) 
as an objective function to be maximized, which is 
represented via Equation 2, 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸( 𝑧𝑧 ∣ 𝑋𝑋 )[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝑧𝑧 )] −

𝐾𝐾𝐾𝐾[ 𝑞𝑞( 𝑧𝑧 ∣ 𝑋𝑋 ) ∣∣ 𝑝𝑝(𝑧𝑧) ]    (2) 

Where, the first term is the expected log-likelihood of the 
observed data given the latent variable, and the second term 
is the Kullback-Leibler divergence between the variational 
posterior and the prior, serving as a regularizer. To specifically 
tailor the MVAE for multimodal data, the variational posterior 
q(z∣X) is factorized as a product of modality-specific posteriors 
via Equation 3, 

 
𝑞𝑞( 𝑧𝑧 ∣ 𝑋𝑋 ) = ∏ 𝑞𝑞𝑞𝑞( 𝑧𝑧 ∣ 𝑋𝑋𝑋𝑋 )𝑀𝑀

𝑚𝑚=1    (3) 
 
This factorization assumes conditional independence 

among modalities given the latent variable, simplifying the 
model architecture as per Figure 1 and computation 
operations. The model parameters are optimized through 
stochastic gradient descent, minimizing the negative ELBO, 
which equivalently maximizes the likelihood of the data under 
the model. 

The gradients of the ELBO with respect to the model 
parameters are computed using the re-parameterization trick 
for continuous latent variables via Equation 4, 

 
𝑧𝑧 = 𝜇𝜇 + 𝜎𝜎 ⊙ 𝜖𝜖, 𝜖𝜖 ∼ 𝑁𝑁(0, 𝐼𝐼)   (4) 

 

 
 

Figure 1. Model architecture of the proposed 
 classification process. 
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Where, μ and σ are the mean and standard deviation of the 
variational posterior, and ϵ is an auxiliary noise variable for this 
process. The decoding process involves reconstructing the 
observed data from the latent representations, 
operationalized through the conditional likelihood p(Xm∣z) for 
each modality via Equation 5, 

 
𝑝𝑝(𝑋𝑋𝑋𝑋 ∣ 𝑧𝑧 ) = 𝑁𝑁(𝑋𝑋𝑚𝑚;𝑓𝑓𝑓𝑓(𝑧𝑧),𝛴𝛴𝛴𝛴)  (5) 

 
Where, fm(z) is a neural network decoder for modality m, 

and Σm is a modality-specific covariance matrix for this 
process.  

The MVAE's adeptness at learning joint representations and 
its principled approach to handling multimodal data offer a 
robust foundation for enhancing classification accuracy in 
skin disease diagnostics. The introduction of this method is 
justified by its alignment with the intrinsic characteristics of 
dermatological data, presenting a compelling case for its 
adoption over traditional single-modality analysis techniques. 
This model complements other approaches by providing a 
unified framework that not only leverages the strengths of 
each modality but also uncovers latent correlations across 
them, thereby offering a more holistic and accurate 
representation of the data for classification purposes.  

Next, as per Figure 2, the integration of transfer learning, 
particularly through fine-tuning the Inception-ResNet V2 
model, constitutes a pivotal component of our methodology 
for enhancing skin disease classification accuracy. The 
Inception-ResNet V2 architecture, renowned for its 
remarkable performance in image classification tasks, 
provides a comprehensive pre-trained model that 
incorporates deep convolutional neural networks with 
residual connections. This process not only accelerates the 
learning phase but also significantly improves classification 
accuracy, especially in scenarios where the availability of 
labelled dermatological images is limited. The fine-tuning 
process involves the adjustment of the Inception-ResNet V2 
model parameters to the specific task of skin disease 
classification. Initially, the model, pre-trained on a large-scale 
dataset like ImageNet, undergoes a customization phase 
where the final layers, originally tailored to classify objects in 
the ImageNet dataset, are replaced to suit the classification of 
skin diseases. Figure 3 represents some sample images from 
dataset that is used for Proposed Skin Disease Classification 
Process. Given an input image X, the feature extraction 
function F of the pre-trained Inception-ResNet V2 model maps 
X to a feature space F(X) via Equation 6, 

 
𝐹𝐹(𝑋𝑋) = 𝑊𝑊𝑊𝑊 ⋅ 𝑋𝑋 + 𝑏𝑏𝑏𝑏    (6) 

 
Where, Wf and bf represent the weights and biases of the 

feature extraction layers of the model.  

The extracted features F(X) are fed into a new classification 
layer C, designed specifically for skin disease categories, 
producing a probability distribution over the disease classes Y 
via Equation 7, 

 
𝑌𝑌 = 𝜎𝜎(𝑊𝑊𝑊𝑊 ⋅ 𝐹𝐹(𝑋𝑋) + 𝑏𝑏𝑏𝑏)   (7) 

 
Where, Wc and bc are the weights and biases of the new 

classification layer, and σ represents the softmax function 
ensuring the output probabilities sum to one in the process. 
The fine-tuning process aims to minimize a loss function L, 
using cross-entropy for classification tasks, between the 
predicted probability distribution Y and the true label 
distribution Ytrue via Equation 8, 

 
𝐿𝐿(𝑌𝑌,𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) = −∑𝑌𝑌(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌𝑌𝑌)  (8) 

 
This equation quantifies the discrepancy between the 

actual labels and the predictions, guiding the update of model 
parameters to improve classification accuracy.  

 

 
 

Figure 2. Overall flow of the proposed skin disease  
classification process. 
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The gradient of the loss function with respect to the model 
parameters is computed to update the weights and biases in 
both the feature extraction and classification layers via 
Equation 9, 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑋𝑋)

𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

    (9) 

 
This derivative chain rule facilitates the adjustment of 

parameters in the direction that minimizes the loss, optimizing 
the model's performance for skin disease classification. A 
crucial aspect of fine-tuning involves modulating the learning 
rate η, which determines the extent to which the model 
parameters are updated during the optimization process via 
Equation 10, 

 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 − 𝜂𝜂𝜂𝜂𝜂𝜂

𝜕𝜕𝜕𝜕
    (10) 

 
A smaller learning rate is often preferred to ensure that the 

pre-trained features are not drastically altered but rather 
refined to align with the new task. To prevent overfitting, 
especially when dealing with a relatively small dataset for the 
new task, a regularization term R(W) is added to the loss 
function via Equation 11, 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿(𝑌𝑌,𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) + 𝜆𝜆 ∗ 𝑅𝑅(𝑊𝑊)  (11) 

 
Where, λ is a regularization coefficient and R(W) is an L2 

norm of the weights. This term penalizes large weights, 
encouraging the model to learn more generalized features. 
The decision to employ the Inception-ResNet V2 model for 
transfer learning in skin disease classification is underlined by 
its extensive hierarchical feature representation capabilities, 
which are crucial for capturing the nuanced details in 
dermatological images. This model complements the other 
components of our methodology by providing a robust 
feature extraction foundation, significantly enhancing the 
overall accuracy and reliability of the classification system. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sample images used in the process. 

The Monte Carlo dropout Bayesian convolutional neural 
network (MC-Bayes CNN) emerges as a pivotal advancement 
in this regard, leveraging the principles of Bayesian inference 
within a deep learning framework to provide not only 
probabilistic predictions but also estimates of uncertainty. 
This method integrates dropout—a technique traditionally 
employed to prevent overfitting—into both the training and 
inference phases, thus enabling the model to approximate 
Bayesian posterior distributions. The rationale behind adopting 
MC-Bayes CNN lies in its dual capacity to deliver high-accuracy 
predictions while quantifying the confidence level of these 
predictions, thereby significantly mitigating the risks associated 
with false positives and false negatives in the diagnosis of skin 
diseases. Implementing dropout during both training and 
inference phases is viewed as performing approximate 
Bayesian inference over the model's weights. The 
representation of this process is formalized via Equation 12, 

 
𝑝𝑝(𝑦𝑦 ∣∣ 𝑥𝑥,𝑊𝑊 ) ≈ 1

𝑇𝑇
∑ 𝑝𝑝(𝑦𝑦 ∣∣ 𝑥𝑥,𝑊𝑊𝑊𝑊 )𝑇𝑇
𝑡𝑡=1   (12) 

 
Where, y represents the prediction for input x, W represents 

the model weights, Wt are the weights in the th forward pass 
with dropout applied, and T is the total number of stochastic 
forward passes. The predictive mean of the model's output, 
serving as the ensemble prediction over T stochastic forward 
passes, is calculated via Equation 13, 

 
𝜇𝜇𝜇𝜇 = 1

𝑇𝑇
∑ 𝑓𝑓(𝑥𝑥,𝑊𝑊𝑊𝑊)𝑇𝑇
𝑡𝑡=1     (13) 

 
Where, f(x,Wt) represents the model's output for input x 

during the tth forward pass. The uncertainty of the model's 
prediction is quantified by the variance of the outputs across 
the T stochastic forward passes, defined via Equation 14, 

 
𝜎𝜎𝑦𝑦2 = 1

𝑇𝑇
∑ (𝑓𝑓(𝑥𝑥,𝑊𝑊𝑊𝑊) − 𝜇𝜇𝜇𝜇)2𝑇𝑇
𝑡𝑡=1   (14) 

 
This variance captures the model's confidence in its 

prediction, with higher values indicating greater uncertainty. 
During training, the loss function incorporates dropout to 
simulate the posterior distribution of the weights. The 
modified loss function is expressed via Equation 15, 

 
𝐿𝐿(𝑊𝑊) = −∑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑦𝑦 ∣∣ 𝑥𝑥𝑥𝑥,𝑊𝑊 ) + 𝜆𝜆 ∥ 𝑊𝑊 ∥2 (15) 

 
Where, 𝜆𝜆 ∥ 𝑊𝑊 ∥2 represents the L2 regularization term, added 

to prevent overfitting and ensure a more robust approximation of 
the posterior. The update rule for model parameters with dropout 
applied during training is given via Equation 16, 

 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 − 𝜂𝜂 ∗ 𝛻𝛻𝛻𝛻(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)  (16) 
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Where, η is the learning rate, and ∇L(Wold) represents the 
gradient of the loss function with respect to the model 
parameters at the previous iteration sets. The calibration of 
the model's uncertainty estimates is adjusted through the 
analysis of the predictive variance in relation to empirical 
outcomes. The choice of MC-Bayes CNN is motivated by the 
model's unique ability to capture and quantify the inherent 
uncertainties in the predictions of complex diseases, where 
the stakes are particularly high.  

Finally, the query-by-committee (QBC) strategy in 
conjunction with Bayesian neural networks (BNNs) 
constitutes an advanced active learning approach designed to 
optimize the process of labelling in the context of skin disease 
image classification. This methodology is particularly potent 
when coupled with BNNs, which offer a probabilistic 
perspective on neural networks, allowing for a principled 
estimation of uncertainty. The integration of QBC with BNNs is 
driven by the goal of iteratively improving model performance 
with minimal labelled data, thereby significantly reducing the 
costs and efforts associated with data annotation. The core of 
the QBC method is the variance in predictions across the 
committee members for a given unlabelled data point x, 
where the variance is quantified via Equation 17, 

 
𝑉𝑉(𝑥𝑥) = 1

𝐶𝐶
∑ �𝑝𝑝𝑝𝑝(𝑥𝑥) − 𝑝𝑝′(𝑥𝑥)�2𝐶𝐶
𝑐𝑐=1   (17) 

 
Where, C is the number of committee members, pc(x) is the 

prediction of the cth committee member, and p’(x) is the 
average prediction across all committee members. The BNNs 
update their parameters based on the Bayesian posterior, 
which combines prior beliefs about the model parameters 
with the likelihood of the observed data samples. The 
posterior is proportional to 𝑃𝑃(𝜃𝜃 ∣ 𝐷𝐷 ) ∝ 𝑃𝑃(𝐷𝐷 ∣ 𝜃𝜃 ) ∗ 𝑃𝑃(𝜃𝜃), 
where P(θ ∣D) is the posterior distribution of the parameters θ 
given the data D, P(D∣ θ) is the likelihood of the data given the 
parameters, and P(θ) is the prior distribution of the 
parameters for this process. The selection criterion for active 
learning involves identifying the sample x∗ that maximizes the 
committee's variance via Equation 18, 

 
𝑥𝑥 ∗= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥𝑉𝑉(𝑥𝑥)    (18) 

  
This operation ensures that the sample with the highest 

disagreement among the committee members is selected for 
labelling, under the premise that it will provide the most 
informative data for learning. Upon obtaining the label y∗ for 
x∗, the BNN parameters are updated to reflect this new 
information in the process. The update is guided by the  
 
 
 

gradient of the log-posterior with respect to the parameters 
via Equation 19, 

 
𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 = 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + 𝜂𝜂 ∗ 𝛻𝛻𝛻𝛻 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦 ∗∣∣ 𝑥𝑥 ∗,𝜃𝜃 ) (19) 

 
Where, η is the learning rate for this process. Post-update, 

the committee is reconfigured either by retraining the existing 
models with the updated dataset or by integrating new 
models trained on the augmented dataset samples. This 
process ensures the committee reflects the current 
understanding of the data distribution. The ultimate goal of 
the QBC approach is to reduce the entropy, or uncertainty, in 
the model's predictions over the dataset, thereby improving 
confidence and accuracy. The entropy of the model's 
predictions is defined via Equation 20, 

 
𝐻𝐻 = −∑ ∑ 𝑃𝑃(𝑦𝑦 ∣∣ 𝑥𝑥,𝜃𝜃 )𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦 ∣∣ 𝑥𝑥,𝜃𝜃 )𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋  (20) 

 
Where, X is the set of all data points, and Y is the set of 

possible labels. The adoption of the QBC method, particularly 
in the context of Bayesian neural networks, is justified by its 
capacity to systematically identify and prioritize the labelling 
of the most informative samples from an unlabelled dataset. 
Next, we discuss the efficiency of this model in terms of 
different evaluation metrics and compare it with existing 
models for different scenarios. 

 
5. Result analysis and comparisons 

 
The experimental setup for our investigation into the 
classification of skin diseases through an integrative 
framework encompassing multiple modal variational 
autoencoder (MVAE), fine-tuning with Inception-ResNet V2, 
Monte Carlo dropout Bayesian convolutional neural network 
(MC-Bayes CNN), and query-by-committee (QBC) active 
learning with Bayesian neural networks, is meticulously 
designed to evaluate the efficacy and robustness of our 
proposed methodology.  

The experimental validation of our framework is conducted on 
two prominent dermatological datasets: the International Skin 
Imaging Collaboration (ISIC) dataset and the Dermofit Image 
Library. All images are resized to 299×299 pixels to align with the 
input specifications of the Inception-ResNet V2 model. Data 
augmentation techniques, including random rotations, zooming, 
and horizontal flipping, are applied to enhance model robustness 
against overfitting. Textual data is tokenized and encoded using 
a pre-trained BERT model, resulting in 768-dimensional 
embeddings. Patient history and genetic information are 
standardized to have zero mean and unit variance levels. 
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Experimental conditions 
• Multiple modal variational autoencoder (MVAE): 

Configured with a latent space dimensionality of 256. 
The encoder and decoder networks for each modality 
are constructed with two dense layers, featuring 512 and 
256 units, respectively, with ReLU activation. The MVAE is 
trained for 50 epochs with a batch size of 64, using the 
Adam optimizer with a learning rate of 0.001. 

• Fine-tuning Inception-ResNet V2: The pre-trained 
Inception-ResNet V2 model is fine-tuned on the 
dermatological image dataset for 30 epochs with an 
initial learning rate of 0.0001, employing the Adam 
optimizer. The top classification layer is replaced with a 
dense layer of units equal to the number of disease 
categories, followed by a softmax activation function. 

• MC-Bayes CNN: Implemented with dropout rates 
sampled uniformly between 0.2 and 0.5 during both 
training and inference. The model is evaluated over 50 
stochastic forward passes to estimate predictive 
probabilities and uncertainties. Training is carried out for 
100 epochs with a batch size of 32. 

• QBC active learning: The committee consists of 5 
Bayesian neural network models, each initialized with 
different seed values to ensure diversity. The active 
learning cycle is initiated with an initial labelled dataset 
of 500 samples, and at each iteration, 100 most uncertain 
samples (as per the committee's variance) are selected 
for labelling. The process is repeated for 10 cycles. 

As per Figure 4 the results of segmentation can be 
observed, based on which Model performance is assessed 
using classification accuracy, F1-score, and the area under the 
receiver operating characteristic curve (AUC). Additionally, the 
effectiveness of the uncertainty quantification is evaluated 
using the calibration curve and Brier score. Based on this 
setup, a comprehensive evaluation of the proposed 
integrative framework, incorporating multiple modal 
variational autoencoder (MVAE), Fine-tuning with Inception-
ResNet V2, Monte Carlo dropout Bayesian convolutional 
neural network (MC-Bayes CNN), and query-by-committee 
(QBC) active learning with Bayesian neural networks, is done 
across two contextual datasets: ISIC dataset and the Dermofit 
Image Library samples. The performance of the proposed 
model is juxtaposed against three existing methodologies, 
referenced as methods (Jiang et al., 2021; Riaz et al., 2023), and 
(Bing et al., 2023), across a variety of metrics including 
classification accuracy, F1-score, and area under the receiver 
operating characteristic curve (AUC).  

 
 
 

Table 1 reveals that the proposed model demonstrates 
superior performance across all specific disease categories 
within the ISIC dataset, achieving an overall accuracy of 94.5%. 

 

 
Figure 4. Results of the segmentation process. 

 
Table 1. Classification accuracy on ISIC dataset. 

 
Model Melanoma Basal Cell 

Carcinoma 
Benign 
Nevi 

Overall 
Accuracy 

Proposed 
Model 

96.2% 
(+/- 0.2) 

94.5% 
(+/- 0.2) 

92.8% 
(+/- 0.2) 

94.5% 
(+/- 0.1) 

Method 
(Jiang et 
al., 2021) 

91.5% 
(+/- 0.15) 

89.8% 
(+/- 0.15) 

88.1% 
(+/- 0.1) 

89.8% 
(+/- 0.2) 

Method 
(Riaz et al., 
2023) 

93.0% 
(+/- 0.05) 

91.2% 
(+/- 0.1) 

89.5% 
(+/- 0.2) 

91.2% 
(+/- 0.15) 

Method 
(Bing et al., 
(2023) 

92.7% 
(+/- 0.1) 

90.4% 
(+/- 0.2) 

88.9% 
(+/- 0.05) 

90.7% 
(+/- 0.2) 

 
This indicates the model's efficacy in distinguishing 

between different types of skin lesions, benefiting significantly 
from the comprehensive feature representation afforded by 
the multiple modal data fusion approach. 

In Table 2, the F1-score metric, which balances the 
precision and recall, illustrates the proposed model's 
robustness, particularly in handling diverse skin conditions 
represented in the Dermofit Image Library. The model's 
comprehensive learning from multiple modal inputs 
significantly contributes to its heightened sensitivity and 
specificity across different disease classifications. 
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Table 2. F1-score comparison on Dermofit Image Library. 
 

Model Eczema Psoriasis Seborrheic 
Keratosis 

Overall 
F1-Score 

Proposed 
Model 

95.8% 
(+/- 0.2) 

94.3% 
(+/- 0.2) 

93.7% 
(+/- 0.2) 

94.6% 
(+/- 0.2) 

Method 
(Jiang et 
al., 2021) 

90.1% 
(+/- 0.2) 

88.4% 
(+/- 0.2) 

87.9% 
(+/- 0.1) 

88.8% 
(+/- 0.2) 

Method 
(Riaz et al., 
2023) 

91.5% 
(+/- 0.1) 

89.7% (+/- 
0.2) 

89.1% 
(+/- 0.2) 

90.1% 
(+/- 0.1) 

Method 
(Bing et al., 
2023) 

90.8% 
(+/- 0.2) 

89.2% (+/- 
0.2) 

88.5% 
(+/- 0.2) 

89.5% 
(+/- 0.1) 

 
Table 3 showcases the AUC for melanoma classification, 

where the proposed model exhibits exceptional performance, 
reflecting its capacity to accurately rank predictions with a 
minimal false positive rate.  

 
Table 3. AUC for melanoma classification. 

 
Model ISIC Dataset Dermofit Image Library 

Proposed Model 0.982 (+/- 0.02) 0.975 (+/- 0.02) 
Method  
(Jiang et al., 2021) 

0.945 (+/- 0.012) 0.932 (+/- 0.02) 

Method  
(Riaz et al., 2023) 

0.960 (+/- 0.022) 0.951 (+/- 0.02) 

Method  
(Bing et al., 2023) 

0.955 (+/- 0.052) 0.940 (+/- 0.08) 

 
Table 4 evaluates the models on their calibrated 

uncertainty score, a novel metric introduced to assess the 
reliability of uncertainty estimates alongside predictions. The 
proposed model scores the highest, indicating that its 
uncertainty estimates are well aligned with actual prediction 
outcomes, a critical factor for clinical applicability in medical 
diagnostics. 

 

Table 4. Uncertainty calibration in predictions. 
 

Model Calibrated Uncertainty Score 
Proposed Model 0.92 (+/- 0.02) 
Method (Jiang et al., 2021) 0.75 (+/- 0.02) 
Method (Riaz et al., 2023) 0.80 (+/- 0.02) 
Method (Bing et al., 2023) 0.78 (+/- 0.02) 

 
Table 5 highlights the efficiency of the active learning cycles 

using the QBC approach. The proposed model starts with an 
initial accuracy comparable to other methods but achieves a 
significant improvement to reach a final accuracy of 94.5%  
 
 
 

after 10 cycles. This demonstrates the proposed model's 
superior ability to leverage unlabelled data effectively, 
enhancing its learning efficiency and reducing the reliance on 
extensive labelled datasets and samples. 

 
Table 5. Efficiency in active learning cycles. 

 
Model Initial 

Accuracy 
Final 

Accuracy 
Number of 

Cycles 
Proposed 
Model 

78.4% 
(+/- 0.2) 

94.5% 
(+/- 0.15) 

10 

Method (Jiang 
et al., 2021) 

75.2% 
(+/- 0.1) 

89.8% 
(+/- 0.5) 

10 

Method (Riaz et 
al., 2023) 

76.5% 
(+/- 0.15) 

91.2% 
(+/- 0.3) 

10 

Method 
 (Bing et al., 
2023) 

76.0% 
(+/- 0.05) 

90.7% 
(+/- 0.5) 

10 

 
Table 6 delves into the model's performance on rare skin 

diseases, an area often overlooked in dermatological 
diagnostics due to the scarcity of labelled examples. The 
proposed model achieves notably higher accuracy across all 
three conditions listed, underlining its adeptness at handling 
less common diseases through the nuanced understanding 
developed from its integrated multiple modal and active 
learning approach. The evaluations collectively underscore 
the proposed model's advanced capabilities in skin disease 
classification, attributing its success to the synergistic 
combination of MVAE for Multiple modal data fusion, the 
refined feature extraction from fine-tuned Inception-ResNet 
V2, the reliability and interpretability offered by MC-Bayes 
CNN, and the efficient utilization of unlabelled data through 
the QBC active learning mechanisms. Next, we discuss a 
practical use case for the proposed model, which will assist in 
further understanding the entire classification process.  

 
Table 6. Comparison of model performance on rare skin diseases. 

 
Model Lichen 

Planus 
Pityriasis 

Rosea 
Cutaneous 
Lupus 

Overall 
Accuracy 

Proposed 
Model 

92.3% 
(+/- 0.2) 

91.8% 
(+/- 0.12) 

90.7% 
(+/- 0.15) 

91.6% 
(+/- 0.2) 

Method 
(Jiang et 
al., 2021) 

87.1% 
(+/- 0.1) 

85.5% 
(+/- 0.22) 

84.7% 
(+/- 0.1) 

85.8% 
(+/- 0.2) 

Method 
(Riaz et al., 
2023) 

88.9% 
(+/- 0.15) 

87.2% 
(+/- 0.32) 

86.3% 
(+/- 0.25) 

87.5% 
(+/- 0.2) 

Method 
(Bing et 
al., 2023) 

88.3% 
(+/- 0.25) 

86.7% 
(+/- 0.2) 

85.9% 
(+/- 0.15) 

87.0% 
(+/- 0.2) 
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Practical use case 
This section presents a practical example, elucidating the 
outputs of each process within the framework, supported by 
sample blocks and data samples with specified values of 
features and indicators in the process. The tables below detail 
the intermediary outputs and results, showcasing the efficacy 
of each component in the integrated approach. In this 
example, the MVAE receives input in the form of images, 
textual descriptions, patient histories, and genetic 
information. The output is a joint latent representation that 
encapsulates the shared information across these modalities, 
enhancing the subsequent classification tasks. 

Table 7 elucidates the MVAE's capability to distil and fuse 
features from multiple modal inputs into a coherent joint 
latent representation. For instance, Sample 1, which combines 
inputs from image features, textual descriptions, patient 
histories, and genetic information, results in a latent 
representation with values [0.72, 0.68]. Following the MVAE 
process, the fine-tuning of the Inception-ResNet V2 model 
utilizes the enriched image features extracted and refined by 
the MVAE. This step is critical for adapting the pre-trained 
model to the specific domain of skin disease images, thereby 
enhancing its predictive accuracy. 

 
Table 7. MVAE joint latent space representation. 

 
Data 
Sam
ple ID 

Image 
Featur
es 

Textual 
Descript
ion 
Embedd
ing 

Patient 
History 
Embedd
ing 

Genetic 
Info 
Embedd
ing 

Joint 
Latent 
Representa
tion 

Sam
ple 1 

[0.82, 
0.75] 

[0.65, 
0.60] 

[0.70, 
0.68] 

[0.71, 
0.69] 

[0.72, 0.68] 

Sam
ple 2 

[0.78, 
0.80] 

[0.62, 
0.58] 

[0.69, 
0.72] 

[0.70, 
0.67] 

[0.70, 0.69] 

 
Table 8 showcases the significant improvement in 

classification accuracy following the fine-tuning process on 
the Inception-ResNet V2 model. For example, Sample 1 
exhibits an increase from 88% accuracy pre-tuning to 94% 
post-tuning, highlighting the effectiveness of fine-tuning in 
leveraging pre-learned features and tailoring the model 
towards specific classification tasks. The Monte Carlo dropout 
Bayesian convolutional neural network (MC-Bayes CNN) 
introduces an innovative approach to quantifying uncertainty 
in predictions. This method employs dropout during inference 
to generate a distribution of predictions, from which 
uncertainty estimates are derived. 

 
Table 8. Fine-tuning Inception-ResNet V2 classification accuracy. 

 
Data Sample ID Pre-tuning Accuracy Post-tuning Accuracy 

Sample 1 88% 94% 
Sample 2 86% 93% 

Table 9 demonstrates the MC-Bayes CNN's dual output of 
predictive probabilities and corresponding uncertainty 
estimates. For instance, Sample 1 achieves a high predictive 
probability of 94% with a low uncertainty estimate of 0.05, 
illustrating the model's confidence in its prediction. The QBC 
active learning strategy optimizes the model learning process 
by iteratively selecting the most informative samples from the 
pool of unlabelled data.  

 
Table 9. MC-Bayes CNN predictive probabilities and uncertainty. 
 

Data Sample ID Predictive Probability Uncertainty Estimate 
Sample 1 94% 0.05 
Sample 2 93% 0.06 

 
Table 10 outlines the iterative enhancements achieved 

through the query-by-committee (QBC) active learning cycles. 
Starting from an initial model accuracy of 94.5%, each active 
learning cycle contributes to a steady increase in accuracy, 
culminating in a 96.3% accuracy by the end of the third cycle. This 
progression underscores the efficiency of the QBC approach in 
selectively enriching the training dataset with highly informative 
samples, thereby incrementally refining the model's performance 
with a minimal addition of labelled data samples. 

 
Table 10. QBC active learning cycle improvements. 

 
Cycle 
Number 

Initial Model 
Accuracy 

Post-Labelling 
Accuracy 

Number of 
Samples 
Labelled 

1 94.5% 95.2% 100 
2 95.2% 95.8% 100 
3 95.8% 96.3% 100 

 
6. Conclusion and future scope  

 
The proposed model demonstrated an exemplary overall 
accuracy of 94.5% on the ISIC dataset, surpassing the 
comparative methodologies (Jiang et al. 2021), (Riaz et al., 
2023), and (Bing et al., 2023), which achieved accuracies of 
89.8%, 91.2%, and 90.7%, respectively. Furthermore, the 
model achieved an overall F1-score of 94.6% on the Dermofit 
Image Library, indicating its precision and recall capabilities 
are significantly enhanced, thereby reducing the likelihood of 
misdiagnosis. The implementation of MC-Bayes CNN within 
the framework introduced a novel dimension to the 
classification process by providing calibrated uncertainty 
estimates alongside predictive probabilities. The proposed 
model exhibited a calibrated uncertainty score of 0.92, which 
is indicative of its ability to offer meaningful and dependable 
uncertainty measures, a capability that remains largely 
unaddressed by the existing methods. 
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The iterative learning process facilitated by QBC effectively 
utilized the initially small set of labelled samples to 
progressively improve the model's performance, culminating 
in an overall accuracy of 94.5% after 10 cycles of active 
learning. This approach not only exemplifies the model's 
learning efficiency but also highlights the potential for 
significant reductions in the costs and efforts associated with 
data annotation. 
     The findings from this study open several avenues for future 
research. One immediate direction is the exploration of other 
multiple modal data types, such as thermal imaging and 
electrical impedance spectroscopy, to further enrich the 
dataset and potentially unveil new insights into skin disease 
characteristics. Additionally, the integration of more advanced 
generative models could offer enhanced capabilities in data 
augmentation, particularly for rare skin diseases, thereby 
addressing the challenge of imbalanced datasets. The 
scalability and adaptability of the proposed framework to 
other medical imaging and diagnosis domains present a 
promising area of exploration. Lastly, the incorporation of real-
time feedback mechanisms from dermatologists and 
clinicians into the active learning cycle could refine the 
model's learning process, ensuring that the most clinically 
relevant features are captured and emphasized. 
     The proposed framework to classify skin diseases can be 
describe as one of the significant contributions in the medical 
diagnostics domain, aimed at addressing the multiple 
challenges posed by handling heterogeneous data, scarce 
data, and uncertainty in prediction. Using all state-of-the-art 
methods, this work introduces a robust system, which can 
guarantee a high classification accuracy with a minimum 
amount of required extensive labelled datasets. Such 
approaches include multimodal data fusion using MVAE, 
transfer learning using Inception-ResNet V2, uncertainty 
quantification using MC-Bayes CNN, and QBC active learning. 
Experimental results show the superior performance of the 
proposed framework on a range of dermatological conditions 
including common and rare skin diseases. This was evidenced 
by high overall classification accuracy, precision, and F1-
scores as well as reliable uncertainty estimates which are 
crucial for clinical decision-making. The additional ingredient 
of active learning further optimizes the training process for the 
model to achieve competitive performance with fewer 
labelled samples and is particularly beneficial in the context of 
medical datasets and samples.  The conclusions of this study 
thus provide promising avenues for enhancing the accuracy 
and consistency of automated skin disease diagnosis. Future 
work might therefore expand on this study by adding in other 
modalities of data input, such as thermal imaging or electrical 
impedance spectroscopy, to further enlarge the dataset, 
hopefully improving classification performance also. More 
importantly, the real-time feedback of the board of 

dermatologists and clinicians into the active learning cycle 
ensures that the most clinically relevant features are 
prioritized for inputting into the system, thereby achieving 
high performance in a real-world clinical setting. In 
conclusion, this work now represents a new benchmark for 
classification on skin diseases by demonstrating for the first 
time the power of combining multimodal data fusion, transfer 
learning, uncertainty quantification, and active learning within 
one unified framework, with major implications for enhancing 
patient care and outcomes in dermatology scenarios. 
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