

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 23 (2025) 108-119

Original

Linux cluster programming for high availability with an
Oracle instance

J. I. Vega-Lunaa* G. Salgado-Guzmána J. F. Cosme-Acevesa

V. N. Tapia-Vargasa E. A. Andrade-González b

aDigital Systems Area, Electronics Department,
Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico

 bCommunications Area, Electronics Department,
Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico

Received 06 09 2024; accepted 09 26 2024
Available 04 30 2024

Keywords: Cluster, contingency, high availability, Linux, Oracle, servers.

Abstract: This paper presents programming performed in a cluster of two Linux servers to ensure the high
availability of an Oracle instance. The problem of database downtime is proposed to be solved when a component
of a server or the entire server fails and there is no service to the database users. The objective was to develop
programming to start, stop, and monitor the status of an Oracle instance on one of the two Linux servers in a cluster
in case of contingency or maintenance of the other server. The methodology followed divided the programming
into five modules: cluster manager, package manager, monitoring module, Host Bus Adapter (HBA) port manager,
and network port manager. High availability was achieved by creating a package that contained the Oracle
instance and resources to start it on the cluster servers. The package is assigned an IP address to which users of
the instance are connected. The contribution of this work is to provide a low-cost solution, compared to existing
commercially similar systems, with a quick response and easy implementation that allows a company or institution
to continue working after a hardware or software failure. The startup time of the Oracle instance package after
contingency on a server was 20 s, which was the time when the cluster application was not available to the user.
The results of the methodology were a cluster that eliminates the points of failure represented by LAN ports, HBAs,
hard disk drives and an entire server on which a mission-critical application is running. Without the use of the
cluster, the user must wait for the repair of the failed component(s) to restore the company's operation. The cost
of the cluster is 10% of the cost of an equivalent commercially available solution. The application failover time is
20 s, which is one-tenth of the time achieved in other solutions that use a proprietary operating system.

∗Corresponding author.
E-mail address: vlji@azc.uam.mx (J. I. Vega-Luna).
Peer Review under the responsibility of Universidad Nacional Autónoma de México.

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:%20vlji@azc.uam.mx
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 109

1. Introduction

In recent years, the development of information and
communication technologies has led to the growth of
companies and institutions, allowing them to process
information more efficiently and use increasingly
sophisticated applications that require computing resources.
This has created the need for proactive measures to protect
critical information and applications, reduce and avoid losses
owing to risks and contingencies in the operating
environment, and ensure the provision of services to clients
and users. These measures include Business Continuity Plans
(BCP) and Disaster Recovery Plans (DRP) (Ferdousi et al., 2020;
Mudassir et al., 2021; Wan & Zhu, 2020). Both aim to restore an
organization's operations after contingency. The DRP is part of
the BCP, and its mission is to restore the systems, services, and
critical IT infrastructure that supports the business to
minimize the effects of a disaster and to resume the operation
of the company. The BCP is the methodology used by the
organization when it cannot work normally after a disaster and
recovers critical processes in the operation of the business. A
BCP is a set of plans that includes Business Recovery Plans
(BRP), Occupant Emergency Plans (OEP), Continuity of
Operations Planning (COP), Incident Management Plan (IMP),
and DRP. A BCP includes all operational processes in an
organization (Aziz & Jambari, 2019; Tomás et al., 2020).
Disasters are due to natural factors, such as hurricanes,
tornadoes, earthquakes, and floods, as well as power failures,
programming errors, hardware and software updates,
hardware failures, and attacks, such as sabotage, theft of
information, or damage to equipment (Tian et al., 2023).

The DRP is a plan that indicates the strategy and actions to
follow to reactivate the technological infrastructure and
restore the critical services or applications of the organization
after a contingency, without affecting the information to
resume the operation as soon as possible through high
availability and recovery schemes. When a disaster occurs and
there is no DRP, the consequences and cost of recovery of the
operation are much higher than those of the timely
development of the DRP (Petrenko, 2021).

The consequences of a disaster are costly, can damage the
technological infrastructure, and even put the existence of the
company at risk. According to data from the IDC consulting
firm, organizations that cannot resume operations within ten
days of a disaster will probably not survive (Schwartz &
Goodwin, 2022; Smith, 2020). The characteristics of a DRP
depend on the needs of each organization; therefore, it is
important to meet two requirements to determine its
efficiency. The first is the Recovery Time Objective (RTO) and
the second is the Recovery Point Objective (RPO). RTO
indicates the acceptable time to restore services after a

disaster, and RPO specifies the data recovery point in time,
that is, the acceptable amount of information loss (Faramondi
et al., 2024).

When a DRP is designed, it is important to carry it out under
international norms and standards in companies that manage
data centers and provide DRP and BCP services. Almost all
standards, such as NIST SP 800-34 (NIST, 2024) and ISO/IEC
24762 (Strawser, 2019), require, among other things, that the
base component of a DRP be a computer cluster that allows
business continuity after a contingency.

A computer cluster is a set of at least two servers, called
nodes, tightly coupled across a data network with sufficient
hardware redundancy that collaborates to keep mission-
critical applications available to users. A cluster is part of a DRP
and provides a high availability of mission-critical
applications, reducing the impact of downtime owing to
contingencies, disasters, unplanned events, and scheduled
maintenance tasks without compromising information
integrity and performance. Depending on the design and
scope of the DRP, cluster nodes can be in the same datacenter,
in different datacenters, in the cloud, or by using a hybrid
schema (Liu et al., 2021).

Each node has redundancy in disks, disk controller cards or
Host us Adapters (HBA) and network ports, so that in the event
of the failure of one of these components, its function is
performed by the redundant component. If one of the nodes
fails, the mission-critical application that runs on it starts at
another node in the cluster. The programming that
implements a cluster and controls the redundancy of
components and its operation is divided into five modules:
cluster manager, package manager, monitoring module, HBA
port manager, and network port manager.

The functions of the cluster manager are as follows: 1) start
and stop the cluster and nodes; 2) register the operational
status of its components; and 3) manage the heartbeat signal.
The two operating schemes of a cluster are active/active and
active/standby. First, one of the nodes runs mission-critical
applications and the other is used as a backup when the first
node fails. In the second scenario, the applications run on
both nodes, allowing load balancing and more efficient use of
the computing system.

The package manager has the function of starting and
stopping packages on the cluster nodes. A package groups a
mission-critical application, the storage resources it must run,
and a volatile or relocatable IP address. The package can start
at any node in the cluster, thus making the application highly
available. Application users connect to the relocatable IP
address of a package. The package and application can be
moved between nodes in the cluster, which is useful when a
node fails or when it needs to be released for maintenance and
to continue serving users. Typically, the application is a

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 110

productive database, and the package manager is responsible
for starting, stopping, and verifying its operation through the
monitoring module (Saxena et al., 2022).

The network port manager is responsible for controlling the
use of these ports and ensuring high availability of network
access. This allows you to configure, as stated above, an
active/active or active/standby design on the network ports.
Similarly, the function of the HBA port manager is to provide
high-availability access to application disks from the cluster
nodes.

The objective of this study is to program a two-node cluster
and a package that incorporates an Oracle instance and a
database. The cluster is composed of two Linux servers as
shown in Figure 1. It can be used in small and medium-sized
organizations that need to provide continuous services to
clients and users.

Figure 1. Cluster with two Linux servers.

The cluster incorporates a shared disk array between the

nodes, and the redundancy of the HBA and network ports. The
Oracle 21c instance and database were installed on the disk
array, both of which constitute the mission-critical
application. The Oracle database manager was used because
it is the most used in organizations, and the Linux operating
system because it is the most currently used in business
servers owing to its robustness, low cost, and support from all
server manufacturers, including some free distributions. The
cluster servers are virtual machines.

Currently, there are solutions and products on the market
from different hardware and software providers used to
configure and implement a cluster of computers with a Linux
operating system. For example, the following solutions are
available: high-availability add-on from Red Hat (Red Hat,
2024), HPE Serviceguard for Linux (HPE, 2024), and Site
Recovery Manager from VMware (VMWare, 2024), among

others. The software and consulting services used to
implement the cluster with these solutions have an excessive
cost, which in some cases is higher than that of the operating
system. Most vendors have a software tool or kit to integrate a
specific application or database into a cluster and make it highly
available. This tool incurs additional costs and increases the
cost of the cluster implementation (Oracle, 2020).

However, the work and research carried out in recent years
with computer clusters has the objective of developing
solutions for the management of graphics, creating CPU and
GPU clusters, (Al Badawi et al., 2021; Qu et al., 2023; Mai et al.,
2022) and implementing hybrid supercomputers used in the
field of big data to manage and analyze large amounts of data
for scientific applications (Mahmud et al., 2023). Other
developments have created techniques to improve the data
access on the shared disk arrays of a cluster (Gu et al., 2024).
Most recent studies that use a cluster do so using a vendor
solution to have highly available applications, such as web
servers, where pages are divided into subsets dispersed across
the cluster nodes (Jiménez et al., 2021; Purohit et al., 2023),
data mining (Zhang et al., 2022), machine learning (Kauffmann
et al., 2024), Apache Hadoop Namenode Failover (Serek et al.,
2023), and databases aimed at information management in
the cloud (Malhotra et al., 2023).

The cost of commercially available equivalent solutions is
10 times more than the one presented in this work. No work
has been done on presented here aimed at small- and
medium-sized organizations, whose contributions are as
follows: maintaining the continuity of the services provided
through the database, minimizing the risks derived from the
failure of a server, guaranteeing access to database content,
and providing a short recovery time. The programming
performed in this study allows the mission-critical application,
composed of a database, to be started on any of the cluster
nodes, which is useful when it is necessary to release one of
the nodes. This makes it possible to perform planned
preventive or corrective hardware or software maintenance
activities such as updating the operating system, installing
patches, changing network ports, changing controller cards,
firmware updates, or simply re-initializing the computer. The
management of the cluster, nodes, and packages can easily be
performed through the command line.

Management of the cluster, nodes and packages can be
easily done via the command line. The commands are short,
and the syntax is simple, allowing you to perform operation
and maintenance tasks on the hardware and software or
react quickly to any failure of the cluster components. This
also has the advantage of being able to use a text terminal
without the need for a graphical one, which also reduces the
cost of the solution.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 111

2. Materials and methods

The methodology used to develop the work consisted of
dividing it into five modules: the cluster manager, package
manager, monitoring module, HBA port manager, and
network port manager. Figure 2 shows the architecture of the
cluster, which is composed of two servers connected to a
shared disk array where a mission-critical application is
installed. This figure shows the main contribution of this work:
eliminating, through redundancy in hardware components,
single points of failure that can cause no access to the
application: Oracle instance and database.

Figure 2. Cluster components diagram.

The program to implement the cluster is composed of a

main program and the five modules indicated above. Each
module is a child process that is created and invoked in the
background of the main program, with the exception of the
monitoring module. Programming was performed using shell
scripts, and communication between the main program and
modules was performed through sockets.

The cluster nodes were HPE Proliant DL180 Gen 10 servers,
on which a virtual machine was created using VMware vSphere
8.0. VMware was used to install an ESXi hypervisor that hosted
the virtual machine on each server. The SUSE Linux Enterprise
Server 15 SP5 operating system was installed on the virtual
machine. The virtual machines in the cluster were monitored
and managed using the VMware vCenter Server. Virtual
machines were used because they are a secure and efficient
hybrid cloud platform that many small and medium-sized
businesses currently have. Oracle 21c and the database were
installed on an HPE D3610 12Gb SAS shared disk array. This
device has 12 bays, of which four were used to install 6.4 TB
Solid State drives configured in RAID 10, and has a usable disk
capacity of 12.8 TB. The array has two controller cards or an
HBA with two SAS-3 ports each and achieves a bandwidth of
12Gb/s. The ports of one controller were connected to one of
the cluster nodes, and the ports of the other to the second

node to implement high availability in access to the shared
disk array and start the cluster application on any of the nodes.
The nodes have a two-port 12Gb/s SAS PCI 3.0 HBA controller
to connect to the SAS-3 controller of the disk array. The
connection between the nodes and the array is made using
the Serial Attached SCSI (SAS) communication standard, the
successor to the parallel Small Computer System Interface
(SCSI) standard. SAS uses SCSI commands to transfer
information to serial devices.

The cluster is connected to the network of end users or
clients of the application and to the private heartbeat Local
Area Network (LAN). The servers have two network cards with
two ports of 1 GbE each. Each card is connected to one of the
data networks of the cluster. Through the heartbeat signal, the
nodes periodically exchange information regarding their
functional status. Therefore, this signal is critical for the
operation of the cluster. To avoid delays in this signal, a private
LAN was used for the heartbeat communication.

2.1. Cluster manager
A cluster administrator must create two configuration files.
The first is the cluster configuration file, which sets the
following parameters: the cluster name, node name, and
heartbeat signal timer value. The second is the package
configuration file, in which the following parameters are
established: name, primary node, alternate node, path of the
package's start and stop scripts, IP address, and the
application processes to be monitored. The states of the
cluster, nodes, and packages are stored in a cluster-status
database. The status of each of these elements can be
“running” or “halted’.

The program allows the cluster administrator user to
execute one of the following commands in the node console:
cluster start/stop, cluster status, node start/stop name, or
package start/stop. Both commands invoke execution of the
main program. This creates four child processes that
implement the five modules of the cluster, except for the
monitoring module, which is created when the package
begins, as explained later.

The cluster start/stop command is used to start or stop the
cluster. If the argument start, the main program creates and
starts the child process of the cluster manager, which is
responsible for the communication between the nodes
through the heartbeat signal, startup of the nodes, and startup
of the package in the primary cluster node.

To manage the heartbeat signal, the cluster manager
process creates and starts a similar process on the other node
such that both communicate periodically through a private
network. The first process requests the second to join the
cluster and waits for the response to be no longer than the
timer value indicated in the cluster configuration file. If the
other node accepts the request, the cluster manager requests

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 112

the package manager to start the latter at the primary node and
the cluster is formed. Next, the manager assigns the cluster,
nodes, and package the “running” state, updates the cluster
status database, stored on each node, and displays its contents
in the console of the node where the command was executed.
Finally, both processes enter a continuous loop where they
communicate periodically via the heartbeat signal and wait for
a command to be sent by the main program. Once the cluster
and package have been started, the main program returns the
prompt to the cluster administrator user on the command line
and continues running in the background waiting for another
command. The flowchart in Figure 3 shows the actions
performed by the cluster manager at cluster startup.

Figure 3. Cluster manager flowchart, cluster start.

If the cluster manager cannot start the process at the

second node, the cluster will not be automatically formed.
This may be because there is no communication through the
heartbeat network, the other node is turned off, or it is not
responding owing to some abnormal circumstances. In this
scenario, the cluster manager process requests that the
package manager start the package on the functional node
and the cluster is formed with only one of the nodes. Next, the
cluster manager assigns the cluster, node, and package the
“running” state, assigns the unresponsive node the “halted”

state, updates the cluster status database, and displays its
contents in the console of the node where the program is
executed. Finally, the process enters a continuous loop where
it waits for a command from the main program. Subsequently,
the main program returns the prompt to the user on the
command line and continues to run in the background,
waiting for another command from the administrator. This
requires the cluster user administrator to review the
unresponsive nodes and determine the problem.

When the cluster is formed with two nodes, and if at any time
the heartbeat signal timer expires in one of the nodes, the
cluster manager process does not receive a response, the latter
assumes that the other node is not functional and has failed.
This causes the cluster manager to check if the unresponsive
node is running the package. If so, the cluster manager asks the
package manager to start it on the functional node, which is
known as failover, and provides high availability in the
application, moving the package from one node to the other.
The failed node is assigned the “halted” state, the package is
assigned the “running” state, the cluster status database is
updated, the sending of the heartbeat signal is stopped, and the
cluster manager process enters a cycle in which it waits for a
command sent by the main program.

However, if the requested command is cluster stop, the
main program requests that the cluster manager process stop
the package. To accomplish this, the manager determines the
node where the package is running and requests that the
package manager stop it. Next, it stops sending the heartbeat
signal between the cluster nodes, assigns the “halted” state to
the cluster, nodes, and package, terminates the process, and
returns the control to the main program. The flowchart in
Figure 4 shows the actions taken by the cluster manager to
stop a cluster.

Figure 4. Cluster manager flowchart, cluster stop.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 113

If the command executed by the user is cluster status, the
main program requests the cluster manager process to display
the status of the cluster, nodes, and packages in the node
console. The process displays the content of the cluster status
database in the node console and returns to wait for a
command to be sent by the main program.

If the requested command is node start name, where the
third argument is the name of the node, the main program
requests that the cluster manager integrate the node into a
cluster. The tasks performed by this manager create a similar
process in the node to be integrated for the communication of
the heartbeat signal, request that the created process join the
cluster, and wait for the response to this process.

If the node to be integrated accepts the request, the cluster
is created, the manager assigns the integrated node the
“running” state, updates the cluster status database on each
node, and displays its contents in the console of the node
where the command is executed. The two processes then
enter a loop in which they periodically communicate their
functional status via the heartbeat signal and wait for a
command sent by the main program. After integrating the
node into the cluster, the main program returns the prompt to
the user on the command line and continues to run in the
background while waiting for another command.

If the requested command is a node stop name, the main
program requests the cluster manager to stop or remove the
node from the cluster. This action is useful when it is necessary
to perform maintenance tasks on the node, which causes the
cluster manager to verify whether the node to be stopped is
running the package. If so, the manager asks the package
manager to stop doing so. Set the stopped node and the
package “halted” state, update the cluster status database,
display its contents in the console of the node where the
command is executed, terminate the cluster manager process
that runs on the stopped node, and send the heartbeat signal.
The cluster manager process of the node that remains in the
cluster enters a loop in which it waits for a command to be sent
by the main program.

2.2. Package manager
The high availability of the mission-critical application was
implemented by creating a package that grouped the
resources required by the application. These consist of
storage drives where the Oracle instance software and
database are installed and the IP address is assigned to the
package. To allow the application to run on any of the nodes
in the cluster, it must not refer to the host names of the nodes
or their IP addresses. You must use the host name and IP
address assigned to the package in the operating system
/etc/hosts file. In addition, the IP address of the package was
replaced by the listener.ora and tnsnames.ora files of the
Oracle instance.

To manage the package, the cluster administrator user can
use package start/stop commands in the console. When this
command is executed, the main program, which runs in the
background on the cluster nodes, invokes the package
manager process, passing the action indicated in the
command as a parameter: start or stop.

When the cluster administrator user executes the package
start command, the main program invokes the package
manager process, and the latter performs the following tasks:
1) activate the volume groups and mount the file systems used
by the instance and the database; 2) set the IP address of the
package to the network port of the node where the package is
starting; 3) initialize the Oracle instance environment variables
set in the oracle.conf file, and 4) check that it is running the
LISTENER process. If so, it stops and then starts because it may
be in an inconsistent state and unable to receive database
access requests. If not, just start it. 5) start the Oracle instance
by executing the sqlplus startup open command, 6) start the
monitoring module, and 7) terminate the process and return
control to the main program.

The Oracle instance environment variables indicate the
following information: instance name, HOME directory, kernel
parameter file, and Oracle processes to monitor. The Linux
and Oracle actions and commands executed at the startup
and shutdown of the package are recorded in a cluster log file
called cluster.log. Figure 5 shows the flowchart used to
perform the package manager tasks.

Figure 5. Package manager flowchart.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 114

The IP address assigned to the package is called volatile,
virtual, or relocatable because it moves with the package
between the cluster nodes. This is so that the Oracle instance
does not depend on the physical IP address of the cluster
nodes, but on the IP of the package.

When the package stop command is executed, the main
program invokes the package manager process at the node
where the package is executed. This manager performs the
tasks executed at startup in reverse order: 1) finds and stops
the process associated with the monitoring module, 2) stops
the Oracle instance by executing the sqlplus shutdown
immediate command, 3) stops the LISTENER process, 4)
removes the package’s IP address of the node's network port,
5) unmounts file systems and disabled volume groups from
the package, and 6) terminates the process and returns
control to the main program.

2.3. Monitoring module
The function of this module is to periodically monitor the Oracle
instance and the status of the associated processes. The
monitoring time was configurable and set to 60 s by default. The
default monitored processes are as follows: xe_pmon_SID,
xe_smon_SID, xe_dbw0_SID, xe_ckpt_SID, xe_lgwr_SID, and
xe_reco_SID, where SID is the ID of the Oracle instance. Users
can modify the times and names of the monitored processes in
the oracle.conf package configuration file.

This module is invoked by the package manager process
during the startup of the latter. The monitoring module verifies
the existence of a file called DEBUG. The presence of this file
suspends monitoring of the Oracle instance and processes
and can be created by the user to indicate that the Oracle
instance is under maintenance. When performing
maintenance tasks, the Oracle instance can be stopped and
started by the user, and therefore, should not be monitored so
that the package is not stopped, and the resources of the
Oracle instance are available in the user's tasks. Upon the
completion of instance maintenance, the user must remove
the DEBUG file. If this file exists, the monitoring module does
not perform any action and remains in a cycle, thereby
verifying the existence of the file.

If a DEBUG file does not exist, the monitoring module enters
a cycle in which it reviews the status of the instance and its
processes. To perform the first task, the sqlplus command is
executed: select status from v\\\$instance. If the result of this
command is an error message containing string ORA-, the
module assumes that the instance is not running correctly,
records the error message in the cluster log file, requests the
package manager to stop it, starts it on the other node,
finishes the monitoring process, and returns control to the
main program. The package terminates because the Oracle
instance does not work correctly and access to the database
cannot be guaranteed. It starts on the other node to continue

providing services to database clients and has a high
availability of mission-critical applications.

If the Oracle instance works correctly, the monitoring
module periodically accesses the process dispatcher of the
operating system to determine the status of the processes of
the instance. If any of these processes are not running or fail,
the process in this module performs the same tasks that it
executes when the instance is not running correctly, as
indicated in the previous paragraph. This allows the user to
provide a high availability of the Oracle instance while
reviewing and resolving the issue at the node where the
instance or instance processes fail. Figure 6 shows the
flowchart used in programming to perform the tasks of the
monitoring module.

Figure 6. Monitoring module flowchart.

The Oracle software and database were installed on four

disks of the cluster's shared array configured in RAID 10 to
protect the information physically-

2.4. HBA port manager
The two ports of the HBA controller on the nodes were
configured to operate in round-robin mode and balance access
to the disk array. When one port fails, data access is performed
through another port and by backing each other. The process
that implements the HBA port management module is invoked

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 115

at the cluster startup and is in a continuous cycle of monitoring
the status of each port every second through the execution of
the multipath command. When a port fails, the process displays
an error message on the console of the node where the port
fails. When both ports fail, it shows the error message in the
node console. If the package is running on that node, it requests
the package manager to stop it and start it on another node, fail
over, because the node where the ports fail will not be able to
access the application. When recovering one or both HBA ports
after a failure, the process displays a message on the node
console indicating the previous event. The HBA port manager
process is terminated by the cluster manager when a node or
cluster stops.

2.5. LAN port manager
Each cluster node has two network cards with two 1 GbE ports.
The four ports are connected to different LAN switches, and the
switches are connected to each other through another port. Four
switches were used: two for connection to the data network of the
clients and end users of the application, and two to form the
private network of the heartbeat signal. Thus, there is high
availability of network ports and switches. The two network ports
of each node (eth0 and eth1) connected to the clients' network
were configured to form a group or bond in round-robin mode
(bond0); when the two ports were working, they balanced
network access on each server, and when one failed, access to the
network was carried out by the one who continued to work,
supporting each other. Figure 7 shows the
/etc/network/interfaces/bond0 file, used for the configuration of
the bond0 group, which includes the network ports eth0 and eth1.

Figure 7. bond0 configuration file.

This bond0 is assigned to the IP address of the server and

that of the package when the latter runs on the server. The two
network ports used for the connection to the private network
were configured similarly to the previous ports to form a
second group. The process that implements this module is in
a cycle that monitors the status of the network groups and
ports every second through the execution of the if link show

command. When a network port fails, the process displays an
error message on the console of the node where the port fails.
When both ports fail, it displays the error message in the console
of the node. If the package is running on that node, it requests
the package manager to stop it and start it on another node, fail
over, because users will not be able to access the application on
the node where the ports fail. When a network port or group of
ports recovers after a failure, the process displays a message in
the node console indicating the previous event. The network
port manager process is terminated by the cluster manager
when a node or cluster stops.

3. Results and discussion

Before starting the cluster tests, a database with a table was
created, using the script indicated in Figure 8. Both the Oracle
software and the database are contained in a 100 GB file
system, which is shown in the output of the Linux df command
in Figure 9.

Figure 8. Script used to create the table in the test database.

Figure 9. File system created for Oracle package database

 and table.

Four sets of tests were performed. The first group aimed to

determine the package movement time from one node to
another in a controlled environment. Each tests consisted of
stopping the package on one node and starting it on the other
without any open Oracle user sessions or database transactions.
During testing, the package was stopped and started correctly
within 20 s. Subsequently, the same test was performed several
times, adding a 100 GB file system to the package in each test until
20 file systems were reached. As expected, in each test, the
package startup time increased because before mounting each
file system, the mount command checks the consistency of the
file system. Figure 10 shows the oracle.conf package
configuration file used in these tests.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 116

Figure 10. Oracle configuration file.

To start the package, the package start command was

executed, which invokes the script shown in Figure 11 to start
the Oracle instance.

Figure 11. Oracle start script.

To stop the package, the package stop command was

executed, which invokes the script shown in Figure 12 to stop
the Oracle instance.

Figure 12. Oracle stop script.

After starting the package, the Linux df command was

executed to verify that the file system has been mounted by
the package, as shown in Figure 9. Additionally, the Oracle
instance was accessed to connect to the database and check
the status (OPEN) of the instance, as shown by the script used
and the Oracle output in Figure 13.

Figure 13. Oracle instance check script.

To complete the test, the database was accessed to insert

a record into the table created to verify the Oracle functionality
using the script shown in Figure 14.

Figure 14. Script to insert a record into the database.

The results of these tests are indicated in the graph in Figure

15, which shows that the package startup time increased
proportionally in each test. As you can see, as the file system
mounted by the package grows, the package startup time
increases slightly.

Figure 15. Package startup time.

The second group of tests aimed to determine the time

consumed by the startup of the package after the node where
it was running suffered contingencies. To perform these tests,
20 Oracle user sessions were initially opened, where the
INSERT, DELETE, UPDATE, and COMMIT SQL statements were
executed to insert, remove, and update the database records.
While users were performing the above actions, power was

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 117

disconnected from the node where the package was running,
and it automatically started or moved to another node, which
is known as failover. The startup time of the package with only
a 100 GB file system was 27 s, which is longer than the time of
the first test of the previous group. Before opening the
database, the Oracle manager had to complete transactions
that were pending or rollback at the node where the
contingency occurred. Subsequently, the test was repeated
with 30, 40, and 50 sessions of users who accessed the
database, and it was observed that the package startup time
increased proportionally. To complete this group of tests, the
node was connected to electrical power, and once it started,
the node was integrated using the node start command. The
package was then stopped and started on the recovered node
to verify proper access to the database and perform a process
known as failback.

The package shutdown was 10 s, which is less than the
startup time, since during the shutdown the system checks the
consistency of the file systems. The cluster shutdown was also
tested in this part, which took 15 s.

The purpose of the third group of tests is to verify the
operation of the HBA port manager. To perform these tests, a
program was created to execute a cycle in which a database
table was read and written. Subsequently, one of the ports was
disconnected from the node's HBA port controller, and it was
verified that access to the table was not interrupted.
Subsequently, both ports were disconnected from the
controller and it was confirmed that the package was
automatically moved to another node. Next, the ports were
connected and verified from the node's operating system,
they were recovered, and the package did not return to the
node where the ports were disconnected. Previous tests have
been performed on two nodes of cluster.

The purpose of the last group of tests was to check the
operation of the LAN port manager. To perform these tests, the
program from the previous group of tests was executed, and
one of the switches of both the end-user LAN and the
heartbeat LAN was turned off. It was verified that access to the
table was not interrupted.

This test simulated the failure of the LAN port eth0, however,
users continued to access the Oracle instance through the
bond0 group, which only has the eth1 port active (up), as
shown in the cat /proc/net/bonding/bond0 command output
in Figure 16.

Subsequently, the two switches are connected, and it is
verified that the failed ports are recovered from the operating
system of the node. The last two sets of tests demonstrated
the functionality of redundancy in the HBA controller ports
and network ports.

Other cluster architectures have only two LAN ports on the
nodes and two switches. These are simpler and less expensive
than the cluster in this work, since one of the ports is

connected to a LAN switch and the second to the other switch.
There is redundancy in the LAN ports. They use only one LAN
to transmit both the cluster Heartbeat signal and the user
data. However, there is a risk when there is a high load on the
user data that causes delay or loss of the Heartbeat signal and
therefore the packet moves from one node to the other or the
cluster goes down due to the loss of the heartbeat signal.
Considering the above, this work improves the existing
clusters by incorporating two LAN segments, one to transmit
the user data and the second to transmit the Heartbeat signal.
With this scheme there is redundancy in ports and LAN
segments and higher performance in the user data segment.
In this respect, the cost of the cluster is not significantly higher
than existing ones, since the cost of the additional LAN ports
and switches is not significant compared to that of the nodes
and the disk array. Additionally, the cost of the LAN
architecture proposed in this work is lower compared to the
losses that a company may have when it does not have access
to its applications because the cluster is down.

Figure 16. Status of bond0 group after eth0 LAN port failure.

4. Conclusions

In this study, a highly available application was obtained by
implementing a computer cluster composed of two virtual
machines with a Linux operating system. The application,
which is composed of an Oracle database, can be run on any
of the cluster nodes to provide service to users when any of the
nodes are undergoing maintenance or have a failure. The
cluster is not a fault-tolerant or non-stop system because, if a
contingency occurs on the node where the application is
executed, it can be started on the other node, which takes 20
s, a time in which the end users do not have access to it. The
advantage of a highly available application is that it runs on a

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 118

cluster of computers, whose cost is much lower than that of
nonstop systems or solutions.
 The programming performed in this work allows small- and
medium-sized business users to have Linux servers with
sufficient redundancy, at least in network ports and disk
controller cards, and to have high availability of an Oracle
database, ease of use, and implementation without making
high investments. Cluster administration was performed using
a command line.
 The contributions of the presented cluster are the following:
1- it is a high availability solution whose implementation and
maintenance cost is much lower than non-stop solutions and
lower than commercially available cluster architectures, 2- in
case of failure of a network port, an HBA, hard disk drives or
one of the servers, companies can continue normal operation,
3- when it is necessary to perform some preventive or
corrective maintenance activity on a server, the application
that was running on it can be moved to the other node and
continue offering the service to users, 4- each node of the
cluster was implemented in a virtual machine of a physical
server, which allows creating other virtual machines on the
server to install other operating systems and applications, 5-
the operation scheme is active-active, which allows the nodes
to back each other up and in normal operation balance the
load by integrating other packages and applications, most
commercial solutions use an active-standby scheme, and 6- a
low-cost license of the Linux operating system was used, the
most common platform today for mid-level and enterprise
applications, which contributes to reducing the cost of the
cluster and facilitating upgrades and maintenance, since there
are a variety of hardware and software tools and applications
for this operating platform. Other solutions use a proprietary
operating system. The cost of the cluster is one-tenth that of
an equivalent commercially existing one. The most significant
contribution is that the user can compare the cost of the
cluster against the costs and losses that must be incurred in
the event of a failure of the server where their mission-critical
application is running.
 Future work will involve two tasks. The first is to integrate a
Graphical User Interface (GUI) with the cluster manager. This is
to be able to view the status of the nodes, applications,
network ports, and HBA ports, and react in a timely manner to
the failure of these components. The second action is that the
package manager can start, stop, and monitor more than one
application, which will bring the benefit that both cluster
nodes can run applications simultaneously and have an
active-active scheme on the nodes. Finally, the programming
performed in this study has the advantage that the cluster
nodes are virtual machines, which allows other virtual
machines with different operating systems and applications to
be installed on each physical server, maximizing the use of
physical infrastructure and investment.

Conflict of interest

The authors do not have any type of conflict of interest to
declare.

Acknowledgements

The authors wish to thank the Electronics Department of
Universidad Autónoma Metropolitana-Azcapotzalco for
supporting this study.

Funding

This work was supported by UAM.

References

Al Badawi, A., Veeravalli, B., Lin, J., Xiao, N., Kazuaki, M., & Khin Mi Mi,
A. (2021). Multi-GPU Design and Performance Evaluation of
Homomorphic Encryption on GPU Clusters. IEEE Transactions on
Parallel and Distributed Systems, 32(2), 379-391.
https://doi.org/10.1109/TPDS.2020.3021238

Aziz, N., & Jambari, D. (2019). Information Management Procedures
for Business Continuity Plan Maintenance. International Conference
on Electrical Engineering and Informatics, 489-495.
https://doi.org/10.1109/ICEEI47359.2019.8988804

Faramondi, L., Guarino, S., Oliva, G., & Setola, R. (2024). A Recovery Model
for Faulty Networked System. IEEE Systems Journal, 18(1), 146-149.
https://doi.org/10.1109/JSYST.2023.3315782

Ferdousi, S., Tornatore, M., Dikbiyik, F., Martel, C., Xu, S., Hirota, Y., &
Awaji, Y. (2020). Joint Progressive Network and Datacenter Recovery
After Large-Scale Disasters. IEEE Transactions on Network and Service
Management, 17(3), 1501-1514.
https://doi.org/10.1109/TNSM.2020.2983822

Gu, Y., Liu, L., Wu, C., Li, J., & Guo, M. (2024). Ada-WL: An Adaptive
Wear-Leveling Aware Data Migration Approach for Flexible SSD Array
Scaling in Clusters. IEEE Transactions on Computers, Early Access
Article.
https://doi.org/10.1109/TC.2024.3398493

HPE. (2024). HPE Serviceguard for Linux (SGLX). Hewlett Packard
Enterprise Development LP.
https://www.hpe.com/psnow/doc/c04154488

Jiménez, L. R., Solera, M., Toril, M., Gijón, C., & Casas, P. (2021).
Content Matters: Clustering Web Pages for QoE Analysis With
WebCLUST. IEEE Access, 9, 123873-123888.
https://doi.org/10.1109/ACCESS.2021.3110370

https://doi.org/10.1109/TPDS.2020.3021238
https://doi.org/10.1109/ICEEI47359.2019.8988804
https://doi.org/10.1109/JSYST.2023.3315782
https://doi.org/10.1109/TNSM.2020.2983822
https://doi.org/10.1109/TC.2024.3398493
https://www.hpe.com/psnow/doc/c04154488
https://doi.org/10.1109/ACCESS.2021.3110370

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 108-119

Vol. 23, No. 2, April 2025 119

Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., & Müller,
K. R. (2024). From Clustering to Cluster Explanations via Neural
Networks. IEEE Transactions on Neural Networks and Learning
Systems, 35(2), 1926-1940.
https://doi.org/10.1109/TNNLS.2022.3185901

Liu, Y., Zhou, F., Chen, C., Zhu, Z., Shang, T., & Torres-Moreno, J. M.
(2021). Disaster Protection in Inter-DataCenter Networks Leveraging
Cooperative Storage. IEEE Transactions on Network and Service
Management, 8(3), 2598-2611.
https://doi.org/10.1109/TNSM.2021.3089049

Mahmud, M. S., Huang, J. Z., Ruby, R., Ngueilbaye, A., & Wu, K. (2023).
Approximate Clustering Ensemble Method for Big Data. IEEE
Transactions on Big Data, 9(3), 1142-1155.
 https://doi.org/10.1109/TBDATA.2023.3255003

Mai, S. T., Jacobsen, J., Amer-Yahia, S., Spence, I., Tran, N.-P., Assent,
I., & Viet Hung Nguyen, Q. (2022). Incremental Density-Based
Clustering on Multicore Processors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 4(3), 1338-1356.
https://doi.org/10.1109/TPAMI.2020.3023125

Malhotra, A., Elsayed, A., Torres, R., & Venkatraman, S. (2023). Evaluate
Solutions for Achieving High Availability or Near Zero Downtime for
Cloud Native Enterprise Applications. IEEE Access, 11, 85384-85394.
https://doi.org/10.1109/ACCESS.2023.3303430

Mudassir, G., Howard, E. E., Pasquini, L., Arbib, C., Clementini, E., Di
Marco, A., & Stilo, G. (2021). Toward Effective Response to Natural
Disasters: A Data Science Approach. IEEE Access, 9, 167827-167844.
https://doi.org/10.1109/ACCESS.2021.3135054

NIST. (2024). Special Publication 800-34 Rev. 1: Contingency Planning
Guide for Federal Information Systems. CreateSpace Independent
Publis.https://csrc.nist.gov/pubs/sp/800/34/r1/upd1/final

Oracle. (2020). Protect your VMware SDDC in the cloud against
disasters. Oracle Corporation.
https://docs.oracle.com/en/solutions/implement-dr-for-
ocvs/#GUID-2C632A62-3492-41EF-8778-0D548FF580CC

Petrenko, S. (2021). Developing an Enterprise Continuity Program.
River Publishers.

Purohit, L., Rathore, S. S., & Kumar, S. (2023). A QoS-Aware Clustering
Based Multi-Layer Model for Web Service Selection. IEEE Transactions
on Services Computing, 16(5), 3141-3154.
https://doi.org/10.1109/TSC.2023.3264627

Qu, P., Lin, H., Pang, M., Liu, X., Zheng, W., & Zhang, Y. (2023). ENLARGE:
An Efficient SNN Simulation Framework on GPU Clusters. IEEE
Transactions on Parallel and Distributed Systems, 34(9), 2529-2540.
https://doi.org/10.1109/TPDS.2023.3291825

Red Hat. (2024). High Availability Add-On. Red Hat, Inc.
https://access.redhat.com/documentation/es-
es/red_hat_enterprise_linux/7/html-single/high_availability_add-
on_overview/index

Saxena, D., Gupta, I., Singh, A. K., & Lee, C. N. (2022). A Fault Tolerant
Elastic Resource Management Framework Toward High Availability of
Cloud Services. IEEE Transactions on Network and Service
Management, 19(3), 3048-3061.
https://doi.org/10.1109/TNSM.2022.3170379

Schwartz, K. D., & Goodwin, P. (2022). Practices to Improve Disaster
Recovery Testing. IDC PeerScape,.

Serek, A., Orynbekova, K., Talasbek, A., Kariboz, D., Saimassay, G., &
Bogdanchikov, A. (2023). Recommendation System for Human Resource
Management by the Use of Apache Spark Cluster. 17th International
Conference on Electronics Computer and Computation, 1-4.
https://doi.org/10.1109/ICECCO58239.2023.10147129

Smith, A. (2020). Cloud-Based Disaster Recovery Services Help
Organizations Achieve Business Resilience. IDC Research, Inc.

Strawser, B. (2019). ISO 27031: Looking at ISO’s Disaster Recovery
Standard. BRYGHTPATH LLC. https://bryghtpath.com/iso-27031-
looking-at-isos-disaster-recovery-standard/

Tian, J., Ma, P., Wang, C., & Wang, Z. (2023). Research on Development
of Data Disaster Recovery System. 22nd International Conference on
Trust, Security and Privacy in Computing and Communications, 2210-
2215.
https://doi.org/10.1109/TrustCom60117.2023.00310

Tomás, L., Kokkinos, P., Anagnostopoulos, V., Feder, O., Kyriazis, D.,
Meth, K., . . . Varvarigou, T. (2020). Disaster Recovery Layer for
Distributed OpenStack Deployments. IEEE Transactions on Cloud
Computing, 8(1), 112-123.
https://doi.org/10.1109/TCC.2017.2745560

VMWare. (2024). VMware Site Recovery Manager. Broadcom Inc.
https://docs.vmware.com/en/Site-Recovery-Manager/index.html

Wan, Y., & Zhu, Q. (2020). The IT Challenges in Disaster Relief: What We
Learned From Hurricane Harvey. IT Professional, 2(6), 52-58.
https://doi.org/10.1109/MITP.2020.3005675

Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2022). PPHOPCM: Privacy-
Preserving High-Order Possibilistic c-Means Algorithm for Big Data
Clustering with Cloud Computing. IEEE Transactions on Big Data, 8(1),
25-34.
https://doi.org/10.1109/TBDATA.2017.2701816

https://doi.org/10.1109/TNNLS.2022.3185901
https://doi.org/10.1109/TNSM.2021.3089049
https://doi.org/10.1109/TBDATA.2023.3255003
https://doi.org/10.1109/TPAMI.2020.3023125
https://doi.org/10.1109/ACCESS.2023.3303430
https://doi.org/10.1109/ACCESS.2021.3135054
https://csrc.nist.gov/pubs/sp/800/34/r1/upd1/final
https://docs.oracle.com/en/solutions/implement-dr-for-ocvs/%23GUID-2C632A62-3492-41EF-8778-0D548FF580CC
https://docs.oracle.com/en/solutions/implement-dr-for-ocvs/%23GUID-2C632A62-3492-41EF-8778-0D548FF580CC
https://www.riverpublishers.com/book_details.php?book_id=941
https://www.riverpublishers.com/book_details.php?book_id=941
https://doi.org/10.1109/TSC.2023.3264627
https://doi.org/10.1109/TPDS.2023.3291825
https://access.redhat.com/documentation/es-es/red_hat_enterprise_linux/7/html-single/high_availability_add-on_overview/index
https://access.redhat.com/documentation/es-es/red_hat_enterprise_linux/7/html-single/high_availability_add-on_overview/index
https://access.redhat.com/documentation/es-es/red_hat_enterprise_linux/7/html-single/high_availability_add-on_overview/index
https://doi.org/10.1109/TNSM.2022.3170379
https://www.idc.com/getdoc.jsp?containerId=US49794122&pageType=PRINTFRIENDLY
https://www.idc.com/getdoc.jsp?containerId=US49794122&pageType=PRINTFRIENDLY
https://doi.org/10.1109/ICECCO58239.2023.10147129
https://goto.arcserve.com/rs/431-WBH-895/images/IDC%20Technology%20Spotlight%20-%20Cloud-based%20Disaster%20recovery%20Services.pdf
https://goto.arcserve.com/rs/431-WBH-895/images/IDC%20Technology%20Spotlight%20-%20Cloud-based%20Disaster%20recovery%20Services.pdf
https://bryghtpath.com/iso-27031-looking-at-isos-disaster-recovery-standard/
https://bryghtpath.com/iso-27031-looking-at-isos-disaster-recovery-standard/
https://doi.org/10.1109/TrustCom60117.2023.00310
https://doi.org/10.1109/TCC.2017.2745560
https://docs.vmware.com/en/Site-Recovery-Manager/index.html
https://doi.org/10.1109/MITP.2020.3005675
https://doi.org/10.1109/TBDATA.2017.2701816

