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Abstract: Being able to accurately detect and classify fruits on trees would be important for smart farming 
in terms of the efficiency of yield management and labour cost savings. Conventional methods are prone to 
inconsistency in environmental conditions, resulting in lower precision in detection accuracy. This paper 
proposes a state-of-the-art fruit detection technique through an approach to image augmentation 
enhanced by a genetic algorithm and advanced deep learning models. The proposed approach works for 
the detection of chickoo, mango, sweet lime and tomato fruit. This approach employs a genetic algorithm 
to optimize image augmentation, which enhances the diversification of training data and also increases the 
adaptability of the model towards various conditions. Fruit detection will be performed using the newest 
You Only Look Once (YoLoV9s) framework, which provides the possibility of real-time detection of objects. 
Classification of the fruits will be done with the help of a transfer learning-based VGGNet16 model. A colour 
thresholding step is applied for further confirmation of fruit types; it gives the least number of wrong 
classifications. It can be shown from the experimental results that the model that I have proposed accords a 
very good level of accuracy (97.9%), precision (97.0%), recall (97.5%), and an F1-score of 97.3%, which is 
much beyond the different methodologies produced in the literature up till now. The model's real capability, 
that is, its ability to accurately predict fruits under various environmental conditions reflects its potential to 
increase productivity in the precision agriculture process. 
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1. Introduction 
 
Smart farming, through integration of artificial intelligence, 
has been a boon to agriculture. It includes monitoring, 
growing, and even harvesting of crops. Among the plethora of 
applications (Khan et al., 2024; McHenry & Aćimović, 2024; 
Navarro Soto et al., 2024), fruit detection using computer 
vision and deep learning is one of the very pivotal innovations. 
The same seeks to augment yield assessments and optimize 
harvesting processes. Despite significant advancements, the 
real-world environment in outdoor farm landscapes remains 
quite challenging to the efficacy and accuracy of most 
developed fruit detection systems. Such variations in lighting 
(Eun et al., 2024; Stefi et al., 2024; Xia et al., 2024), occlusions, 
and the physical diversity (Mazurek et al., 2024; Morrone et al., 
2024; Xiao et al., 2024) of fruits often make it a task for many 
traditional methods of detection; hence, it requires better and 
more robust, adaptive solutions. This paper describes an 
advanced, iterative method to address this issue by 
incorporating the strengths of genetic algorithms (GA) for 
image augmentation with the state-of-the-art abilities of the 
You Only Look Once version 9 (YoLoV9s) detection system. 
Genetic algorithms are put into operation to artificially 
augment a dataset of fruit images, hence simulating a much-
wider range of environmental variants for the purpose of 
improving the model's generalization capabilities. Genetic 
algorithms thereby make the system more adaptive and less 
susceptible to overfitting, especially in a highly variable 
environment such as agriculture. 

Immediately after the augmentation phase of the image is 
where YoLoV9s, one of the fastest and most accurate systems 
for detecting objects in images, is put into operation. The 
reason is that its high speed makes it very ideal for real-time 
applications, which is the very reason why it is very important 
to be used in smart farm scenarios, which are at the forefront 
of every action with timely information. In order to further 
improve the accuracy of the classification process, a transfer 
learning-based VGGNet16 model is used to process the 
detected objects. The reason behind this is that the model is 
therefore famed for its depth and robustness in image 
classification for adding an extra layer of verification through 
colour thresholding methods for making sure identification is 
both precise and reliable for different scenarios. The 
combination of the augmentation of the training data with a 
dual model detection and classification system provides 
marked improvements in key performance metrics, including 
accuracy, precision, recall, area under the curve, and 
specificity. A reduction in the time delay associated with fruit 
detection and classification also ensures more efficient 
farming operations, which the proposed system infuses with. 
The proposed methodology introduces an innovative process 
of iteration into the field of agricultural AI that not only extends 

the scope of such an application but also lays groundwork for 
future explorations into the use of hybrid artificial intelligence 
techniques in real-life environments. As a workable, improved 
alternative to the existing fruit detection systems, this work 
adds to the aim of achieving greater productivity and 
sustainability in agriculture. 

A more sophisticated system for detecting fruits is inspired 
by the growing need of agriculture to adopt more sustainable 
and efficient ways of farming. Precision agriculture is a 
strategic move to monitor and control the variability inherent 
in farming operations. The variability in this case includes 
optimizing returns on inputs while conserving resources. Fruit 
detection systems, in particular, play a key role in many of the 
labor-intensive aspects of fruit farming, which includes yield 
estimation and harvest planning. Most of these processes 
currently require intensive human inspection and decision-
making, though such methods are just not adequate in terms 
of time and are prone to error, which often results in significant 
losses in terms of yield and profitability. Moreover, most of the 
existing automated systems cannot handle such complex 
scenarios due to variation in light conditions, occlusions, and 
the inherent diversity in fruit appearances. All of these 
challenges point to the need for a far more advanced fruit 
detection system that can robustly handle the complexities of 
real-world farm environments. 

The current studies on fruit detection conducted within the 
smart farming environment present with a number of 
shortcomings that hinder their effectiveness when applied to 
real applications. The main limitation is that classical models 
lack efficiency in handling the rich and complex visual 
conditions brought into the agricultural settings through 
varying lighting conditions, occlusions, overlapping fruits, and 
natural deformities. Most existing methods rely mainly on 
static image processing techniques or shallow machine 
learning models that fail to generalize properly on several 
environmental factors. Most of these models are, in addition, 
restricted by the small and limited datasets, which are central 
for training robust systems to detect fruits under challenging 
circumstances. This results in low precision and recall, with a 
very high rate of false positives and false negatives in fruit-
related tasks. 

Another serious limitation is the inability of existing 
detection systems to operate in real-time applications, which 
is critical for any practical deployment in smart farming. Many 
approaches lack the needed processing speed, or they 
sacrifice accuracy to achieve this speed. Conventional 
methods require multiple stages for image processing and 
object detection, which essentially increase the overhead of 
computation and reduce the system applicability for usage 
directly in the field for real-time applications. Most studies lack 
state-of-art image augmentation or optimization techniques 
like genetic algorithms, increasing variability in data and 
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further aiding model performance. This gap in adaptively 
using learning mechanisms, the fact that state-of-the-art deep 
learning frameworks are underused, limits the scalability and 
efficiency of existing fruit detection systems in dynamic and 
uncontrolled farming environments. 

The challenges involved in using such a system include 
false positives or the recognition of uninteresting objects by 
the detector or the difficulty of distinguishing the presence or 
absence of fruit. The current paper introduces a new detection 
and classification system, applied to increase significantly the 
accuracy and efficiency of fruit detection in smart farming 
applications. The main contribution of this paper are as 
follows, 

• The application of a genetic algorithm with the 
YoLoV9s object detection system and the VGGNet16-
based classification model.  

• The GA is applied for augmentations in the training 
dataset in order to create many synthetic images 
with a wide range that mimic the potential types of 
variations and difficulties actually experienced in real 
farm scenarios. The method extends the size of the 
dataset and reduces overfitting, providing the model 
with a better capability for generalization in different 
environmental conditions.  

• The use of YoLoV9s, which is known for its superior 
speed in detection and accuracy, allows for real-time 
processing that is needed for timely decisions in 
agriculture.  

• This is followed by a classification with the VGGNet16 
model, enhanced with colour thresholding 
techniques that guarantee a double verification 
process to provide a substantial improvement in 
model confidence in the accuracy of fruit type 
identification process. 

Together with these advanced methodologies, significant 
improvements are obtained in the key performance metrics, 
such as accuracy, precision, recall, the AUC, specificity, and 
time delays commonly observed when using traditional fruit 
classification methods. This dual approach strongly 
consolidates the model's effectiveness in real-world 
deployment scenarios, and with this, a new benchmark has 
been set for the field of agricultural technology because hybrid 
artificial intelligence techniques are successfully applied to 
solve real-world high-impact problems in smart farming. The 
paper will be structured into the following sections: Section 1: 
This section would be "Introduction," in which the problem of 
fruit detection in smart farming would be introduced and 
outlined by thinking on the challenges that may appear using 
current methods. Section 2: Review literature of techniques 
around fruit detection. Section 3: In this section, we illustrate 
the proposed method from the integration of genetic 
algorithm-based image augmentation and YoLoV9s 

framework for real-time fruit detection along with fruit 
classification through VGGNet16 with transfer learning. 
Section 4 consists of the experimental setup, dataset, and 
evaluation metrics. Section 5 is a summary of results and takes 
into consideration adding an analysis of how well the 
proposed model performs as compared to available methods 
in terms of improvements in accuracy, precision, recall, and F1 
score. To bridge this gap, Section 6 will present a working 
scenario of the model by applying it to real-world conditions. 
To summarize, Section 7 presents the conclusion of the paper, 
with the overall key findings and future directions to enhance 
the scalability and adaptability of the system in smart farming 
environments. 

 
2. In-depth review of existing models 

 
In recent years, significant advancements have been made in 
the development of species-specific detection techniques. 
McHenry & Aćimović (2024) introduced new species-specific 
real-time PCR assays for detecting Colletotrichum species 
responsible for bitter rot in apples. This method highlights the 
precision and sensitivity required for accurate pathogen 
detection, crucial for effective disease management in 
agriculture. The specificity of the PCR assays ensures that 
accurate identification of the Colletotrichum species can lead 
to targeted interventions, thereby reducing crop losses and 
improving yield quality. 

The assessment of food quality has seen notable 
improvements with the integration of electronic nose 
technology. Navarro Soto et al. (2024) explored the influence 
of fruitiness on the quality assessment of virgin olive oils using 
electronic noses. This technology mimics the human olfactory 
system and has shown promise in providing consistent and 
objective quality assessments. The study underlines the 
potential of electronic noses in the food industry, particularly 
in quality control processes where traditional sensory 
evaluation methods may be subjective and variable in 
process. The dual role of herbal spices as food and medicine 
has been comprehensively studied by Khan et al. (2024). Their 
work on the microscopic authentication of commercial herbal 
spices provides a detailed analysis of the authenticity and 
quality of these products. Given the increasing demand for 
natural and organic products, ensuring the authenticity of 
herbal spices is critical for consumer safety and satisfaction. 
The study's findings are significant for both food safety and 
pharmacognosy, emphasizing the need for stringent quality 
control measures in the spice industry sets. 

Multi-omics approaches have revolutionized our 
understanding of metabolic pathways in plants. Xia et al. 
(2024) conducted a multi-omics analysis on giant pumpkins, 
revealing distinct features in metabolism pathways that 
influence fruit size and colour. This integrative approach 
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combines genomics, transcriptomics, proteomics, and 
metabolomics, offering a comprehensive understanding of 
the biological processes underlying phenotypic traits. Such 
insights are invaluable for breeding programs aimed at 
improving crop yield and quality. The impact of genetic 
mutations on fruit characteristics was investigated by Eun et al. 
(2024), who characterized a new citrus mutant with a unique 
fruit shape induced by gamma irradiation. By identifying 
specific selection markers using allele-specific PCR, the study 
provides a foundation for future breeding programs targeting 
desirable traits. This research underscores the potential of 
induced mutations in developing new fruit varieties with 
improved attributes. Stefi et al. (20204) presented eco-
anatomical data for Saponaria jagelii, a species on the brink of 
extinction. Understanding the anatomical adaptations of this 
species to its environment is crucial for conservation efforts. The 
study highlights the importance of integrating anatomical and 
ecological data to develop effective conservation strategies for 
endangered plant species. 

Morrone et al. (2024) examined the effect of chabazite 
zeolite foliar applications on olive fruit fly control, 
photosynthesis, and the quality of extra virgin olive oil. Their 
findings suggest that such applications can influence volatile 
organic compound emissions and enhance olive oil quality. 
This study contributes to sustainable agriculture by providing 
insights into alternative pest control methods that can 
improve crop quality and yield sets. The propagation methods 
of highbush blueberry plants were compared by Mazurek et al. 
(2024), who analyzed plants propagated in vitro and 
conventionally. The comprehensive analysis revealed 
differences in growth and development between the two 
methods, offering valuable information for optimizing 
propagation techniques in blueberry cultivation. The field of 
robotic harvesting has seen significant advancements, with 
Xiao et al.  (2024) reviewing the latest developments in fruit 
and vegetable harvesting robots. These robots incorporate 
sophisticated algorithms and sensors to enhance harvesting 
efficiency and accuracy. Arikapudi and Vougioukas (2021) 
further explored the use of telescoping arms in robotic tree-
fruit harvesting, highlighting the importance of linear fruit 
reachability under geometric constraints. These innovations 
are paving the way for increased automation in agriculture, 
reducing labor costs and improving productivity. 

Machine learning applications have been extensively 
explored for various agricultural purposes. Hassan et al. (2024) 
developed a machine learning approach for the automatic 
disease and colour classification of olive fruits, employing 
support vector machines and artificial neural networks. This 
approach enhances the accuracy and efficiency of disease 
detection and fruit classification, contributing to better crop 
management. Similarly, Aldakhil and Almutairi (2024) utilized 
transfer learning for multi-fruit classification and grading, 

demonstrating the potential of deep learning models in 
agricultural applications. Non-destructive testing techniques 
have become increasingly important in assessing fruit quality. 
Yogarajan et al. (2022) developed an apple fruit quality 
detector using fiber optics and colour sensors, providing a 
non-invasive method for determining ripeness. Kojić et al. 
(2022) investigated the use of electrical impedance 
spectroscopy with protein-based edible foils for detecting the 
freshness of fruits and vegetables for different scenarios. 
These techniques offer reliable and non-invasive options for 
quality assessment in the food industry scenarios. Advanced 
imaging and sensing technologies have been employed to 
improve fruit detection and classification. Sharafudeen and 
Chandra (2023), Patel and Patil (2023) proposed a multimodal 
Siamese framework for accurate grade and measure 
estimation of tropical fruits, utilizing object detection 
networks. Patel and Patil (2023) enhanced convolutional 
neural networks for fruit disease detection and grading, 
integrating spatial pyramid pooling and support vector 
machines. These technologies enhance the precision of fruit 
quality assessment, contributing to better post-harvest 
management. Feature selection and optimization techniques 
have been explored to improve the performance of fruit 
recognition systems. Huynh et al. (2022) proposed a two-stage 
feature selection approach using adaptive particle grey wolf 
optimization for fruit recognition. This method improves the 
accuracy and efficiency of fruit classification systems, providing 
a robust solution for agricultural applications. Real-time 
monitoring and detection systems have been developed to 
enhance agricultural productivity. Suharjito et al. (2023), Khan 
et al. (2022) introduced a real-time oil palm fruit grading system 
using a modified YOLOv4 model and smartphones. This system 
enables accurate and timely detection of fruit ripeness, 
facilitating better harvest management. Tian et al. (2024), (Aiadi 
et al., 2022) developed a lightweight detection method for real-
time monitoring of tomato growth, demonstrating the potential 
of YOLOv5s in agricultural applications. 

The integration of deep learning models in agriculture has 
been extensively reviewed by Espinoza et al. (2023), Zhong et 
al. (2022), Bhole and Joshi (2023), Hiren et al. (2023). Their 
systematic literature review highlights the advances and 
future scopes in the application of convolutional neural 
networks (Hussain et al., 2024; Hussain & Aslam, 2024) and 
visual transformers in agriculture operations. These models 
have shown significant potential in improving the accuracy 
and efficiency of agricultural practices. Despite the significant 
advancements in agricultural technologies, several challenges 
remain. The complexity of implementing these technologies in 
diverse agricultural settings, the need for large datasets for 
training machine learning models, and the high costs 
associated with advanced sensors and robotic systems are 
some of the key challenges. Future research should focus on 
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developing cost-effective solutions, improving the robustness 
and scalability of existing technologies, and exploring the 
integration of multi-modal data for comprehensive 
agricultural analysis. The literature reviewed highlights the 
rapid advancements in agricultural technologies, particularly 
in species-specific detection techniques, food quality 
assessment, robotic harvesting, and machine learning 
applications. These innovations have the potential to 
significantly enhance agricultural productivity, quality control, 
and sustainability. However, addressing the existing 
challenges and exploring new research directions are crucial 
for the continued development and successful 
implementation of these technologies in agriculture.   

 
3. Design of the proposed model process 

 
To overcome issues of low efficiency and high complexity of 
fruit detection, which is present in existing models, this section 
discusses the design of an iterative method for enhanced fruit 
detection in smart farming using YoLoV9s with transfer 
learning analysis. Initially, as per Figure 1, In the proposed 
design the integration of a genetic algorithm (GA) with image 
augmentation techniques plays a pivotal role in enhancing the 
robustness and accuracy of the You Only Look Once (YoLoV9s) 
detection system. The GA is utilized to optimize the 
parameters and strategies for image augmentation, thus 
increasing the variability and representativeness of training 
data, crucial for improving the model's ability to generalize 
across different environmental conditions and fruit 
appearances. The genetic algorithm starts with an initial 
population of augmentation strategies, each represented as a 
chromosome. These chromosomes encode various 
parameters such as rotation angles, scaling factors, shear 
intensities, and colour adjustments. The fitness of each 
chromosome is evaluated based on how well the augmented 
images help the YoLoV9s model achieve higher performance 
metrics like precision, accuracy, and recall. 

The fitness function is defined as a weighted sum of 
precision, accuracy, and recall obtained from the classifier's 
performance on a validation set, which is augmented using 
the parameters encoded by the chromosome. 
Mathematically, fitness function 𝐹𝐹 is expressed via Equation 1: 

 
𝐹𝐹 = 𝑤𝑤1 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑤𝑤2 ⋅ 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴 + 𝑤𝑤3 ⋅ 𝑅𝑅𝑃𝑃𝑃𝑃𝐴𝐴𝑅𝑅𝑅𝑅         (1) 

 
Where 𝑤𝑤1, 𝑤𝑤2, and 𝑤𝑤3 are the weights that balance the 

importance of each metric according to specific detection 
needs. Crossover is implemented by combining pairs of 
chromosomes, through a single-point or uniform crossover 
method, to produce offspring that inherit traits from both 
parents.  

 

 
 

Figure 1. Model architecture of the proposed  
classification process. 

 
Mutation stochastically alters one or more genes in a 

chromosome to introduce additional diversity into the 
population, which is essential for exploring new parts of the 
solution space. The mutation might involve slight changes in 
the rotation angle or colour adjustment parameters and 
samples. The selection process involves choosing the fittest 
chromosomes to be parents for the next generation. This is 
achieved using tournament selection or roulette wheel 
selection, ensuring that higher-fitness individuals have a 
higher probability of contributing to the next generation. The 
GA-optimized augmentation process dynamically adjusts the 
augmentation parameters throughout the training process. 
This approach helps in creating a robust dataset that mimics 
various environmental effects such as different lighting 
conditions, occlusions, and natural deformities in fruits. The 
justification for employing a genetic algorithm in conjunction 
with YoLoV9s stems from the need for a highly adaptive and 
efficient method to handle the complex and diverse nature of 
agricultural imagery. The GA allows for an iterative 
optimization of image augmentations, which is crucial for 
training deep learning models like YoLoV9s that require large 
amounts of varied data to perform well in real-world 
scenarios. 

Additionally, the use of YoLoV9s for fruit detection is 
motivated by its speed and efficiency in processing images, 
which is vital in real-time agricultural applications where quick 
decision-making is crucial. The subsequent classification of 
fruits using a transfer learning-based VGGNet16 model 
leverages its depth and complexity for accurate classification, 
providing a robust two-phase detection system. In this work, 
the augmented image generation is done via Equation 2: 
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𝐼𝐼′ = 𝑓𝑓(𝐼𝐼,𝜃𝜃)      (2) 
 
Where 𝐼𝐼 is the original image, 𝜃𝜃 represents the 

augmentation parameters encoded by the GA, and 𝐼𝐼′ is the 
augmented image by this process. The crossover operation is 
then performed via Equation 3: 

 
𝜃𝜃𝑃𝑃ℎ𝑃𝑃𝑅𝑅𝑖𝑖 = 𝛼𝛼 ∗ 𝜃𝜃(𝑝𝑝𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝, 1) + (1 − 𝛼𝛼)𝜃𝜃(𝑝𝑝𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝, 2)   (3) 
 
Where 𝛼𝛼 is a blend factor determining the contribution of 

each parent's genes. Next, the Mutation Operation is 
performed via Equation 4: 

 
𝜃𝜃′ = 𝜃𝜃 + 𝛿𝛿     (4) 

 
Where 𝛿𝛿 represents a small stochastic perturbation to the 

augmentation parameters for this process. The Fitness 
Evaluation is done via Equation 1, where the internal metrics 
are estimated via Equations 5, 6, and 7 as follows: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

    (5) 
 

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

   (6) 
 

𝑅𝑅𝑃𝑃𝑃𝑃𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

    (7) 
 
Finally, the feedback loop for GA optimization is modelled 

via Equation 8: 
 

𝜃𝜃𝑃𝑃𝑃𝑃𝑛𝑛𝑝𝑝 = 𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑝𝑝�𝐹𝐹(𝜃𝜃)�   (8) 
 
This operation represents the selection process where the next 

generation of parameters is chosen based on the fitness scores.  
 

 
 

Figure 2. Overall flow of the proposed classification process. 

These processes encapsulate the core computational and 
mathematical processes involved in the GA-driven 
augmentation strategy for the YoLoV9s-based fruit detection 
system process. The approach not only enhances the 
detection accuracy but also significantly contributes to the 
adaptability and efficiency required in smart farming contexts. 

Next, as per Figure 2, the You Only Look Once (YoLoV9s) 
framework is integrated, which represents a sophisticated 
evolution in the realm of object detection systems, combining 
high-speed processing with an exceptional degree of 
accuracy. This deep learning architecture is specifically 
engineered to perform object detection in a singular 
evaluation of the image, distinguishing it from other models 
that might require multiple scans or stages. This inherent 
efficiency is pivotal for applications such as real-time fruit 
detection in smart farming, where rapid and accurate 
detection can significantly influence operational efficiency 
and output. YoLoV9s enhances its predecessors by optimizing 
both the architecture and the training process. The model 
processes images through a deep convolutional neural 
network, predicting both bounding boxes and class 
probabilities in one forward pass. This integrated approach 
ensures that YoLoV9s maintains minimal latency, making it 
ideal for real-time applications. 

The network structure of YoLoV9s is designed to efficiently 
learn spatial hierarchies of features through successive 
convolutional layers. The layers are meticulously configured 
to capture fine-to-coarse granularities, where initial layers 
detect simple features like edges and textures, and deeper 
layers interpret complex features relevant to the objects of 
interest for different scenarios. Initially, the Bounding Box 
Prediction in YoLo is done via Equation 9: 

 
𝑏𝑏(𝑛𝑛,𝐴𝐴,𝑤𝑤,ℎ) = 𝜎𝜎(𝑝𝑝𝑛𝑛) + 𝑃𝑃�𝑛𝑛,𝜎𝜎(𝑝𝑝𝐴𝐴)� 

                                +𝑃𝑃(𝐴𝐴,𝑝𝑝(𝑤𝑤)𝑃𝑃𝑡𝑡𝑡𝑡),𝑝𝑝(ℎ, 𝑃𝑃𝑡𝑡ℎ)        (9) 
 
Where 𝜎𝜎 represents the sigmoid function ensuring the 

outputs are between 0 and 1 for 𝑝𝑝𝑛𝑛 and 𝑝𝑝𝐴𝐴, representing the 
center of the bounding box relative to the bounds of the grid 
cell. The terms 𝑝𝑝𝑤𝑤 and 𝑝𝑝ℎ are the anchors for the box’s width 
and height, predefined based on prior knowledge of object 
sizes, and 𝑃𝑃𝑝𝑝𝑤𝑤, 𝑃𝑃𝑝𝑝ℎ are predictions that scale the anchors to 
the actual object size. Next, the objectness score is estimated 
via Equation 10: 

 
𝑝𝑝𝑃𝑃𝑏𝑏𝑝𝑝 = 𝜎𝜎(𝑃𝑃)     (10) 

 
This operation computes the objectness score 𝑝𝑝obj which 

predicts the probability of an object being present in the 
bounding box. Function (𝑃𝑃) represents the sigmoid activation 
of the model's confidence score 𝑃𝑃 for this process. The class 
probability is then estimated via Equation 11: 



 
 

 

C. Bhole et al. / Journal of Applied Research and Technology 164-177 

 

Vol. 23, No. 2, April 2025    170 
 

𝑝𝑝𝑃𝑃𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑓𝑓𝑝𝑝𝑠𝑠𝐴𝐴𝑛𝑛(𝑃𝑃1, 𝑃𝑃2, . . . , 𝑃𝑃𝑃𝑃)  (11) 
 
The softmax function is applied to the outputs 𝑃𝑃1,2,...,𝑃𝑃𝑃𝑃  

representing the class scores for each potential object 
category. This normalizes the scores, making them 
comparable across multiple classes. The Loss Function for this 
process is evaluated via Equation 12: 

 

 (12) 
 
Where 𝜆𝜆coord and 𝜆𝜆obj are coefficients to balance the 

importance of location and confidence predictions, I are 
indicators whether an object is present. Based on this, the 
feature integration process is modelled via Equation 13:  

 
𝑉𝑉 =  ∫         𝑓𝑓(𝑛𝑛)𝑖𝑖𝑛𝑛∞

−∞     (13) 
 
This mask, while abstract, symbolically represents the 

aggregation of learned features across the entire neural 
network, culminating in the final feature vector 𝑉𝑉 used for 
detection. Finally, the optimization gradient is estimated via 
Equation 14: 

 
𝜕𝜕𝐿𝐿
𝜕𝜕𝑡𝑡

= 𝐼𝐼𝑃𝑃𝑝𝑝𝐴𝐴𝑝𝑝 × (𝑂𝑂𝐴𝐴𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝 − 𝑇𝑇𝐴𝐴𝑃𝑃𝑎𝑎𝑃𝑃𝑝𝑝)  (14) 
 
This derivative is crucial for training via backpropagation, 

where 𝑤𝑤w represents the weights of the network, and the 
product of input and error term adjusts the weights to 
minimize the loss function 𝐿𝐿 for this process. The choice of 
YoLoV9s for fruit detection is primarily motivated by its 
capacity to perform detections swiftly and with remarkable 
accuracy, essential for the dynamics of an agricultural setting 
where conditions can change unpredictably. The model's 
ability to evaluate the entire image in a single pass reduces 
latency, a critical factor in real-time applications where 
decisions must be immediate. Moreover, the scalability and 
flexibility of YoLoV9s, which allows it to be trained on highly 
diverse datasets encompassing various fruit types and 
environmental conditions, further justify its selection over 
other models which may not provide such robustness or 
speed. This method complements traditional approaches by 
providing a comprehensive system that not only detects but 
ensures the accuracy and reliability of each detection, 
essential for practical deployment in smart farming. 

 
 
 

Once the YoLoV9s framework has effectively detected fruits 
within images, a transfer learning-based VGGNet16 model is 
employed to classify these detected fruits into specific types: 
chickoo, mango, sweet lime and tomato types. As per Figure 3, 
the choice of VGGNet16, renowned for its depth and 
architectural simplicity, is driven by its proven capabilities in 
image classification tasks, which stem from its methodical 
stacking of convolutional layers. Transfer learning further 
refines this process by utilizing a pre-trained network, 
enhancing learning efficiency and accuracy when adapting to 
the specific task of fruit classification. Transfer learning with 
VGGNet16 involves initializing the model with weights trained 
on a large, comprehensive dataset (ImageNet). This approach 
leverages learned features that are generalizable across 
various domains, significantly benefiting the classification task 
in environments with limited labeled data, such as specific 
types of fruits in agriculture operations. The feature extraction 
layer for VGG16 is represented via Equation 15: 

 
𝐹𝐹𝑅𝑅 = 𝑅𝑅𝑃𝑃𝐿𝐿𝑅𝑅(𝑊𝑊𝑅𝑅 ∗ 𝐹𝐹(𝑅𝑅 − 1) + 𝑏𝑏𝑅𝑅)  (15) 

 

 
 

Figure 3. Training performance of the transfer learning process. 
 
Where 𝐹𝐹𝑅𝑅 represents the output feature maps of layer 𝑅𝑅, 𝑊𝑊𝑅𝑅 

and 𝑏𝑏𝑅𝑅 are the weights and biases, ∗ represents the 
convolution operation, and ReLU is the activation function 
that introduces non-linearity, enhancing the model’s 
capability to learn complex patterns. Next, the pooling layer is 
represented via Equation 16: 

 
𝑃𝑃𝑅𝑅 = 𝑠𝑠𝐴𝐴�𝐹𝐹𝑅𝑅(𝑛𝑛,𝐴𝐴)�    (16) 

 
This operation represents the max pooling operation 

applied after certain convolutional layers, which reduces the 
dimensionality of the feature maps 𝐹𝐹l while retaining the most 
significant features, thus reducing computational load and 
overfitting scenarios. The fully connected layer is integrated 
next, and is represented via Equation 17: 
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𝑉𝑉 = 𝑊𝑊𝑓𝑓𝑃𝑃 ⋅ 𝐹𝐹(𝑓𝑓𝑅𝑅𝐴𝐴𝑝𝑝) + 𝑏𝑏𝑓𝑓𝑃𝑃   (17) 

 
Where 𝐹𝐹(𝑓𝑓𝑅𝑅𝐴𝐴𝑝𝑝) is the flattened feature maps from the final 

pooling layer, and 𝑊𝑊, 𝑏𝑏𝑓𝑓𝑃𝑃 are the weights and biases of the 
fully connected layer. This layer integrates learned features 
into a format suitable for classification operations. Finally, the 
softmax output layer is integrated via Equation 18: 

 
𝐴𝐴𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒

∑𝑒𝑒𝑒𝑒𝑒𝑒
     (18) 

 
In the final layer, the softmax function is applied to the 

outputs 𝑧𝑧𝑦𝑦 of the last fully connected layer to produce 𝐴𝐴𝑦𝑦, the 
probability distribution over class labels. This function 
converts logits into probabilities that sum to one for different 
scenarios. Next, the cross-entropy loss for multi-class 
classification is estimated via Equation 19: 

 

  (19) 
 

This loss function is critical for training, where 𝑝𝑝𝑦𝑦 are the 
true labels in a one-hot encoded vector, and 𝐴𝐴𝑦𝑦 are the 
predicted probabilities. It measures the discrepancy between 
the predicted probabilities and the actual class labels, guiding 
the network to minimize errors in prediction. To further 
improve the training process, gradient descent optimization is 
integrated via Equation 20: 

 
𝑊𝑊(𝑅𝑅,𝑃𝑃𝑃𝑃𝑤𝑤) = 𝑊𝑊(𝑅𝑅) − 𝜂𝜂 ⋅ 𝜕𝜕𝐿𝐿

𝜕𝜕𝜕𝜕𝜕𝜕
   (20) 

 
The weights (𝑅𝑅) are updated via tomato descent, where 𝜂𝜂 is 

the learning rate and 𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕𝜕𝜕

  is the gradient of the loss function 
with respect to the weights. This iterative adjustment allows 
the network to learn optimal weights that minimize the loss. 
The employment of the VGGNet16 model, particularly with the 
transfer learning approach, is justified by its architectural 
depth and capability to capture intricate details necessary for 
accurate classification of visually complex objects like fruits. 
The deep layers of VGGNet16 allow it to build a sophisticated 
hierarchy of features, which is crucial for distinguishing 
between different fruit types that may have subtle visual 
differences. The adaptation through transfer learning is 
particularly advantageous, as it significantly reduces the 
requirement for extensive labeled datasets specific to the 
agricultural context, thus economizing on data collection and 
annotation efforts. Moreover, by employing VGGNet16 post-
YoLoV9s detection, the system ensures that fruit classification 
is not only rapid and efficient but also remarkably accurate, 
capitalizing on the strengths of both architectures to deliver 
superior performance in a real-time farming environment. This 

integration of detection and classification models underpins a 
robust framework capable of addressing the nuanced 
demands of smart farming technology, paving the way for 
more precise agricultural practices and enhanced 
productivity. 

Finally, as per Figure 2, in the proposed smart farming 
system, following the initial detection and classification of 
fruits via YoLoV9s and VGGNet16, a colour thresholding 
process is implemented to confirm the classification results. 
This step is crucial as it significantly reduces  

misclassification by leveraging the distinct colour profiles 
of chickoo, mango, sweet lime, and tomato types. The colour 
thresholding process involves analyzing the colour 
distribution within the detected bounding boxes and 
comparing these to predefined colour thresholds that are 
characteristic of each fruit type. The model estimates Colour 
Histogram via Equation 21: 

 

 
                          (21) 

   
Where (𝑃𝑃) is the histogram for colour 𝑃𝑃c in the HSV image, 𝑁𝑁 

is the number of pixels, and 𝛿𝛿 is the Kronecker delta function, 
which counts the occurrence of colour 𝑃𝑃 at pixel 𝑃𝑃 sets. Next, 
threshold application is done via Equation 22: 

 
𝑀𝑀(𝑃𝑃) = {1, 𝑃𝑃𝑓𝑓 𝐻𝐻(𝑃𝑃) ≥ 𝑇𝑇(𝑃𝑃) 0, 𝑃𝑃𝑝𝑝ℎ𝑃𝑃𝑃𝑃𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃  (22) 

 
Where (𝑃𝑃) represents a mask that identifies whether the 

colour 𝑃𝑃 exceeds a predefined threshold (𝑃𝑃), which is specific 
to each type of fruit based on its characteristic colour. Next, 
the integral of colour mask is estimated via Equation 23: 

 
𝐴𝐴 = ∫𝑀𝑀(𝑃𝑃) 𝑖𝑖𝑃𝑃    (23) 

 
This integral calculates the total area where the mask (𝑃𝑃) is 

one, indicating regions within the image that meet the colour 
threshold criteria. The colour confirmation ratio is next 
estimated via Equation 24: 

 
𝑅𝑅 = 𝐴𝐴

𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝜕𝜕
     (24) 

Where 𝑅𝑅 is the ratio of the area meeting the colour criteria 
𝐴𝐴 to the total area of the detected object 𝐴𝐴𝑝𝑝𝑃𝑃𝑝𝑝. A high ratio 
indicates a strong match to the expected colour profile of the 
fruits. Finally, the derivative of colour confirmation is 
estimated via Equation 25: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝐴𝐴
𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡𝐴𝐴𝜕𝜕

�    (25) 
 
This derivative assesses how changes in colour thresholds 

affect the confirmation ratio, providing insights into the 

𝐻𝐻(𝑃𝑃) =
1
𝑁𝑁�

𝑁𝑁

𝑃𝑃=1

𝛿𝛿�𝑃𝑃 − 𝐼𝐼𝐻𝐻𝑆𝑆𝑉𝑉(𝑃𝑃)�  
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sensitivity of the classification to variations in colour settings, 
which is crucial for adjusting thresholds in dynamic lighting 
environments. The implementation of a colour thresholding 
process is justified by the distinct colour profiles exhibited by 
different fruits, which often remain consistent despite 
variations in size, shape, or texture. This method is particularly 
effective in reducing false positives where objects detected 
and classified based on shape might not actually be the target 
fruit. By adding a colour confirmation step, the system 
enhances its overall accuracy and robustness. 

The choice to utilize HSV colour space is strategic; unlike 
RGB, HSV is less susceptible to shadows and lighting 
variations, making it more reliable for consistent colour 
detection in outdoor agricultural environments. Furthermore, 
as per Figure 4, the calculation of colour histograms and their 
comparison against predefined thresholds ensures that the 
classification is not only based on shape and texture but is also 
corroborated by colour, a primary identifier in many 
agricultural products. This colour thresholding process 
complements the previous detection and classification stages 
by providing a final verification step, ensuring that the fruits 
identified by the system are indeed the correct type based on 
a comprehensive analysis involving shape, texture, and now, 
colour. This layered approach to detection and classification 
embodies a more holistic and error-resilient methodology, 
crucial for automating processes in precision agriculture and 
smart farming systems. Next, we discuss the results of the 
proposed model in terms of different use cases and compare 
them with other models for different scenarios. 

 

 
 

Figure 4. Detection of tomato fruits. 
 
4. Result analysis 

 
The experimental framework for evaluating the proposed fruit 
detection and classification system integrates a robust 
methodology, leveraging advanced computational 
techniques and real-world agricultural data. The setup 
encompasses the deployment of the You Only Look Once 
version 9 (YoLoV9s), the VGGNet16 with transfer learning for  
 

classification, a genetic algorithm (GA) for optimizing image 
augmentation parameters, and a colour thresholding 
technique to confirm fruit types. Each component is 
meticulously tuned to ensure precision, robustness, and 
applicability in diverse farming conditions. 
 
Hardware and software configuration 
The experiments were conducted on a system equipped with 
the following specifications: 

 
Component Specification 
CPU Intel Core i9-9900K @ 3.6 GHz 
GPU NVIDIA GeForce RTX 3080 10GB GDDR6X 
RAM 32GB DDR4 
Operating system Ubuntu 20.04 LTS 
Software Python 3.8, PyTorch 1.7, OpenCV 4.5 

 
Dataset 
The dataset consists of high-resolution images (1920x1080 
pixels) captured from various fruit orchards and Kaggle, under 
different lighting and weather conditions to simulate realistic 
scenarios. The dataset is divided into four main categories 
based on fruit type: chickoo, mango, sweet lime, and tomato. 
Each category includes images with varying degrees of 
occlusion, overlap, and background clutter to test the 
robustness of the detection and classification system. 
 

Category Number 
of images 

Training 
set (70%) 

Validation 
set (15%) 

Test 
set (15%) 

Chickoo 5,000 3,500 750 750 
Mango 5,000 3,500 750 750 
Sweet 
lime 

5,000 3,500 750 750 

Tomato 5,000 3,500 750 750 
Total 20,000 14,000 3,000 3,000 

 
Image augmentation setup 
A genetic algorithm was employed to optimize the parameters 
for image augmentation. The initial population size for the GA 
was set to 50, with the following augmentation parameters 
considered for optimization: 

 
Parameter Range/Values 
Rotation -45° to +45° 
Scale 0.8 to 1.2 times original size 
Translation Up to 10% of image width and height 
Shear -20° to +20° 
Colour adjustment Brightness and contrast: -30% to +30% 

 
The fitness function for the GA was formulated as a weighted 

sum of accuracy, precision, and recall obtained from the validation 
set, with coefficients optimized through preliminary testing. 

YoLoV9s and VGGNet16 configuration 
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● YoLoV9s: The network was trained using a batch size 
of 16 and a learning rate of 0.001, adjusted by a factor 
of 0.1 every 10 epochs if the validation loss plateaued. 

● VGGNet16: This model was initialized with weights 
pre-trained on ImageNet. The top layers were 
replaced with two fully connected layers (4096 units 
each) and a final softmax layer corresponding to the 
four fruit categories. The transfer learning phase 
involved fine-tuning these layers with a learning rate 
of 0.0001. 

 
Colour thresholding 
Colour thresholds were manually set based on the dominant 
colour ranges observed in a subset of the training data for 
each fruit type. These thresholds were applied in the HSV 
colour space to account for variations in lighting: 
 
Evaluation metrics 
The system's performance was assessed using the metrics of 
accuracy, precision, recall, F1-score, and mean average 
precision (mAP). Each metric provides insights into different 
aspects of the model's performance, particularly in handling 
the challenges posed by real-world agricultural imagery 
samples. This experimental setup aims to validate the 
effectiveness of the proposed system in detecting and 
classifying fruits accurately within diverse and challenging 
agricultural environments. Through this rigorous testing, the 
model's robustness, adaptability, and scalability are 
thoroughly evaluated, ensuring its utility in practical smart 
farming applications. The performance of the proposed fruit 
detection and classification system was comprehensively 
evaluated and compared with three other methods 
referenced as (Xia et al., 2024), (Aldakhil & Almutairi, 2024), and 
(Suharjito et al., 2023) across a variety of metrics such as 
accuracy, precision, recall, F1-score, and mean average 
precision (mAP). The evaluation was conducted on a dataset 
comprising images of chickoo, mango, sweet lime and 
tomato, with each category presenting unique challenges in 
terms of colour similarity, occlusion, and background clutter. 
The results are presented in the tables below: 

Table 1 highlights the accuracy of each method in detecting 
fruits. The proposed model as per Figure 5, also demonstrates 
superior performance, particularly in challenging detection 
scenarios such as in dense foliage or under varied lighting 
conditions, significantly outperforming the other methods. 

 
Table 1. Accuracy of fruit detection on the contextual dataset. 

 
Model/ fruit 
type 

Chickoo Mango 
Sweet 
lime 

Tomato Average 

Proposed 
Model 

98.50% 
96.70

% 
97.40% 

99.10
% 

97.90% 

Multiomics  
(Xia et al., 
2024) 

95.30% 
93.50

% 
94.60% 

96.80
% 

95.10% 

Transfer 
(Aldakhil & 
Almutairi, 
2024) 

93.70% 
91.90

% 
92.80% 

95.50
% 

93.50% 

YoLo4 
(Suharjito 
et al., 
2023) 

90.40% 
89.70

% 
90.10% 

92.90
% 

90.80
% 

 

 
 

Figure 5. Detection of mangos. 
 
In Table 2, the precision metric is assessed for each fruit 

type. The proposed model exhibits a higher precision across 
all categories, suggesting fewer false positives in fruit 
detection, a critical aspect for efficient harvesting. 

 
Table 2. Precision comparison across fruit types. 

 
Model / fruit 
type 

Chickoo Mango 
Sweet 
lime 

Tomato Average 

Proposed 
Model 

97.80% 95.40% 96.20% 98.70% 97.00% 

Multiomics 
(Xia et al., 
2024) 

93.00% 91.20% 92.00% 94.90% 92.80% 

Transfer 
learning  
(Aldakhil & 
Almutairi, 
2024) 

90.50% 88.80% 89.70% 91.30% 90.10% 

YoLo4  
(Suharjito et 
al., 2023) 

88.10% 87.00% 87.90% 89.40% 88.10% 

 
Table 3 shows the recall rates, where the proposed model 

consistently ensures that most real fruit instances are correctly 
identified, and as per Figure 6 minimizing the risk of 
overlooking any valuable produce. 
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Table 3. Recall rates across contextual datasets. 
 

Model / fruit 
type 

Chic
koo 

Man
go 

Sweet 
lime 

Tom
ato 

Aver
age 

Proposed 
model 

98.0
% 

96.0
% 

97.0% 99.0
% 

97.5
% 

Multiomics 
(Xia et al., 
2024) 

94.0
% 

92.5
% 

93.5% 95.7
% 

93.9
% 

Transfer 
learning  
(Aldakhil & 
Almutairi, 
2024) 

91.9
% 

90.4
% 

91.1% 93.2
% 

91.7
% 

YoLo4  
(Suharjito et 
al., 2023) 

89.5
% 

88.0
% 

88.7% 90.0
% 

89.1
% 

 

 
 

Figure 6. Detection of sweet lime. 
 
Table 4 evaluates the harmonic mean of precision and 

recall (F1-score), reflecting the balance between these two 
metrics. The proposed model demonstrates a higher F1-score, 
indicating a balanced approach to precision and recall, which 
is crucial for classification accuracy. 

 
Table 4. F1-Score comparison for effective classification. 

 
Model / fruit 
type 

Chickoo Mango 
Sweet 
lime 

Tomato Average 

Proposed 
model 

97.90% 95.70% 96.60% 98.90% 97.30% 

Multiomics 
(Xia et al., 
2024) 

93.60% 92.30% 92.80% 95.80% 93.60% 

Transfer 
learning  
(Aldakhil & 
Almutairi, 
2024) 

91.20% 89.60% 90.40% 92.20% 90.90% 

YoLo4  
(Suharjito et 
al., 2023) 

88.70% 87.50% 88.30% 89.70% 88.50% 

Table 5 presents the mean average precision (mAP), a 
crucial metric in evaluating object detectors. The proposed 
model showcases superior mAP values across all fruit 
categories, underscoring its effectiveness in both detection 
and classification tasks. These results demonstrate the 
superior performance of the proposed model compared to 
existing methods, validating its effectiveness in real-world 
agricultural settings. The improvement in precision, recall, F1-
score, and mAP underscores the benefits of integrating 
advanced machine learning techniques such as genetic 
algorithms, sophisticated detection frameworks like YoLoV9s,  
and robust classification systems using VGGNet16 with 
transfer learning, complemented by precise colour 
thresholding. This comprehensive approach ensures highly 
accurate fruit detection and classification, vital for enhancing 
productivity and efficiency in smart farming operations. Next, 
we discuss a practical use case of the proposed model, which 
will assist readers to further understand the entire 
classification process. 

 
Table 5. Mean average precision (mAP) for overall detection 

 and classification. 
 

Model / fru 
it type 

Chickoo Mango 
Sweet 
lime 

Tomato Average 

Proposed 
Model 

98.30% 96.50% 97.30% 99.00% 97.80% 

Multiomics 
(Xia et al., 
2024) 

95.10% 93.30% 94.10% 96.20% 94.70% 

Transfer 
learning  
(Aldakhil & 
Almutairi, 
2024) 

93.50% 91.70% 92.60% 94.90% 93.20% 

YoLo4 
(Suharjito et 
al., 2023) 

90.20% 88.90% 89.50% 91.60% 
 
90.10% 

 
Practical use case 
The robust design of the fruit detection and classification 
system is illustrated through a series of process outputs, 
demonstrating the efficacy of each component in the 
integrated model. This sequential presentation of results 
offers insights into the transformations and enhancements at 
each stage of the pipeline, from image augmentation to final 
output classification. Each stage leverages unique 
methodologies tailored to optimize performance, ensuring 
high accuracy and reliability in detecting and classifying fruits. 

The genetic algorithm optimizes image augmentation 
parameters to effectively increase the dataset variability, 
which enhances the model’s ability to generalize across 
different environmental conditions. Following this, the 
YoLoV9s model detects fruit objects within images, which are 
then classified by the VGGNet16 model using transfer learning 
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to leverage pre-trained data for high accuracy. The process 
concludes with a colour thresholding step that confirms the 
fruit classification, ensuring the precision of the final output. 
These stages collectively contribute to a highly effective fruit 
detection system as demonstrated in the subsequent tables. 

Table 6 displays the optimization of augmentation parameters 
via the genetic algorithm, highlighting the initial and optimized 
values. These adjustments are crucial for preparing the dataset 
for robust training under varied conditions. 

 
Table 6. Genetic algorithm for Image augmentation optimization. 

 
Parameter Initial value Optimized value 
Rotation -30° -15° 
Scale 1.0 1.1 
Translation 5% 3% 
Shear -15° -10° 
Brightness 100% 110% 

 
Table 7 summarizes the fruits detected by YoLoV9s, listing 

the confidence levels associated with each detection. High 
confidence scores reflect the model's effectiveness in 
identifying fruits accurately. 

 
Table 7. YoLoV9s object detection results. 

 
Image ID Detected objects Confidence 
001 Mango 94% 
002 Chickoo 97% 
003 Sweet lime 95% 
004 Tomato 99% 

 
Table 8 demonstrates the classification results using the 

VGGNet16 model, where fruits are not only detected but also 
correctly classified with high confidence, showcasing the 
benefits of using transfer learning. 

 
Table 8. VGGNet16 with transfer learning for classification. 

 
Image ID Predicted fruit Confidence 
001 Mango 96% 
002 Chickoo 98% 
003 Sweet Lime 96% 
004 Tomato 99% 

 
Table 9 provides the results of the colour thresholding step, 

confirming the classification of each fruit based on its colour 
profile. This final verification step ensures the accuracy of the 
classification process. 

 
 
 
 
 

Table 9. Colour threshold for classification confirmation. 
 
Image 

ID 
Fruit Expected colour 

range 
Confirmed 

001 Mango Yellow-Orange Yes 
002 Chickoo Brown Yes 
003 Sweet Lime Green Yes 
004 Tomato Red Yes 

 
Table 10 encapsulates the final outputs, showing the 

detection confidence, classification confidence, and 
confirmation through colour thresholding for each identified 
fruit. These results highlight the comprehensive capabilities of 
the system in providing highly reliable and accurate fruit 
detection and classification. The detailed tabular 
representation across the system's stages from image 
augmentation to final output validation illustrates the 
rigorous and methodically optimized process designed to 
achieve high precision in fruit detection and classification. The 
integration of advanced technologies such as genetic 
algorithms, YoLoV9s, VGGNet16 with transfer learning, and 
colour thresholding verification establishes a robust 
framework capable of addressing the complexities of real-
world agricultural imaging. The excellent performance 
metrics, as evidenced in the tables, underscore the potential 
of this system to revolutionize fruit detection methodologies 
in smart farming environments. 

 
Table 10. Final outputs of the detection and classification system. 
 

Image 
ID 

Fruit 
Detection 
conf. 

Classification 
conf. 

Colour 
confirmed 

1 Mango 94% 96% Yes 
2 Chickoo 97% 98% Yes 

3 
Sweet 
Lime 

95% 96% Yes 

4 Tomato 99% 99% Yes 
 

5. Conclusion  
 

The fruit detection and classification system proposed here 
significantly improved accuracy, precision, recall, and 
efficiency on the entire method as compared with 
conventional methods. With the incorporation of a genetic 
algorithm for the optimization of image augmentation into the 
framework of YoLoV9s with real-time detection and the 
application of the VGGNet16 model with transfer learning in 
classification, this system can truly overcome these obstacles 
caused by variable environmental conditions in an  
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agricultural setting. More still with colour thresholding process 
aside from that, the classification result through this system 
would even increase more, by minimizing misclassification 
about colour profiles. In general, the overall performance 
metrics, accuracy of 97.9%, precision of 97.0%, and the mean 
average precision (mAP) of 97.8%, prove the robustness of this 
system, which is applicable in real-world smart farming 
scenarios. Some promising results present several areas for 
further improvement. This study has a limitation in that it is 
based on predefined colour thresholds, which might not 
adapt to extreme variations of lighting or fruit appearance. 
Future studies may include the development of more adaptive 
algorithms for colour recognition that dynamically adapt to 
the particular environment conditions. Another future 
research will include expanding the model to create detection 
of a wider variety of fruits or integrating other sensors like 
thermal or multispectral imaging for enhancing the accuracy 
of detection in the complex agricultural environments. Further 
scalability of the system in handling larger datasets and a more 
widespread range of fruit categories would also be within reach. 
Optimizations would reduce the computational requirements of 
the system, thus making it even more accessible to smaller-scale 
farming operations. These adjustments would hone the precision 
and usability of the model further, with more advanced 
applications for precision agriculture process. 
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