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ABSTRACT 
We introduce a mechanism for the verification of real-time integrity policies about the operation of a distributed 
system. Our mechanism is based on Microsoft .NET technologies. Unlike rival competitors, it is not intrusive, as it 
hardly modifies the source code of any component of the system to be monitored. Our mechanism consists of four 
modules: the specification module, which comes with a security policy specification language, geared towards the 
capture of integrity policies; the monitoring module, which includes a code injector, whereby the mechanism observes 
how specific methods of the system, referred to by some policy, are invoked; the verifier module, which examines the 
operation of the distributed system in order to determine whether is policy compliant or not; and, the reporter module, 
which notifies the system is policy compliant, or sends an alert upon the occurrence of a contingency, indicating policy 
violation. We argue that our mechanism can be framed within the Clark and Wilson security model, and, thus, used to 
realise information integrity. We illustrate the workings and the power of our mechanism on a simple, but industrial-
strength, case study. 
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RESUMEN 
En este artículo, presentamos un mecanismo para verificar, en tiempo-real, políticas de integridad asociadas con un 
sistema distribuido. Nuestro mecanismo está desarrollado en, y es aplicable a, tecnologías MS .NET. A diferencia de 
sus competidores, no es intrusivo, pues no requiere modificaciones de consideración en el código fuente de ningún 
componente del sistema a inspeccionarse. Nuestro mecanismo consiste de cuatro módulos: el módulo de 
especificación, diseñado especialmente para expresar políticas de integridad; el módulo de inspección, el cual incluye 
un inyector de código, a través del cual nuestro mecanismo observa cómo se invocan los métodos del sistema 
referidos en alguna de las políticas; el módulo verificador, el cual examina la operación del sistema para determinar si 
éste cumple o no con las políticas; y, el módulo reportador, que notifica si el sistema está conforme a la norma, o 
envía alertas en el caso que ocurra una contingencia, indicando la violación a una política. Demostramos que nuestro 
mecanismo formalmente se enmarca dentro del modelo de seguridad de Clark y Wilson, y, por lo tanto, puede 
aplicarse en el establecimiento de integridad. Para mostrar el funcionamiento y las bondades de nuestro mecanismo, 
incluimos un caso de estudio simple, pero típico de una aplicación industrial o comercial. 
 

 
1. Introduction 
 
The malfunctioning of a company’s information 
system, due to an attack, a code or a design flaw, 
or a hardware failure, heavily impacts the company 
prestige and finance. Not surprisingly, (large) 
companies usually assign a (considerably) large 
budget to develop, debug, test, and maintain their 
information systems, in an attempt at timely 
detecting, and subsequently correcting a system 
flaw. Thus, to minimise risks, a lot of testing is 
conducted, both before and after the system has 
been deployed into production.  

 
 
Testing, which used to be geared towards validating 
that a system complies with specific business 
functions, nowadays contemplates guarantees that 
the system will meet a security policy, and, hence, 
that it will not be misused to gain access to an 
organisation’s asset. Guaranteeing that, at any point 
in time, a system will behave as expected, and obey 
to all business rules, is far from trivial. The problem 
is further magnified when the system is to interact 
with others, especially when they are distributed 
amongst several different companies, and possibly 
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over one or more countries. What is more, although 
business rules often include security checks (for 
example, an Internet bank system will require that 
no user be allowed to take money from another 
user’s account), they hardly consider the system, 
when run in parallel with others. This may give rise 
to a hazard, especially when several systems must 
cooperate one another in order to achieve a 
business function.  
 
Unfortunately, the study and development of 
mechanisms for monitoring that a system complies 
with a given security policy has been largely 
ignored: emphasis has centred on detecting 
system misuse. For example, there are not 
commercial tools that take a security policy, 
specified at a high-level of a business function (or 
process), and then monitor a target system, so 
that, at real-time, they are able to report whether, 
so far, the system adheres to the security policy. 
Although existing tools can be adapted to do this 
task, they require quite a lot of development effort, 
and are not suitable for rapidly prototyping an 
inspection mechanism. What is more, as shall be 
discussed later on in the text, the mechanisms that 
have been proposed in the literature for this or a 
similar purpose are rather intrusive, in that they 
require heavy modifications in the underlying 
pieces of software, some such changes might not 
be realisable, e.g., for licenses’ constraints. 
 
In this paper, we present a mechanism that 
automatically alerts whenever a system is not 
complying with a (integrity) security policy. Unlike 
others, our mechanism does not interfere with or 
rely on the design or the implementation of the 
system under inspection. We also provide a security 
policy specification language, especially designed 
for capturing safety and liveness properties related 
with business functions. Policies are built out of 
predicates, where the domain of discourse contains 
parameters (values) of procedures or public 
methods of the system to be monitored, and that 
can be specified without knowledge of the system 
implementation; furthermore, policies might refer to 
events occurring throughout several systems, which 
the system under inspection communicates with. 
Although applicable in any context, our mechanism 
has been developed to work with Microsoft .NET 
distributed systems, since this framework allows us 
to automate most of its deployment. 

Our mechanism works by dynamically injecting 
Microsoft intermediate language code on specific 
modules of the system to be monitored. Each of 
these small programs, we call an observation point, 
is responsible of intercepting any invocation to a 
public method referred to by the designated 
collection of policies, as well as reporting the 
method execution parameters to a distributed 
database module. A security policy verification 
engine is then used to confront the information 
collected in the database against the security 
polices, specified in a high-level policy specification 
language. Finally, the mechanism viewer is used to 
display the validation results, send audit reports, 
and alert a security officer upon any contingency. 
The mechanism viewer also displays rules that have 
been triggered as expected, thus, indicating the 
system under monitoring is policy compliant. 
 
In order to illustrate the workings, the strength, and 
the functionality of our mechanism, we include and 
go through a simple, but industrial-strength case 
study, in the field of value-added chain, and 
associated with the processing of a purchase order. 
In particular, for this experimental test, we have: (i) 
developed a simulator for a typical purchase order 
workflow; (ii) identified and specified eleven integrity 
security policies; and, finally, (iii) simulated attacks to 
the purchase ordering process, in order to validate if 
any policy violation was reported through our monitor. 
In our simulations, attacks were introduced on a 
random basis. Our mechanism was successfully 
tested: our experimental results show that each 
policy violation was spotted timely, and accordingly. 
 
Overview of Paper The remaining of the paper is 
organised as follows: In Section 2, we provide an 
overview of both information integrity and security 
policies, and the security model used to theoretically 
justify the design and the workings of our 
mechanism. In Section 3, we discuss related work, 
identifying key competitor mechanisms. Then, in 
Section 4, we introduce our mechanism, outlining the 
internal workings of all its components. Section 5 
provides an overview of our case study, specifying: 
the problem under consideration, the security policy, 
the mechanism deployment, and the simulation 
environment. Section 6 is a follow up to Section 5, 
introducing the testing attack scenarios used in our 
validation experiments, as well as outlining the 
associated results. Finally Section 7 concludes the 
paper, and gives directions for further work. 
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2. Preliminary Concepts 
 
The aim of this section is twofold. First, it aims to 
provide an overview of security policies, given 
special attention to integrity policies, the kinds of 
policies we would like to automatically inspect 
and verify for system compliance. Second, this 
section also aims to outline the integrity model of 
Clark and Wilson, which provides a formal 
framework to our mechanism for verifying integrity 
security policies. 
 
2.1 Security Policies 
 
Security policies are rules or conventions that aim to 
protect an organization’s assets [1]. Following [2], a 
security policy is defined in terms of a set of 
predicates, , and a set of execution traces, T , 
each of which is a, possibly infinite, sequence of 
actions over a computer system (e.g. instructions, 
states or invocations to methods or procedures, 

etc.) T  satisfies  if and only if P .   T. P( )  
holds. Notice that each individual execution trace, 
  T , is verified against every security policy in 

an isolated manner; i.e., without correlating   T  

with some other   T  [3].  
 
2.2 Integrity Policies 
 
In the early years, computer security centred on 
confidentiality, so as to prevent the disclosure of 
critical information to an unintended party. Then, 
a number of mechanisms for realising 
confidentiality policies were suggested and 
thoroughly studied, including mechanisms for 
authenticating users, controlling the access of 
users to resources, and for generating audit 
information. In this vein, for example, the United 
States Department of Defense developed criteria 
for evaluating whether a computer system is 
secure. These criteria were collected in a manual, 
better known as the Orange book. Although 
created in a military environment, the Orange 
book is an important asset for general security. 
 
On a business context, integrity is as paramount as 
confidentiality. Yet, what integrity means has not a 
unique answer. For example, integrity of an item 
could mean that the item is accurate, correct, 
unchangeable, or changeable, but only in a 
predefined way or by a collection of authorised users, 

etc. [4]. There are three general, prevailing aspects to 
integrity, though: protection of resources, detection 
and correction of errors, and separation of duties. 
 
In this, paper, integrity policies are used to specify 
the correct behaviour of a distributed system, in 
accordance with the three general aspects above 
mentioned. Our policies are therefore normative: 
they specify what ought to happen, so that we can 
validate whether system operation is policy 
compliant or not. One of the main challenges of 
specifying these kinds of policies, though, lies in 
the feasibility of creating a global model of a 
distributed system, where we have several 
processes, distributed over some region, and that 
are independent one another. Then, verifying that 
the system is policy compliant has to consider all 
these processes. The usual way to approach 
system communication is through system 
services, which, when correctly designed and 
implemented, do not expose the internal workings 
of the calling service. In the context of MS .NET 
technology, these services usually are 
implemented through a collection of public 
methods, with designated parameters. 
 
Below, we outline the Clark and Wilson model for 
integrity, which we shall use to formally frame our 
mechanism for ensuring that a system adheres to 
an integrity security policy.  
 
2.3 The Clark-Wilson Integrity Model 
 
Clark and Wilson, see [5], created a security 
model, aimed at preserving the integrity of 
information. The model is composed of nine rules, 
given in terms of the following elements: 
 
Transformation Procedure, TP, which is 
responsible for manipulating information, using 
well-formed transactions. 
 
Constrained Data Item, CDI, which is data that 
must abide with the integrity model, and be 
handled exclusively by TP’s.  
 
Unconstrained Data Item, UDI, which is data not 
restricted to comply with the integrity model. 
 
Integrity Verification Procedure, IVP, which is 
responsible for verifying that every CDI conforms 
to the specification. 
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Under Clark-Wilson, CDI’s should be handled 
exclusively by TP’s, and TP’s should perform only 
well-formed transactions; a well-formed transaction 
consists of a sequence of operations, each of which 
makes a system go from a consistent state to 
another, which is also consistent. Verifying that a 
system is in a correct state is performed by a rule of 
integrity, implemented in an IVP. It follows, by 
induction on time, that, if an IVP certifies the integrity 
of the state of a system at some initial time, t0, then, 
integrity is ensured for any subsequent time, tn, 
where tn> t0, as long as the same IVP still runs and 
verifies the system at that time, tn [5]. 
 
Ensuring the integrity of a system is achieved by 
means of two sets of rules: certification (C), and 
insurance (E). C rules may require human 
intervention, while E rules are implemented as part 
of the system. The security task is divided into two 
steps. In the first step, rules, whether C or E, are 
used to ensure the internal consistency of CDI’s: 
 

C1.  IVP’s must ensure that CDI’s are in a 
correct state. 

C2.  TP’s must ensure that, after execution, 
CDI’s end up in a correct state.  

E1.  At any time, the system must keep a list 
specifying which TP’s are allowed to 
manipulate every CDI, emitting the 
associated certificate. The system must 
involve access control to guarantee that a 
TP can change only CDI’s for which it has 
been certified. 

 
By contrast, in the second step, rules are used to 
ensure external consistency of CDI’s: 
 

E2.  Extend the list relating TP’s and CDI’s so 
as to include the ID’s of the users 
authorised to execute such TP’s. 

C3.  Ensure that the list relating ID’s, TP’s and 
CDI’s, see rule E2, abides by the principle 
of separation of duties, which prevents 
frauds and errors by distributing, amongst 
several users, the tasks, together with their 
associated privileges, for carrying out a 
critical business process [6]. 

E3. The system must authenticate every user 
attempting to execute a TP. 

 
The feasibility of verifying the above rules requires 
an extra rule: 

C4.  Every TP must log enough information so 
that it is possible to reconstruct every 
transaction on an append-only CDI. 

 
The rule below indicates how IDU’s are loaded into 
a system: 
 

C5.  Any TP, which takes an UDI as input, 
must perform only valid transformations on 
it, thereby converting the UDI into a CDI, or 
else reject it. 

 
Finally, to complete the set of rules, Clark-Wilson 
also demands that users can execute only certified 
TP’s: 
 

E4.  Ensure that the certification list, see E2 
above, is modifiable only by certification 
servers, and that these servers cannot run 
any of the TP’s in that list. Notice how this 
clause specifies that certification servers 
are not system users themselves. 

 
Although Clark-Wilson defines a complete set of 
rules for guaranteeing integrity, in an actual 
system, it is impractical to manually perform all the 
model certification processes. This is both because 
certification easily gets complex, and because 
processes themselves change continuously. The 
solution of this paper is aligned to the Clark-Wilson 
model, automating partially some of the 
certification rules. 
 
3. Related Work 
 
There are several tools in the market and 
mechanisms in the literature that aim to help 
organisations detect and resolve system failures 
at production time. As for tools, closely related to 
our mechanism is Microsoft System Center 
Operations Manager (SCOM) © [7], which 
monitors the correct operation of system software 
and hardware infrastructure. SCOM works by 
deploying software agents on the computers 
where system activity is to be inspected. After 
gathering information from log sources, the 
agents try to identify failure applying a set of 
predefined rules. Installing SCOM requires that 
the system to be monitored be modified at the 
source code, thus imposing a strong delay in the 
deployment of the system into production; this 
delay is further magnified when the system is part 
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of a larger one. By contrast, our mechanism does 
not require the system source code to be 
manually or heavily modified, or developed in a 
special way (other than within .NET Technology). 
Further, a team, different from the development 
one, can apply our mechanism, thus separating 
duties and enabling a certification process for the 
inspection part (c.f. C2). 
 
An Information Security Manager (ISM), such as 
OSSIM, or Cisco’s MARS ©, can be adapted to 
perform integrity verification. However, this usually 
involves developing extra code, particularly plug-
ins, or modifying the system source code, so that 
the ISM is able to gather security events. What is 
more, as are designed towards detecting intrusions 
or violations to security policies, the use of the ISM 
has also to be adapted so that it is able to tell 
whether, so far, the execution of the business 
function is up to the security standard. 
 
On the academy side, our work is closely related to 
that of Liu et al. [8]. Given that testing large-scale 
distributed systems is challenging, because errors 
may appear upon a combination of system, or 
network failures, Liu et al. developed D3S, a 
technique for debugging a distributed system, 
which already is in production.  
 
Using D3S, it is possible to specify and test a 
desirable property. Upon property violation, D3S 
outputs the sequence of states previous to the 
violation state, allowing developers to quickly 
spot the source of failure. In contrast with our 
mechanism, D3S system developers are 
required to write the predicates, and to know 
quite a lot of low-level system’s implementation 
details; what is more, the approach is oriented 
towards finding flaws, rather than looking for 
integrity security policy violations. D3S is 
expensive, because it is difficult to maintain. This 
difficulty stems both from the extra effort 
required in the development phase, and from 
that any change to the security policy (or to the 
system code) requires a good deal of 
programming effort, due to the lack of metadata 
in the deployed code. By way of comparison, in 
our mechanism, an integrity policy can be 
implemented following a certification process, 
and so be conducted by staff other than the 
system developers. The certifying staff does not 
need to know system’s implementation details. 

4. A Mechanism for Verifying Integrity 
Security Policies 
 
Figure 1 depicts a static diagram of our 
mechanism, identifying its main working elements, 
namely: the policy specification module, the 
generic code injector, the monitor, the policy 
verifier, and the reporter.  
 
Below, we shall detail all of our mechanism’s 
components in turn, considering that they all 
communicate one another across a trusted 
network. That is, we consider that our mechanism 
has been secured following Clark-Wilson and 
general recommendations for physical security. 
 
Notice that, in particular, in accordance with rule 
C4, observation points can only append records on 
to the system logs, but cannot read them, or 
modify them in any other way, and that, in 
accordance with rule E4, the policy verifier can 
read the system logs, but not modify them. 
 
4.1 Policy Specification Module 
 
In our approach to the verification of integrity 
security policies, the system under study executes, 
possibly in cooperation with others, a collection of 
critical business functions. To verify it is policy 
compliant, each business function should be 
abstracted out by means of a suitable modelling 
formalism, such as information workflow, process 
calculi, etc. Then, every associated policy must be 
specified, also using a suitable formalism, as a 
property of the model, in terms of key elements. 
 
In our case, we model a system in terms of the 
discrete events it may ever perform. So, we might 
use an automaton, a workflow, a process, or 
another similar formalism, to serve this purpose. 
Then, we set policies to be properties over a 
sequence of events, which may hold along a pre-
set period of time. Each property can be of either 
two types: safety, which are used to specify that, 
during the execution of a process, something bad 
will never happen; or liveness, which are used to 
express that something good will eventually do. 
Now, we set events to be observable actions of the 
systems under inspection; each event corresponds 
to a service that the system executes. Thus, our 
policies refer to the invocation and completion of 
the services (public methods in our case) of the 
system, but not to any services’ local variable. 



 

 

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 836 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
More specifically, each event is formed using the 
caller identity, the callee identity, the public method 
name, the public method parameters, and the 
associated parameter values. As is standard in the 
literature, we work under the assumption that, for 
synchronising the distributed system, there has 
been implemented a global clock, such as the 
network time protocol, and that each intervening 
process has a unique global identifier. 
 
Each policy is of the form Precondition → Policy. 
Precondition is a formula, written in our policy 
language, that the system(s) must satisfy for Policy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to be applicable. Policy is the policy itself, also 
given by means of a formula, describing the 
conditions that are necessary in order to assess 
whether the policy is enforced by the system. 
Formulae are built out of constant services, using 
logical “Or” or “And”. The grammar of our integrity 
policy language appears in Figure 2.  
 
4.2 Generic Code Injector 
 
As the name suggests, the generic code injector 
modifies a system service, inserting small pieces of 
code, collectively called an observation point, 

 
 

Figure 1. Mechanism for the verification of integrity security policies 
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through which the modified service is able to report 
any invocation or completion of the method. The 
generic code injector modifies only service methods 
that are referred to by at least one of the designated 
integrity security policies. Since the system under 
monitoring has been developed under .NET 
technology, the generic code injector changes the 
methods of interest directly in the assemblies, 
adding the observation point in an intermediate 
language code. This is achieved fully automatically, 
and so that, other than the added reporting 
capability, each modified method works as before, 
and thus satisfies every property it used to. 
 
4.3 The Monitor and the Policy Verifier 
 
The Monitor process gets and stores all the 
information sent by every observation point. The 
information collected is kept in a generic database, 
which is composed of as many tables as the 
number of methods under monitoring. Method 
tables are automatically created, directly from the 
set of designated policies. If monitoring covers all 
the methods involved in the set of policies, our 
mechanism will fully comply with the C4 rule of 
Clark-Wilson, since the observation points, our 
TP’s, log all service invocations along with the 
values of the input and output parameters, so that 
it is possible to reconstruct the operation of the 
system at any given time. 
 
The policy verifier plays the role of the Clark-Wilson 
IVP (Integrity Verification Procedure), which is 
responsible for validating that system operation 
conforms to the integrity policy. It takes two inputs: 
one is the information stored in the monitor database, 
and the other is the set of designated policies. Using 
the semantics of the policy specification language, 
the verifier automatically translates each policy into a 
collection of Microsoft SQL server queries, which it 
then checks against the database to determine 
whether or not we are facing a policy violation. Figure 
3 depicts all the steps required for implementing the 
integrity policy verifier. 
 
4.4 The Viewer 
 
As the name suggests, the viewer display which rules 
have been triggered, and which have failed to do so, 
considering a given a time limit. In the case of a rule 
violation, it sends specific, and hopefully noticeable 
alerts, indicating the rule that has been violated, and 

other complementary information. These notices will 
help the system administrator to start the appropriate 
emergency response procedure. 
 
We are now ready to look into a case study, 
through which we aim to convey how to use, our 
integrity security policy verification mechanism, as 
well as the mechanism strengths and limitations. 
 
Goal   ::= “Policy” Identifier  PolicyType Policies 
PolicyType ::=”Safety” | “Liveness”  
Policies ::= Policy | Policy ”;” Policies 
Policy ::= Precondition “” Condition 
Precondition::= Condition 
Condition ::=Predicate | Predicate LogicalOperator 
Condition  
LogicalOperator ::= “And”|”Or” 
Predicate ::= Operand BinaryRelation Operand | “(“ 
Predicate “)” 
BinaryRelation ::= “==”|”<=”|”>=”|”!=”|”<”|”>” 
Operand   ::= StaticProperty |  
ParameterObject “Where” Condition| 
Parameter| 
Function|  
InternalFunction  | 
AccomplishedPolicy | 
InternalConstant  |  
“(“ Operand “)” | 
String | 
Number 
ParameterObject ::=  “[“ Object ”.” Parameter ”]”  | 
                                      FunctionObjects ”(“ 
ParameterObject”)” 
Object ::=  Identifier 
DatabaseField ::=  “[“Server ”.” Table ”.” Field ”]”  |  
FunctionObjects::=  “Count” 
Parameter ::= Identifier  
InternalFunction ::= InternalOperator ”(“ Operands”)” 
AccomplishedPolicy ::= “PolicyCumplida” ”(“ PolicyName 
”@” Operands “)” 
PolicyName ::= Identifier 
InternalOperator ::= “::T0”|”::T1”|”::Id”| 
Function ::= Identifier “(“ Operands ”)” |  
                     Operand ArithmeticOperation Operand | 
                     “(“ Function “)” 
InternalConstant   ::= “null” |“true”  |“false” |“this” 
ArithmeticOperation ::=  “+” | “-“ | “*” |”/” 
Operands ::= Identifier | Identifier”,”Operands 
StaticProperty ::= “[“ Identifier ”]”  
String ::= “’” Identifier “’” 
Number ::= NumericChar | NumericChar Number 
Identifier ::= AlphaChar| AlphaChar AlphaId 
AlphaId ::= “.” | Character | Character AlphaId 
 
 

Figure 2. Grammar of integrity policy language 
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5. Case Study 
 
In this section, we introduce a simple, yet illustrative 
and significant case study, involving purchase order 
management. Through it, we intend to illustrate how 
to specify high-level integrity security policies, how to 
deploy the mechanism for inspection, and how the 
verification proceeds in order to spot policy 
compliance, or violation. 
 
5.1 Purchase Order Management: the Simulation 
of a Distributed Process 
 
When setting a manufacturing order, a client 
initiates a complex process that may involve steps 
ranging from the transformation of raw materials, to

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the shipping of a product. At each step of the 
process, value is added, including the refinement of 
raw materials, the transportation of a product, etc. 
The process ends when the product has been fully 
manufactured, sold, and shipped to the end user. 
These types of processes are called value-added 
chain, because at every process step, the product is 
transformed, or distributed in some way [10].  
 
Purchase order processing is a distributed, value-
added chain process. To characterize it, we have 
used a workflow, which consists of a collection of 
interconnected processes, each of which pertains to 
work done by either a person, or a process [10], 
and, so, can be represented by one or more 
interconnected automata. Roughly speaking, 

 
 

Figure 3. Flow diagram for the integrity policy verifier 
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purchase order management is about orchestrating 
the interaction amongst two separate processes, 
one called the buyer, and the other the supplier. In a 
first step, the buyer issues a purchase order to the 
supplier, which then performs a few checks. Upon 
purchase order authorisation, the supplier confirms 
the sale order to the buyer. Goods agreed upon the 
purchase order are to be delivered to a specified 
address timely, but purchase order cancellations 
may occur. The general workflow of purchase order 
is given in figure 4. There, and in what follows, PO 
stands for Purchase Order, D for Delivery, and DO 
stands for Delivery Order. 
 
Using .NET, we have implemented the general 
functionality of both the buyer and the supplier, 
considering two separate processes; in particular, 
both processes are given in terms of high-level 
business operations, such as putting a purchase 
order, cancelling a delivery order, etc. The buyer 
(respectively, the supplier) has an interface, through 
which it gets (respectively, puts) messages from 
(respectively, to) other system components; both 
processes have a component that coordinates the 
execution of the workflow. 
 
Also, we have implemented a simulation 
environment, which parameterised with several 
rates, involving the number of purchase orders 
issued per hour, the number of failures 
(respectively, cancellations, communication or 
message format errors, etc.) that occur per 
purchase order, and so on, and so forth. Notice 
that policies are verified against the actions of 
each process, so we assume that both buyer and 
supplier are able, in practice, to produce a set if 
integrity security policies, and, ask a third party to 
certify that  its  process  works correctly and that is 
policy compliant. We stress that the certifier would 
not need to have access to the source code, that it 
should know only how processes and components 
are (and methods) involved. 
 
All the pieces of code developed for this case 
study, as well as the specification module, the 
generic code injector, the policy verifier, and the 
viewer, can be obtained by sending electronic mail 
to any of the paper authors. 
 
 
 
 
 

5.2 Policies 
 
Associated with purchase order management, 
there are two major integrity security policies, 
safety and liveness: 
 

 (Safety) Bad events, such as deadlocks, or 
livelocks, may not ever happen; a means for 
deadlock (respectively, livelock) recovering 
must be included for making the purchase 
order system robust; and 

 
 (Liveness) Good events must eventually 

happen. Basically, this means that purchase 
order runs as expected; that is, either it 
terminates with success (product delivery), or 
failure (purchase order cancellation). 

 
Below appear the eleven integrity security policies 
defined for purchase order management, given in 
our policy specification language. We emphasise 
that these policies are all automatically monitored 
upon application, as an observation point is 
inserted into any method that refers to an object 
that is also referred to by the policy. 
 
1-3. The first three policies are safety. They state 

that serving an order (of type either purchase 
confirmation, delivery confirmation, or delivery) 
cannot be postponed for more than a given 
amount of time, as otherwise there is an impact on 
the system performance. A violation to these kinds 
of policies may indicate the occurrence of a 
(internal) flaw, or an (external) error event. We 
provide the specification of the “wait for delivery” 
policy below; the others are just as similar.  

 

Policy DeliveryNotReceivedOntime Safety 
           DOIdentifier!=null  ( ::T1(this)  -  
::T0(this) ) > [DO.MaximunWaitTime]  
           Where [DO.DOIdentifier]== DOIdentifier 

 
4. (Liveness policy) Every PO which has been 

authorised by the supplier, but which has not 
been cancelled, must eventually either get 
cancelled, or be associated with one and only 
one DO. 
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Policy 
AuthorizedPOEventuallyGeneratesDOorGotCan
celled Liveness  
             PO.POIsAuthorized==true   

1 ==  Count([DO.DOIdentifier])  
    Where 

                        [DO.POIdentifier]== 
PO.POIdentifier   
                        Or  
                        (   
                           [PO.Status]==’Cancelled’ 
Where        
[PO.POIdentifier]==PurchaseOrder.POIdentifier   
                        ) 

 
5. (Liveness policy) A PO, which has a DO, 

must eventually both reach the state 
“Delivered” in the context of the supplier, and 
cause the buyer to reach the state "Claim D" 
or "Close PO". 

 

Policy DispatchedDOIsclosedOrclaimed 
Liveness 
           DeliveryOrder!=null    true  == 
[DO.OrderDelivered] 
             Where 
                 [DO.POIdentifier]== 
DeliveryOrder.POIdentifier   
           And 
                  ( 
 IsSatisfiedPolicy( 
               
ClaimDelivery@DeliveryOrder.POIdentifier )== 
true            Or 
 IsSatisfiedPolicy ( 
                           
ClosePO@DeliveryOrder.POIdentifier)== true 
                  )   
Policy   ClaimDelivery Liveness 
             POIdentifier!=null true   
             
Policy  ClosePO Liveness  
             POIdentifier!=null true   

 
6. (Safety policy) A PO that was either rejected or 

cancelled cannot be associated with any DO, 
as this could lead to duplicate delivery orders, 
indicating a bug in the system, or that the 
system has been tampered with. 
 

Policy  PORejectedOrCancelledWithoutDO 
Safety 
            PurchaseOrder!=null  

            1 >  Count([DO.DOIdentifier]) 
             Where 
             [DO.POIdentifier]==  
             PurchaseOrder.POIdentifier 

 
7. (Liveness policy) A PO, which has been 

deemed invalid in the context of the supplier, 
must eventually taken to has been rejected in 
the context of the buyer. 
 

Policy  InvalidPORejected Liveness 
            PurchaseOrder.IsInvalid==true   
            ‘Rejected’  == [Buyer.PO.Status] 
Where              
             [PurchaseOrder.POIdentifier]==        
             PurchaseOrder.POIdentifier  

 
8. (Liveness policy) A PO that has been accepted 

by the supplier shall be processed in the 
context of the buyer, eventually reaching the 
state "Wait DO for PO". 
 

Policy  ProcessAcceptedPO Liveness 
            PurchaseOrder.Status==’Received’      
IsSatisfiedPolicy(WaitDOforPO@PurchaseOrder
.POIdentifier )== true  

 
9. (Safety policy) Global processing time, at both 

partners, must match. 
 

Policy  POProcessedBeforeGenerated Safety 
            PurchaseOrder!=null  
            PurchaseOrder.ProcessDateTime  >  
[Buyer.PO.ProcessDateTime]  
Where 
           [PO.POIdentifier]==             
            PurchadseOrder.POIdentifier 

 
10. (Liveness policy) An unauthorised DO will 

cause the PO to be cancelled in the context of 
both the buyer and the supplier. 
 

Policy  DONotAuthorizedOrCancelled Liveness 
          PurchaseOrder.Status==’NotAuthorized’  
 
          IsSatisfiedPolicy 
(POCancelledAtBuyer@PurchaseOrder 
.POIdentifier )== true 
    And 
          IsSatisfiedPolicy 
(POCancelledAtSupplier@ 
PurchaseOrder.POIdentifier)== true  
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11. (Safety policy) Every Delivery must be 
associated with a PO, and a DO, in the context 
of both the buyer and the supplier. 
 

Policy  DeliveryWithoutPOorDOAtBuyer 
Safety 
 PurchaseOrder!=null   

1 =! 
            Count([Buyer.DO.DOIdentifier])  
             Where 
               [Buyer.PO. POIdentifier]==      
                PurchaseOrder .POIdentifier  
             Or 

1 =! 
Count([Buyer.DO.DOIdentifier])  

              Where 
               [Buyer.DO.POIdentifier]==  
                PurchaseOrder.POIdentifier 
 
Policy  DeliveryWithoutPOorDOAtSupplier 
Safety 
 PurchaseOrder!=null   

1  =!  
Count([Supplier.DO.DOIdentifier])  
Where 

            [Supplier.PO.POIdentifier]==  
             PurchaseOrder .POIdentifier  
          Or 

1 =!  
Count([Supplier.DO.DOIdentifier])  

             Where 
            [Supplier.DO.POIdentifier]==  
             PurchaseOrder.POIdentifier 

 
The code injector takes all these policies and 
automatically injects the appropriate observation 
point, looking into the system components’ 
specification. Notice that, since we are working 
within the context of .NET technology, automation 
is possible since the name of the objects referred 
to by one of the policy rules must appear readily in 
the interface of some or several public methods. 
  
5.3 Results of Simulated Experiment 
 
Using the simulation environment, we set several 
attack scenarios, which would violate one or more 
of the stated 11 integrity security policies. Policies 
violations were all timely detected, as expected. In 
what follows, we describe the strategy, in terms of 

actions or events, which we have followed in order 
to realise a policy violation (we omit figures, such 
as actual purchase order rate, timeout settings, 
etc., as they do not add significant information, 
when considering the overall action effect).  
 
1. Buyer issues several purchase orders, but 

supplier is down, thus, causing that no purchase 
order confirmation arrives in time to the buyer.  
 

2. Denial of service attack: buyer is set to issue 
purchase orders at an unexpectedly large rate, 
causing the supplier to be flooded by the 
number of purchase order requests.  

 
3. Buyer issues several purchase orders, which are 

then authorised and served by the supplier; 
however, supplier fails to deliver a few of them, 
thus, causing the buyer fall into an indefinite 
postponement; orders for which the product is 
not to be delivered are picked at random. 

 
4-7. In the following four scenarios, we have 

modified the behaviour of the supplier so that it 
does not behave as expected, simulating that 
the system is under the control of an attacker. 
The attacker fakes messages of the expected 
kind, but with different information, or prevents 
actual messages from being sent (NB, 
alternatively, changes in the behaviour of the 
supplier could be taken to be simply software 
or hardware flaws.) The first scenario 
comprises an impersonation attack, where the 
intruder sends extra delivery orders to the 
buyer, guessing both the consecutive number 
of purchase orders, and the number of each 
individual packet. In the second scenario, the 
attacker simply stops a few selected messages 
from being delivered to the supplier. In 
particular, the attacker aims at intercepting 
messages from the buyer, claiming that a 
confirmed purchase order has not been 
complete or delivered. In the third scenario, the 
attacker impersonates the supplier, faking a 
message whereby a purchase order is 
rejected; i.e., cancelled, for whatever reason. 
Finally, in the fourth scenario, the attacker now 
impersonates the buyer so as to issue extra 
purchase orders, which are then served by the 
supplier, and eventually attempted at being 
delivered at the buyer side.  
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8-11.Four further attacks can be elaborated, 
similar to the above ones, this time, though, 
attempting to fool the buyer. So, the first 
scenario comprises an impersonation attack, 
where the intruder sends confirmation 
messages to the buyer for purchase orders 
that have been cancelled or rejected by the 
supplier. In the second scenario, the intruder 
prevents purchase confirmation messages 
from the supplier from being delivered at the 
buyer. In the third scenario, the intruder again 
impersonates the supplier, randomly rejecting 
some purchase orders, which have been 
actually accepted by the supplier. Finally, in 
the fourth scenario, the attacker now 
impersonates the supplier so as to issue extra 
confirmation messages to purchase orders 
that were never set by the buyer. 
 

 
6.  Conclusions and Further Work 
 
The verification technique for integrity policies 
developed in this work allows processes to be 
validated from an independent party, which was not 
involved during the development cycle of the system. 
Our technique does not require to modify or to have 
access to the source code. It can be applied during 
system testing, but more importantly during 
production. The solution allows monitoring the correct 
functioning of the processes according to a set of 
defined security integrity policies. Further, our 
technique is fully automated, though it works only for 
systems that have been developed under .NET. 
 
Our technique comes with an integrity policy 
language, with which we can succinctly capture 
integrity policies, in terms of the system expected 
behaviour. In a way, they express the ideal system 
behaviour upon the absence of any intruder. 
Policies are expressed in terms of method’s 
parameters or return variables, and may involve as 
well temporal conditions to capture time limits as to 
how one should wait for an event to occur. Our 
technique then reads the set of security integrity 
policies and then verifies them, using observation 
points, each of which is looking into input/output 
method parameters referred to by the policies.  
 
We successfully tested our verification technique 
using a case study involving a critical process for 
purchase order management. For this case study, 

we developed separate processes exhibiting the 
expected functional behaviour of each party. Then, 
we developed a set of security integrity policies, 
which attempted to capture the expected 
behaviour of the entire system, upon correct 
conditions. Then, we simulated the execution of 
the system, considering several rates, including 
purchase order arrival, average service time for an 
order on each party, etc. Finally, we considered 
several scenarios, where an intruder attempts to 
get the system confused or disrupted. These kinds 
of attacks are very common, and usually are the 
intruder first action, while it is looking for diamonds 
in the dessert. We emphasise that these attacks 
were all timely detected. 
 
6.1 Directions for Further Work 
 
Further work includes extending the injection 
process in order to support .NET signed 
components (Signing .NET components is part of a 
Microsoft technique for avoiding unauthorized 
modifications or tampering) [11]; this may involve 
designing an on-top layer to provide critical 
security properties as in [12]. While here we have 
worked under the assumption that system 
communication is secure, and fault-tolerant, further 
work involves specifying rules and network 
architectures under which support our 
assumptions, and that are beyond the scope of this 
paper. Further work also includes translating a set 
of integrity security policies into a mechanism other 
than a SQL server, as this approach may not be 
able to scale up for larger, and more complex 
systems to be monitored. Likewise, further work 
involves extending the mechanism so as to make it 
able to deal with a larger number of events, 
coming from a number of system components. 
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