

831Journal of Applied Research and Technology

Real-Time Verification of Integrity Policies for Distributed Systems

Ernesto Buelna*1, Raúl Monroy 2

1 Microsoft Consulting Services
Microsoft México
México, D. F., México
*Ernesto.Buelna@microsoft.com
2 Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Estado de México, Estado de México, México

ABSTRACT
We introduce a mechanism for the verification of real-time integrity policies about the operation of a distributed
system. Our mechanism is based on Microsoft .NET technologies. Unlike rival competitors, it is not intrusive, as it
hardly modifies the source code of any component of the system to be monitored. Our mechanism consists of four
modules: the specification module, which comes with a security policy specification language, geared towards the
capture of integrity policies; the monitoring module, which includes a code injector, whereby the mechanism observes
how specific methods of the system, referred to by some policy, are invoked; the verifier module, which examines the
operation of the distributed system in order to determine whether is policy compliant or not; and, the reporter module,
which notifies the system is policy compliant, or sends an alert upon the occurrence of a contingency, indicating policy
violation. We argue that our mechanism can be framed within the Clark and Wilson security model, and, thus, used to
realise information integrity. We illustrate the workings and the power of our mechanism on a simple, but industrial-
strength, case study.

Keywords: real-time policy verification, integrity policies, distributed systems, .NET code injection, information security.

RESUMEN
En este artículo, presentamos un mecanismo para verificar, en tiempo-real, políticas de integridad asociadas con un
sistema distribuido. Nuestro mecanismo está desarrollado en, y es aplicable a, tecnologías MS .NET. A diferencia de
sus competidores, no es intrusivo, pues no requiere modificaciones de consideración en el código fuente de ningún
componente del sistema a inspeccionarse. Nuestro mecanismo consiste de cuatro módulos: el módulo de
especificación, diseñado especialmente para expresar políticas de integridad; el módulo de inspección, el cual incluye
un inyector de código, a través del cual nuestro mecanismo observa cómo se invocan los métodos del sistema
referidos en alguna de las políticas; el módulo verificador, el cual examina la operación del sistema para determinar si
éste cumple o no con las políticas; y, el módulo reportador, que notifica si el sistema está conforme a la norma, o
envía alertas en el caso que ocurra una contingencia, indicando la violación a una política. Demostramos que nuestro
mecanismo formalmente se enmarca dentro del modelo de seguridad de Clark y Wilson, y, por lo tanto, puede
aplicarse en el establecimiento de integridad. Para mostrar el funcionamiento y las bondades de nuestro mecanismo,
incluimos un caso de estudio simple, pero típico de una aplicación industrial o comercial.

1. Introduction

The malfunctioning of a company’s information
system, due to an attack, a code or a design flaw,
or a hardware failure, heavily impacts the company
prestige and finance. Not surprisingly, (large)
companies usually assign a (considerably) large
budget to develop, debug, test, and maintain their
information systems, in an attempt at timely
detecting, and subsequently correcting a system
flaw. Thus, to minimise risks, a lot of testing is
conducted, both before and after the system has
been deployed into production.

Testing, which used to be geared towards validating
that a system complies with specific business
functions, nowadays contemplates guarantees that
the system will meet a security policy, and, hence,
that it will not be misused to gain access to an
organisation’s asset. Guaranteeing that, at any point
in time, a system will behave as expected, and obey
to all business rules, is far from trivial. The problem
is further magnified when the system is to interact
with others, especially when they are distributed
amongst several different companies, and possibly

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 832

over one or more countries. What is more, although
business rules often include security checks (for
example, an Internet bank system will require that
no user be allowed to take money from another
user’s account), they hardly consider the system,
when run in parallel with others. This may give rise
to a hazard, especially when several systems must
cooperate one another in order to achieve a
business function.

Unfortunately, the study and development of
mechanisms for monitoring that a system complies
with a given security policy has been largely
ignored: emphasis has centred on detecting
system misuse. For example, there are not
commercial tools that take a security policy,
specified at a high-level of a business function (or
process), and then monitor a target system, so
that, at real-time, they are able to report whether,
so far, the system adheres to the security policy.
Although existing tools can be adapted to do this
task, they require quite a lot of development effort,
and are not suitable for rapidly prototyping an
inspection mechanism. What is more, as shall be
discussed later on in the text, the mechanisms that
have been proposed in the literature for this or a
similar purpose are rather intrusive, in that they
require heavy modifications in the underlying
pieces of software, some such changes might not
be realisable, e.g., for licenses’ constraints.

In this paper, we present a mechanism that
automatically alerts whenever a system is not
complying with a (integrity) security policy. Unlike
others, our mechanism does not interfere with or
rely on the design or the implementation of the
system under inspection. We also provide a security
policy specification language, especially designed
for capturing safety and liveness properties related
with business functions. Policies are built out of
predicates, where the domain of discourse contains
parameters (values) of procedures or public
methods of the system to be monitored, and that
can be specified without knowledge of the system
implementation; furthermore, policies might refer to
events occurring throughout several systems, which
the system under inspection communicates with.
Although applicable in any context, our mechanism
has been developed to work with Microsoft .NET
distributed systems, since this framework allows us
to automate most of its deployment.

Our mechanism works by dynamically injecting
Microsoft intermediate language code on specific
modules of the system to be monitored. Each of
these small programs, we call an observation point,
is responsible of intercepting any invocation to a
public method referred to by the designated
collection of policies, as well as reporting the
method execution parameters to a distributed
database module. A security policy verification
engine is then used to confront the information
collected in the database against the security
polices, specified in a high-level policy specification
language. Finally, the mechanism viewer is used to
display the validation results, send audit reports,
and alert a security officer upon any contingency.
The mechanism viewer also displays rules that have
been triggered as expected, thus, indicating the
system under monitoring is policy compliant.

In order to illustrate the workings, the strength, and
the functionality of our mechanism, we include and
go through a simple, but industrial-strength case
study, in the field of value-added chain, and
associated with the processing of a purchase order.
In particular, for this experimental test, we have: (i)
developed a simulator for a typical purchase order
workflow; (ii) identified and specified eleven integrity
security policies; and, finally, (iii) simulated attacks to
the purchase ordering process, in order to validate if
any policy violation was reported through our monitor.
In our simulations, attacks were introduced on a
random basis. Our mechanism was successfully
tested: our experimental results show that each
policy violation was spotted timely, and accordingly.

Overview of Paper The remaining of the paper is
organised as follows: In Section 2, we provide an
overview of both information integrity and security
policies, and the security model used to theoretically
justify the design and the workings of our
mechanism. In Section 3, we discuss related work,
identifying key competitor mechanisms. Then, in
Section 4, we introduce our mechanism, outlining the
internal workings of all its components. Section 5
provides an overview of our case study, specifying:
the problem under consideration, the security policy,
the mechanism deployment, and the simulation
environment. Section 6 is a follow up to Section 5,
introducing the testing attack scenarios used in our
validation experiments, as well as outlining the
associated results. Finally Section 7 concludes the
paper, and gives directions for further work.

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Journal of Applied Research and Technology 833

2. Preliminary Concepts

The aim of this section is twofold. First, it aims to
provide an overview of security policies, given
special attention to integrity policies, the kinds of
policies we would like to automatically inspect
and verify for system compliance. Second, this
section also aims to outline the integrity model of
Clark and Wilson, which provides a formal
framework to our mechanism for verifying integrity
security policies.

2.1 Security Policies

Security policies are rules or conventions that aim to
protect an organization’s assets [1]. Following [2], a
security policy is defined in terms of a set of
predicates, , and a set of execution traces, T ,
each of which is a, possibly infinite, sequence of
actions over a computer system (e.g. instructions,
states or invocations to methods or procedures,

etc.) T satisfies if and only if P . T. P()
holds. Notice that each individual execution trace,
 T , is verified against every security policy in

an isolated manner; i.e., without correlating T

with some other T [3].

2.2 Integrity Policies

In the early years, computer security centred on
confidentiality, so as to prevent the disclosure of
critical information to an unintended party. Then,
a number of mechanisms for realising
confidentiality policies were suggested and
thoroughly studied, including mechanisms for
authenticating users, controlling the access of
users to resources, and for generating audit
information. In this vein, for example, the United
States Department of Defense developed criteria
for evaluating whether a computer system is
secure. These criteria were collected in a manual,
better known as the Orange book. Although
created in a military environment, the Orange
book is an important asset for general security.

On a business context, integrity is as paramount as
confidentiality. Yet, what integrity means has not a
unique answer. For example, integrity of an item
could mean that the item is accurate, correct,
unchangeable, or changeable, but only in a
predefined way or by a collection of authorised users,

etc. [4]. There are three general, prevailing aspects to
integrity, though: protection of resources, detection
and correction of errors, and separation of duties.

In this, paper, integrity policies are used to specify
the correct behaviour of a distributed system, in
accordance with the three general aspects above
mentioned. Our policies are therefore normative:
they specify what ought to happen, so that we can
validate whether system operation is policy
compliant or not. One of the main challenges of
specifying these kinds of policies, though, lies in
the feasibility of creating a global model of a
distributed system, where we have several
processes, distributed over some region, and that
are independent one another. Then, verifying that
the system is policy compliant has to consider all
these processes. The usual way to approach
system communication is through system
services, which, when correctly designed and
implemented, do not expose the internal workings
of the calling service. In the context of MS .NET
technology, these services usually are
implemented through a collection of public
methods, with designated parameters.

Below, we outline the Clark and Wilson model for
integrity, which we shall use to formally frame our
mechanism for ensuring that a system adheres to
an integrity security policy.

2.3 The Clark-Wilson Integrity Model

Clark and Wilson, see [5], created a security
model, aimed at preserving the integrity of
information. The model is composed of nine rules,
given in terms of the following elements:

Transformation Procedure, TP, which is
responsible for manipulating information, using
well-formed transactions.

Constrained Data Item, CDI, which is data that
must abide with the integrity model, and be
handled exclusively by TP’s.

Unconstrained Data Item, UDI, which is data not
restricted to comply with the integrity model.

Integrity Verification Procedure, IVP, which is
responsible for verifying that every CDI conforms
to the specification.

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 834

Under Clark-Wilson, CDI’s should be handled
exclusively by TP’s, and TP’s should perform only
well-formed transactions; a well-formed transaction
consists of a sequence of operations, each of which
makes a system go from a consistent state to
another, which is also consistent. Verifying that a
system is in a correct state is performed by a rule of
integrity, implemented in an IVP. It follows, by
induction on time, that, if an IVP certifies the integrity
of the state of a system at some initial time, t0, then,
integrity is ensured for any subsequent time, tn,
where tn> t0, as long as the same IVP still runs and
verifies the system at that time, tn [5].

Ensuring the integrity of a system is achieved by
means of two sets of rules: certification (C), and
insurance (E). C rules may require human
intervention, while E rules are implemented as part
of the system. The security task is divided into two
steps. In the first step, rules, whether C or E, are
used to ensure the internal consistency of CDI’s:

C1. IVP’s must ensure that CDI’s are in a
correct state.

C2. TP’s must ensure that, after execution,
CDI’s end up in a correct state.

E1. At any time, the system must keep a list
specifying which TP’s are allowed to
manipulate every CDI, emitting the
associated certificate. The system must
involve access control to guarantee that a
TP can change only CDI’s for which it has
been certified.

By contrast, in the second step, rules are used to
ensure external consistency of CDI’s:

E2. Extend the list relating TP’s and CDI’s so
as to include the ID’s of the users
authorised to execute such TP’s.

C3. Ensure that the list relating ID’s, TP’s and
CDI’s, see rule E2, abides by the principle
of separation of duties, which prevents
frauds and errors by distributing, amongst
several users, the tasks, together with their
associated privileges, for carrying out a
critical business process [6].

E3. The system must authenticate every user
attempting to execute a TP.

The feasibility of verifying the above rules requires
an extra rule:

C4. Every TP must log enough information so
that it is possible to reconstruct every
transaction on an append-only CDI.

The rule below indicates how IDU’s are loaded into
a system:

C5. Any TP, which takes an UDI as input,
must perform only valid transformations on
it, thereby converting the UDI into a CDI, or
else reject it.

Finally, to complete the set of rules, Clark-Wilson
also demands that users can execute only certified
TP’s:

E4. Ensure that the certification list, see E2
above, is modifiable only by certification
servers, and that these servers cannot run
any of the TP’s in that list. Notice how this
clause specifies that certification servers
are not system users themselves.

Although Clark-Wilson defines a complete set of
rules for guaranteeing integrity, in an actual
system, it is impractical to manually perform all the
model certification processes. This is both because
certification easily gets complex, and because
processes themselves change continuously. The
solution of this paper is aligned to the Clark-Wilson
model, automating partially some of the
certification rules.

3. Related Work

There are several tools in the market and
mechanisms in the literature that aim to help
organisations detect and resolve system failures
at production time. As for tools, closely related to
our mechanism is Microsoft System Center
Operations Manager (SCOM) © [7], which
monitors the correct operation of system software
and hardware infrastructure. SCOM works by
deploying software agents on the computers
where system activity is to be inspected. After
gathering information from log sources, the
agents try to identify failure applying a set of
predefined rules. Installing SCOM requires that
the system to be monitored be modified at the
source code, thus imposing a strong delay in the
deployment of the system into production; this
delay is further magnified when the system is part

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Journal of Applied Research and Technology 835

of a larger one. By contrast, our mechanism does
not require the system source code to be
manually or heavily modified, or developed in a
special way (other than within .NET Technology).
Further, a team, different from the development
one, can apply our mechanism, thus separating
duties and enabling a certification process for the
inspection part (c.f. C2).

An Information Security Manager (ISM), such as
OSSIM, or Cisco’s MARS ©, can be adapted to
perform integrity verification. However, this usually
involves developing extra code, particularly plug-
ins, or modifying the system source code, so that
the ISM is able to gather security events. What is
more, as are designed towards detecting intrusions
or violations to security policies, the use of the ISM
has also to be adapted so that it is able to tell
whether, so far, the execution of the business
function is up to the security standard.

On the academy side, our work is closely related to
that of Liu et al. [8]. Given that testing large-scale
distributed systems is challenging, because errors
may appear upon a combination of system, or
network failures, Liu et al. developed D3S, a
technique for debugging a distributed system,
which already is in production.

Using D3S, it is possible to specify and test a
desirable property. Upon property violation, D3S
outputs the sequence of states previous to the
violation state, allowing developers to quickly
spot the source of failure. In contrast with our
mechanism, D3S system developers are
required to write the predicates, and to know
quite a lot of low-level system’s implementation
details; what is more, the approach is oriented
towards finding flaws, rather than looking for
integrity security policy violations. D3S is
expensive, because it is difficult to maintain. This
difficulty stems both from the extra effort
required in the development phase, and from
that any change to the security policy (or to the
system code) requires a good deal of
programming effort, due to the lack of metadata
in the deployed code. By way of comparison, in
our mechanism, an integrity policy can be
implemented following a certification process,
and so be conducted by staff other than the
system developers. The certifying staff does not
need to know system’s implementation details.

4. A Mechanism for Verifying Integrity
Security Policies

Figure 1 depicts a static diagram of our
mechanism, identifying its main working elements,
namely: the policy specification module, the
generic code injector, the monitor, the policy
verifier, and the reporter.

Below, we shall detail all of our mechanism’s
components in turn, considering that they all
communicate one another across a trusted
network. That is, we consider that our mechanism
has been secured following Clark-Wilson and
general recommendations for physical security.

Notice that, in particular, in accordance with rule
C4, observation points can only append records on
to the system logs, but cannot read them, or
modify them in any other way, and that, in
accordance with rule E4, the policy verifier can
read the system logs, but not modify them.

4.1 Policy Specification Module

In our approach to the verification of integrity
security policies, the system under study executes,
possibly in cooperation with others, a collection of
critical business functions. To verify it is policy
compliant, each business function should be
abstracted out by means of a suitable modelling
formalism, such as information workflow, process
calculi, etc. Then, every associated policy must be
specified, also using a suitable formalism, as a
property of the model, in terms of key elements.

In our case, we model a system in terms of the
discrete events it may ever perform. So, we might
use an automaton, a workflow, a process, or
another similar formalism, to serve this purpose.
Then, we set policies to be properties over a
sequence of events, which may hold along a pre-
set period of time. Each property can be of either
two types: safety, which are used to specify that,
during the execution of a process, something bad
will never happen; or liveness, which are used to
express that something good will eventually do.
Now, we set events to be observable actions of the
systems under inspection; each event corresponds
to a service that the system executes. Thus, our
policies refer to the invocation and completion of
the services (public methods in our case) of the
system, but not to any services’ local variable.

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 836

More specifically, each event is formed using the
caller identity, the callee identity, the public method
name, the public method parameters, and the
associated parameter values. As is standard in the
literature, we work under the assumption that, for
synchronising the distributed system, there has
been implemented a global clock, such as the
network time protocol, and that each intervening
process has a unique global identifier.

Each policy is of the form Precondition → Policy.
Precondition is a formula, written in our policy
language, that the system(s) must satisfy for Policy

to be applicable. Policy is the policy itself, also
given by means of a formula, describing the
conditions that are necessary in order to assess
whether the policy is enforced by the system.
Formulae are built out of constant services, using
logical “Or” or “And”. The grammar of our integrity
policy language appears in Figure 2.

4.2 Generic Code Injector

As the name suggests, the generic code injector
modifies a system service, inserting small pieces of
code, collectively called an observation point,

Figure 1. Mechanism for the verification of integrity security policies

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Journal of Applied Research and Technology 837

through which the modified service is able to report
any invocation or completion of the method. The
generic code injector modifies only service methods
that are referred to by at least one of the designated
integrity security policies. Since the system under
monitoring has been developed under .NET
technology, the generic code injector changes the
methods of interest directly in the assemblies,
adding the observation point in an intermediate
language code. This is achieved fully automatically,
and so that, other than the added reporting
capability, each modified method works as before,
and thus satisfies every property it used to.

4.3 The Monitor and the Policy Verifier

The Monitor process gets and stores all the
information sent by every observation point. The
information collected is kept in a generic database,
which is composed of as many tables as the
number of methods under monitoring. Method
tables are automatically created, directly from the
set of designated policies. If monitoring covers all
the methods involved in the set of policies, our
mechanism will fully comply with the C4 rule of
Clark-Wilson, since the observation points, our
TP’s, log all service invocations along with the
values of the input and output parameters, so that
it is possible to reconstruct the operation of the
system at any given time.

The policy verifier plays the role of the Clark-Wilson
IVP (Integrity Verification Procedure), which is
responsible for validating that system operation
conforms to the integrity policy. It takes two inputs:
one is the information stored in the monitor database,
and the other is the set of designated policies. Using
the semantics of the policy specification language,
the verifier automatically translates each policy into a
collection of Microsoft SQL server queries, which it
then checks against the database to determine
whether or not we are facing a policy violation. Figure
3 depicts all the steps required for implementing the
integrity policy verifier.

4.4 The Viewer

As the name suggests, the viewer display which rules
have been triggered, and which have failed to do so,
considering a given a time limit. In the case of a rule
violation, it sends specific, and hopefully noticeable
alerts, indicating the rule that has been violated, and

other complementary information. These notices will
help the system administrator to start the appropriate
emergency response procedure.

We are now ready to look into a case study,
through which we aim to convey how to use, our
integrity security policy verification mechanism, as
well as the mechanism strengths and limitations.

Goal ::= “Policy” Identifier PolicyType Policies
PolicyType ::=”Safety” | “Liveness”
Policies ::= Policy | Policy ”;” Policies
Policy ::= Precondition “” Condition
Precondition::= Condition
Condition ::=Predicate | Predicate LogicalOperator
Condition
LogicalOperator ::= “And”|”Or”
Predicate ::= Operand BinaryRelation Operand | “(“
Predicate “)”
BinaryRelation ::= “==”|”<=”|”>=”|”!=”|”<”|”>”
Operand ::= StaticProperty |
ParameterObject “Where” Condition|
Parameter|
Function|
InternalFunction |
AccomplishedPolicy |
InternalConstant |
“(“ Operand “)” |
String |
Number
ParameterObject ::= “[“ Object ”.” Parameter ”]” |
 FunctionObjects ”(“
ParameterObject”)”
Object ::= Identifier
DatabaseField ::= “[“Server ”.” Table ”.” Field ”]” |
FunctionObjects::= “Count”
Parameter ::= Identifier
InternalFunction ::= InternalOperator ”(“ Operands”)”
AccomplishedPolicy ::= “PolicyCumplida” ”(“ PolicyName
”@” Operands “)”
PolicyName ::= Identifier
InternalOperator ::= “::T0”|”::T1”|”::Id”|
Function ::= Identifier “(“ Operands ”)” |
 Operand ArithmeticOperation Operand |
 “(“ Function “)”
InternalConstant ::= “null” |“true” |“false” |“this”
ArithmeticOperation ::= “+” | “-“ | “*” |”/”
Operands ::= Identifier | Identifier”,”Operands
StaticProperty ::= “[“ Identifier ”]”
String ::= “’” Identifier “’”
Number ::= NumericChar | NumericChar Number
Identifier ::= AlphaChar| AlphaChar AlphaId
AlphaId ::= “.” | Character | Character AlphaId

Figure 2. Grammar of integrity policy language

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 838

5. Case Study

In this section, we introduce a simple, yet illustrative
and significant case study, involving purchase order
management. Through it, we intend to illustrate how
to specify high-level integrity security policies, how to
deploy the mechanism for inspection, and how the
verification proceeds in order to spot policy
compliance, or violation.

5.1 Purchase Order Management: the Simulation
of a Distributed Process

When setting a manufacturing order, a client
initiates a complex process that may involve steps
ranging from the transformation of raw materials, to

the shipping of a product. At each step of the
process, value is added, including the refinement of
raw materials, the transportation of a product, etc.
The process ends when the product has been fully
manufactured, sold, and shipped to the end user.
These types of processes are called value-added
chain, because at every process step, the product is
transformed, or distributed in some way [10].

Purchase order processing is a distributed, value-
added chain process. To characterize it, we have
used a workflow, which consists of a collection of
interconnected processes, each of which pertains to
work done by either a person, or a process [10],
and, so, can be represented by one or more
interconnected automata. Roughly speaking,

Figure 3. Flow diagram for the integrity policy verifier

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Journal of Applied Research and Technology 839

purchase order management is about orchestrating
the interaction amongst two separate processes,
one called the buyer, and the other the supplier. In a
first step, the buyer issues a purchase order to the
supplier, which then performs a few checks. Upon
purchase order authorisation, the supplier confirms
the sale order to the buyer. Goods agreed upon the
purchase order are to be delivered to a specified
address timely, but purchase order cancellations
may occur. The general workflow of purchase order
is given in figure 4. There, and in what follows, PO
stands for Purchase Order, D for Delivery, and DO
stands for Delivery Order.

Using .NET, we have implemented the general
functionality of both the buyer and the supplier,
considering two separate processes; in particular,
both processes are given in terms of high-level
business operations, such as putting a purchase
order, cancelling a delivery order, etc. The buyer
(respectively, the supplier) has an interface, through
which it gets (respectively, puts) messages from
(respectively, to) other system components; both
processes have a component that coordinates the
execution of the workflow.

Also, we have implemented a simulation
environment, which parameterised with several
rates, involving the number of purchase orders
issued per hour, the number of failures
(respectively, cancellations, communication or
message format errors, etc.) that occur per
purchase order, and so on, and so forth. Notice
that policies are verified against the actions of
each process, so we assume that both buyer and
supplier are able, in practice, to produce a set if
integrity security policies, and, ask a third party to
certify that its process works correctly and that is
policy compliant. We stress that the certifier would
not need to have access to the source code, that it
should know only how processes and components
are (and methods) involved.

All the pieces of code developed for this case
study, as well as the specification module, the
generic code injector, the policy verifier, and the
viewer, can be obtained by sending electronic mail
to any of the paper authors.

5.2 Policies

Associated with purchase order management,
there are two major integrity security policies,
safety and liveness:

 (Safety) Bad events, such as deadlocks, or
livelocks, may not ever happen; a means for
deadlock (respectively, livelock) recovering
must be included for making the purchase
order system robust; and

 (Liveness) Good events must eventually

happen. Basically, this means that purchase
order runs as expected; that is, either it
terminates with success (product delivery), or
failure (purchase order cancellation).

Below appear the eleven integrity security policies
defined for purchase order management, given in
our policy specification language. We emphasise
that these policies are all automatically monitored
upon application, as an observation point is
inserted into any method that refers to an object
that is also referred to by the policy.

1-3. The first three policies are safety. They state

that serving an order (of type either purchase
confirmation, delivery confirmation, or delivery)
cannot be postponed for more than a given
amount of time, as otherwise there is an impact on
the system performance. A violation to these kinds
of policies may indicate the occurrence of a
(internal) flaw, or an (external) error event. We
provide the specification of the “wait for delivery”
policy below; the others are just as similar.

Policy DeliveryNotReceivedOntime Safety
 DOIdentifier!=null (::T1(this) -
::T0(this)) > [DO.MaximunWaitTime]
 Where [DO.DOIdentifier]== DOIdentifier

4. (Liveness policy) Every PO which has been

authorised by the supplier, but which has not
been cancelled, must eventually either get
cancelled, or be associated with one and only
one DO.

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 840

Policy
AuthorizedPOEventuallyGeneratesDOorGotCan
celled Liveness
 PO.POIsAuthorized==true

1 == Count([DO.DOIdentifier])
 Where

 [DO.POIdentifier]==
PO.POIdentifier
 Or
 (
 [PO.Status]==’Cancelled’
Where
[PO.POIdentifier]==PurchaseOrder.POIdentifier
)

5. (Liveness policy) A PO, which has a DO,

must eventually both reach the state
“Delivered” in the context of the supplier, and
cause the buyer to reach the state "Claim D"
or "Close PO".

Policy DispatchedDOIsclosedOrclaimed
Liveness
 DeliveryOrder!=null true ==
[DO.OrderDelivered]
 Where
 [DO.POIdentifier]==
DeliveryOrder.POIdentifier
 And
 (
 IsSatisfiedPolicy(

ClaimDelivery@DeliveryOrder.POIdentifier)==
true Or
 IsSatisfiedPolicy (

ClosePO@DeliveryOrder.POIdentifier)== true
)
Policy ClaimDelivery Liveness
 POIdentifier!=null true

Policy ClosePO Liveness
 POIdentifier!=null true

6. (Safety policy) A PO that was either rejected or

cancelled cannot be associated with any DO,
as this could lead to duplicate delivery orders,
indicating a bug in the system, or that the
system has been tampered with.

Policy PORejectedOrCancelledWithoutDO
Safety
 PurchaseOrder!=null

 1 > Count([DO.DOIdentifier])
 Where
 [DO.POIdentifier]==
 PurchaseOrder.POIdentifier

7. (Liveness policy) A PO, which has been

deemed invalid in the context of the supplier,
must eventually taken to has been rejected in
the context of the buyer.

Policy InvalidPORejected Liveness
 PurchaseOrder.IsInvalid==true
 ‘Rejected’ == [Buyer.PO.Status]
Where
 [PurchaseOrder.POIdentifier]==
 PurchaseOrder.POIdentifier

8. (Liveness policy) A PO that has been accepted

by the supplier shall be processed in the
context of the buyer, eventually reaching the
state "Wait DO for PO".

Policy ProcessAcceptedPO Liveness
 PurchaseOrder.Status==’Received’
IsSatisfiedPolicy(WaitDOforPO@PurchaseOrder
.POIdentifier)== true

9. (Safety policy) Global processing time, at both

partners, must match.

Policy POProcessedBeforeGenerated Safety
 PurchaseOrder!=null
 PurchaseOrder.ProcessDateTime >
[Buyer.PO.ProcessDateTime]
Where
 [PO.POIdentifier]==
 PurchadseOrder.POIdentifier

10. (Liveness policy) An unauthorised DO will

cause the PO to be cancelled in the context of
both the buyer and the supplier.

Policy DONotAuthorizedOrCancelled Liveness
 PurchaseOrder.Status==’NotAuthorized’

 IsSatisfiedPolicy
(POCancelledAtBuyer@PurchaseOrder
.POIdentifier)== true
 And
 IsSatisfiedPolicy
(POCancelledAtSupplier@
PurchaseOrder.POIdentifier)== true

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Journal of Applied Research and Technology 841

11. (Safety policy) Every Delivery must be
associated with a PO, and a DO, in the context
of both the buyer and the supplier.

Policy DeliveryWithoutPOorDOAtBuyer
Safety
 PurchaseOrder!=null

1 =!
 Count([Buyer.DO.DOIdentifier])
 Where
 [Buyer.PO. POIdentifier]==
 PurchaseOrder .POIdentifier
 Or

1 =!
Count([Buyer.DO.DOIdentifier])

 Where
 [Buyer.DO.POIdentifier]==
 PurchaseOrder.POIdentifier

Policy DeliveryWithoutPOorDOAtSupplier
Safety
 PurchaseOrder!=null

1 =!
Count([Supplier.DO.DOIdentifier])
Where

 [Supplier.PO.POIdentifier]==
 PurchaseOrder .POIdentifier
 Or

1 =!
Count([Supplier.DO.DOIdentifier])

 Where
 [Supplier.DO.POIdentifier]==
 PurchaseOrder.POIdentifier

The code injector takes all these policies and
automatically injects the appropriate observation
point, looking into the system components’
specification. Notice that, since we are working
within the context of .NET technology, automation
is possible since the name of the objects referred
to by one of the policy rules must appear readily in
the interface of some or several public methods.

5.3 Results of Simulated Experiment

Using the simulation environment, we set several
attack scenarios, which would violate one or more
of the stated 11 integrity security policies. Policies
violations were all timely detected, as expected. In
what follows, we describe the strategy, in terms of

actions or events, which we have followed in order
to realise a policy violation (we omit figures, such
as actual purchase order rate, timeout settings,
etc., as they do not add significant information,
when considering the overall action effect).

1. Buyer issues several purchase orders, but

supplier is down, thus, causing that no purchase
order confirmation arrives in time to the buyer.

2. Denial of service attack: buyer is set to issue
purchase orders at an unexpectedly large rate,
causing the supplier to be flooded by the
number of purchase order requests.

3. Buyer issues several purchase orders, which are

then authorised and served by the supplier;
however, supplier fails to deliver a few of them,
thus, causing the buyer fall into an indefinite
postponement; orders for which the product is
not to be delivered are picked at random.

4-7. In the following four scenarios, we have

modified the behaviour of the supplier so that it
does not behave as expected, simulating that
the system is under the control of an attacker.
The attacker fakes messages of the expected
kind, but with different information, or prevents
actual messages from being sent (NB,
alternatively, changes in the behaviour of the
supplier could be taken to be simply software
or hardware flaws.) The first scenario
comprises an impersonation attack, where the
intruder sends extra delivery orders to the
buyer, guessing both the consecutive number
of purchase orders, and the number of each
individual packet. In the second scenario, the
attacker simply stops a few selected messages
from being delivered to the supplier. In
particular, the attacker aims at intercepting
messages from the buyer, claiming that a
confirmed purchase order has not been
complete or delivered. In the third scenario, the
attacker impersonates the supplier, faking a
message whereby a purchase order is
rejected; i.e., cancelled, for whatever reason.
Finally, in the fourth scenario, the attacker now
impersonates the buyer so as to issue extra
purchase orders, which are then served by the
supplier, and eventually attempted at being
delivered at the buyer side.

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Vol. 11, December 2013 842

8-11.Four further attacks can be elaborated,
similar to the above ones, this time, though,
attempting to fool the buyer. So, the first
scenario comprises an impersonation attack,
where the intruder sends confirmation
messages to the buyer for purchase orders
that have been cancelled or rejected by the
supplier. In the second scenario, the intruder
prevents purchase confirmation messages
from the supplier from being delivered at the
buyer. In the third scenario, the intruder again
impersonates the supplier, randomly rejecting
some purchase orders, which have been
actually accepted by the supplier. Finally, in
the fourth scenario, the attacker now
impersonates the supplier so as to issue extra
confirmation messages to purchase orders
that were never set by the buyer.

6. Conclusions and Further Work

The verification technique for integrity policies
developed in this work allows processes to be
validated from an independent party, which was not
involved during the development cycle of the system.
Our technique does not require to modify or to have
access to the source code. It can be applied during
system testing, but more importantly during
production. The solution allows monitoring the correct
functioning of the processes according to a set of
defined security integrity policies. Further, our
technique is fully automated, though it works only for
systems that have been developed under .NET.

Our technique comes with an integrity policy
language, with which we can succinctly capture
integrity policies, in terms of the system expected
behaviour. In a way, they express the ideal system
behaviour upon the absence of any intruder.
Policies are expressed in terms of method’s
parameters or return variables, and may involve as
well temporal conditions to capture time limits as to
how one should wait for an event to occur. Our
technique then reads the set of security integrity
policies and then verifies them, using observation
points, each of which is looking into input/output
method parameters referred to by the policies.

We successfully tested our verification technique
using a case study involving a critical process for
purchase order management. For this case study,

we developed separate processes exhibiting the
expected functional behaviour of each party. Then,
we developed a set of security integrity policies,
which attempted to capture the expected
behaviour of the entire system, upon correct
conditions. Then, we simulated the execution of
the system, considering several rates, including
purchase order arrival, average service time for an
order on each party, etc. Finally, we considered
several scenarios, where an intruder attempts to
get the system confused or disrupted. These kinds
of attacks are very common, and usually are the
intruder first action, while it is looking for diamonds
in the dessert. We emphasise that these attacks
were all timely detected.

6.1 Directions for Further Work

Further work includes extending the injection
process in order to support .NET signed
components (Signing .NET components is part of a
Microsoft technique for avoiding unauthorized
modifications or tampering) [11]; this may involve
designing an on-top layer to provide critical
security properties as in [12]. While here we have
worked under the assumption that system
communication is secure, and fault-tolerant, further
work involves specifying rules and network
architectures under which support our
assumptions, and that are beyond the scope of this
paper. Further work also includes translating a set
of integrity security policies into a mechanism other
than a SQL server, as this approach may not be
able to scale up for larger, and more complex
systems to be monitored. Likewise, further work
involves extending the mechanism so as to make it
able to deal with a larger number of events,
coming from a number of system components.

References

[1] SearchSecurity, Security, Audit, Compliance and
Standards, TechTarget. Available from
http://searchsecurity.techtarget.com/resources/Sec
urity-Audit-Compliance-and-Standards

[2] F. B. Schneider, “Enforceable Security Policies”,
ACM Transactions on Information and System Security
vol. 3, no. 1, pp. 30–50, 2000.

[3] C. P. Pfleeger and S. Lawrence, “Security in
Computing”, Boston, MA: 4th Ed., Prentice-Hall, 2006,
pp. 1-771.

Real‐Time Verification of Integrity Policies for Distributed Systems, Ernesto Buelna. / 831‐843

Journal of Applied Research and Technology 843

[4] P. Li et al., “Information Integrity Policies”, in
Workshop on Formal Aspects of Security & Trust
(FAST), Philadelphia, PA: University of Pennsylvania,
2003, pp. 53–70.

[5] D. D. Clark and D. R. Wilson, “A Comparison of
Commercial and Military Computer Security Policies”, in
IEEE Symposium on Research in Security and Privacy
(S&P'87), Oakland, CA: IEEE Computer Society Press,
1987, pp. 184–193.

[6] CSO, Security and Risk, Data Protection, Separation
of Duties and IT Security. Available from
http://www.csoonline.com/article/446017/separatio
n-of-duties-and-it-security

[7] Microsoft, SCOM: System Center Operations
Manager, Available from
http://technet.microsoft.com/en-
us/library/hh205987.aspx

[8] X. Liu et al, “D3S: Debugging Deployed Distributed
Systems”, in Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI’2008), San Francisco, CA: 2008,
pp. 423-437.

[9] G. R. Andrews, “Foundations of Multithreaded,
Parallel, and Distributed Programming”, Addison–
Wesley, 2000, pp. 1-664.

[10] G. W. Treese and L. C. Stewart, “Designing
Systems for Internet Commerce”, 2nd Ed., Addison-
Wesley Professional, 2002, pp. 1-496.

[11] M. Downen, “Using Strong Names Signatures”,
MSDN Magazine, July, 2006, Available from
http://msdn.microsoft.com/en-
us/magazine/cc163583.aspx

[12] V. Alarcón-Aquino et al., “Design and
Implementation of a Security Layer for RFID Systems”,
Journal of Applied Research and Technology vol. 6, no.
1, pp. 69-83, 2008.

