

Journal of Applied Research and Technology 153

Hardware and Software Co-design: An Architecture Proposal for a
Network-on-Chip Switch based on Bufferless Data Flow

S. Ortega-Cisneros *1, H.J. Cabrera-Villaseñor1, J.J. Raygoza-Panduro2, F. Sandoval1, R. Loo-Yau1

1 Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional
Unidad Guadalajara
Guadalajara, Jalisco, México
*sortega@gdl.cinvestav.mx
2 Centro Universitario de Ciencias Exactas e Ingenierías
Universidad de Guadalajara
Guadalajara, Jalisco, México

ABSTRACT
The use of on chip networks as interconnection media for systems implemented in FPGAs is limited by the amount
of logical resources necessary to deploy the network in the target device, and the time necessary to adjust the
network parameters to achieve the performance goal for the system. In this paper we present a switch architecture,
with data flow control based on circuit switching and aimed for on-chip networks with a Spidergon topology, which
seeks to reduce the area occupied without severely affecting the overall network performance. As a result, we
obtained a switch that requires only 114 slices in its most economic version on a Virtex 4-device. We also provide a
performance profile, obtained by subjecting a network formed by these switches to different synthetic workloads
within a simulator. This simulator was developed as part of the design flow of the switch, and it proves to be an
essential tool for the test and validation process.

Keywords: NoC, SoC, FPGA, RTL, simulator, hardware software co-design.

RESUMEN
El uso de redes en chip como medio de interconexión para sistemas digitales implementados en FPGA se encuentra
limitado por la cantidad de recursos lógicos necesarios para implementar la infraestructura de red dentro del dispositivo,
además del tiempo necesario para el ajuste de características de la red para obtener las metas de desempeño
requeridas por el sistema. En este documento presentamos una arquitectura para conmutadores de red en chip, con
control de flujo de datos basado en conmutación de circuitos, desarrollada con el objetivo de formar redes de topología
Spidergon, y buscando reducir el área necesaria para su implementación sin castigar sobremanera el desempeño de la
red. Como resultado de nuestro trabajo presentamos un conmutador que requiere solamente 114 slices de un
dispositivo Virtex 4, en su versión más económica. Además proveemos de un perfil de desempeño de una red formada
por nuestros conmutadores dentro de un simulador a medida. Este simulador fue desarrollado como parte del flujo de
diseño del conmutador y demostró ser una herramienta esencial para la prueba y la validación del módulo.

1. Introduction

Network on-Chip (NoC) is an emerging technology
for interconnecting functional blocks in a digital
system consisting of multiple processing units. The
concept of NoC [1, 7, 8] has attracted interest in
academia and in the development of commercial
applications [9]. However, even with multiple
research teams working on new developments, the
NoC interconnect structures have not reached a
technical maturity for emerging as the communication
infrastructure that gives solution to the challenges
present in modern digital systems.

A Network-on-Chip is the adaptation of the
concept of computer networks applied within an
integrated circuit. The network concept from
computer science includes the interconnection of
computers or network resources that could be
mass storage units (NAS or SAN), firewalls, or
dedicated servers; all of them sharing
information through the network infrastructure,
made of routers, switches, or bridges. The
performance of a computer network is defined by
its topology, the method of controlling data flow

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Vol. 12, February 2014 154

and the strategy used to guide the information
through the network.

To ground these concepts in silicon, it is necessary
to tailor the experience in the area of computer
networks to a more restricted environment, such
as an integrated circuit. In an integrated circuit, the
processing elements are represented by IP blocks,
general purpose processors, or memory elements.

The interconnection infrastructure can be reduced to
routers or switches, given the limited area in which
the digital system may extend, and the transmission
medium is composed of metal lines inside the
integrated circuit. The network performance is
proportional to the amount of information that moves
between its members and the time that the
communication channels are active.

2. Related Work

Some previous work in the area of on-chip
networks that are worth mentioning are the
following: PNOC [2], this work was develop for
reconfigurable devices. PNOC implements two
different kinds of network switches, one for single
processing units that can communicate inside a
small group of same, known as processing island,
and another for a message passing between
different islands. CUNOC [10] is an on-chip
network with a data flow control based on package
switching, because CUNOC uses a mesh
topology, there must be two flavors of switches:
one for the edges of the network and another for
the central area. SoCWire [11] is an on-chip
network developed with the objective of being
compatible with the SpaceWire data transfer
protocol [12]. This protocol is currently in use on
missions of the European Space Agency. Star-
Wheels [13], this network has a foray into the new
"wheel" topology, which is very similar to
Spidergon topology [4] but with the difference of
implementing a "super" network switch in the
center of the communication infrastructure. For a
wider survey on on-chip networks, refer to [14].

3. Hardware Description of the Network Switch

The architectural design of the network switch was
made keeping in mind that the module was aimed
to be simple and lightweight. Because of these
objectives, we needed a topology that promoted

these characteristics. We chose Spidergon as the
topology to be targeted because it is regular and
symmetrical; these two characteristics mean that
the network would look the same from any point of
the net; and therefore, all the switches would be
the same.

In addition, a Spidergon switch does not have a
complete connection between all its communication
channels, but rather it only provides links between
input/output ports as shown in Figure 1. For
example, the right communication channel, from a
Spidergon switch, can only manage data transfers
between it and the left channel and the processing
unit channel. A Thorough analysis of the properties
of the Spidergon topology fall outside of the scope
of this document, but a comprehensive treatise can
be found in [10].

Figure 1. Possible connections from (a) processing
element, (b) diagonal, (c) left, and (d) right channels

Since the selected goal was the optimization of the
logical resources needed to deploy one switch, a
connection-oriented philosophy for controlling data
flow between switches was chosen. This
philosophy is known as circuit switching, and it
reduces the number of storage elements needed
to handle the transactions of information between
switches. The reduction of storage elements takes
place because, before every data transaction
occurs, there must be a physical connection
between the source and the destination. Once the
connection is made, the data will flow as if there
were a hard link between the two nodes, and
temporary storage for message forwarding will not
be necessary.

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Journal of Applied Research and Technology 155

3.1 Network Switch: Operation

Broadly speaking, the relationship between
network switches during a data transfer operation
occurs as follows: Suppose the proposed network
is as illustrated in Figure 2. The transaction starts
when there is a need to transmit information
between the nodes "02" and "07" of the network. A
node is defined by a set of one switch and its
processing element; however, all the
communication services are provided exclusively
by the switch. The path to follow to reach the
destination node requires an intermediate hop on
node "06", so that node "02" sends a request for
the exclusive use of the output port that connects
node "06" to node "07", as Figure 2 (a) shows.

Figure 2. (a, b) A link is formed between node 02 and
07. (c, d) In this case, node 06 is already handling a

connection, thus it denies the request from 05

Node number "06" shall now evaluate the petition
received and determine whether the requested
output port is available for assignment or not. In
the case of a successful allocation by node "06",
the request sent from node "02" is transmitted
transparently in the direction of the destination
node, in this case node number "07". After this
operation, node "06" has already completed its
arbitration tasks, hence it is limited to transmit the
information received in its input port connected to
node "02" to its output port connected to node "07"
(This operation does not block the work of
arbitration and allocation of the other ports that are
not affected by communication between nodes
"02" and "07").

As opposed to the former case, the transaction
flow between nodes may not be completed
because some resources are not available. Our
network switch is designed to handle this kind of
situations as show in Figure 2 (c, d), where a data
link between node "05" and node "07" is desired. In
this second situation, the way to reach the
destination node is by performing a jump through
node "06", which is already handling a link
between node "02" and node "07"; nevertheless,
the knowledge of pre-existing connections is not
available for each network switch, therefore node
"05" sends a request through its output port toward
node "07", and this request must make a stop in
node "06". Node "06" receives the request, but it
determines that the requested port is currently in
use, hence it generates a reject signal towards
node "05". After node "05" gets the reject signal, it
may opt to keep the request and wait for it to be
resolved satisfactorily, or it can, as in this example,
momentarily withdraw its request and make
another attempt after a period of time established
by the processing unit.

3.2 Network Switch: Internals

The switch includes four communication channels,
each of which is formed by two transmission ports:
a port dedicated to data logging, and a port for
sending data out of the switch. At the
microarchitectural level, each output port is
connected to some of the input ports from the
other communication channels.

Figure 3. The dotted line represents all control
signals of the switch, while solid lines

represent the data lines

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Vol. 12, February 2014 156

The signals on each input port can be classified
into control signals and data signals. The control
signals are shown in Figure 3; they are used
during the formation and destruction of a link
between switches. During an operation of data
transmission, the control signals do not have an
active role on the switch. The data signals are
used during the establishment of a link as carriers
of the address of the destination node; after that,
they serve as medium to move data packages
between nodes.

The control signals are used at three stages in the
switch, these stages are responsible for
implementing a policy of "decode - arbitrate -
retain". The first stage is implemented by a
distributor module, shown in Figure 4, whose main
task is sending all the signals entering the switch
through an input port towards the correct output
port, which eventually will lead the target node.

Figure 4. The distributor for one of the output ports, the
diagonal and processing element distributors need to

connect to an extra allocator since they can form a link
with the diagonal opposed switch and the processing

element of the node, respectively

The mechanism used by the distributor to select
which output port is the objective of the request is
made from a comparator and a retainer; at this
point, the destination address, which is carried by
the data signals, is compared with the address of
the current node. If the addresses are equal, it
would mean that the current node is the final
destination of the request, therefore, all signals are
routed toward the output port of the processing
element channel. Otherwise, the request will
continue in the same direction from where it enters
the switch, i.e., if entered by the left channel, the
signal will abandon the switch through the right
channel. As can be noticed, the switch does not
have the ability to change the trajectory of the
requests, which means simpler control logic.

The propagator module is in charge of passing the
results of an arbitration process. In other words, it
will let us know if a link has been successfully
formed ahead or if the request has been rejected.

The next stage inside the switch is carried out by
the allocator. There is an allocator per output port
and its task is to choose which request will have
exclusive access to the output port. As shown in
Figure 5, the allocator is fed by the distributors.
The arbiter-retainer module asks the priority
generator which distributor will have the highest
priority for the current arbitration process. The
priority generator is a hardware implementation of
the round-robin algorithm, meaning that the priority
rotates among all entrances to the allocator,
always giving lowest priority to the winner of the
last resource arbitration process.

Figure 5. Block diagram for the allocator module

The retention stage affects both the distributor and
the allocator that were involved in the last
successful arbitration process. When the allocator
selects a winner, the path between the distributor
and the allocator, needs to be locked, so that all
data arriving through the input port of the
distributor may go directly to the output port of the
allocator. This link must not have any meta-states
while a release signal (release_in) does not arrive
to the allocator.

Finally, there is the need to interconnect the
distributors with their respective allocators; this
connection is done by the transport logic, which
consists of an arrangement of customized
multiplexors and demultiplexors, designed to
interact directly with the control signals from the
allocators. Figure 6 shows the relationship between
all the modules from the switch.

To complete all the stages inside a switch, one
clock cycle is needed; for that reason, the default

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Journal of Applied Research and Technology 157

latency between two nodes is equal to the number
of hops between them. The inverse process of
tearing down a link between two nodes also takes
one clock cycle per switch to be completed;
however, once a switch has received the tear
down signal, it is ready to establish a different link
at the next clock cycle.

4. Switch Simulator

As part of the development flow of our switch, we
made a network simulator. The principal role of the
simulator was to provide a framework where we
can test different combination of values for the
switch parameters; for example, we can generate
an estimate of performance for a network made of
16 switches, once we get the estimate, we can
change the number of data lines between nodes
and resimulate the network to know how these
changes affect the performance.

Figure 6. Complete block diagram for the network
switch. Although the communication path seems to be

made of simple multiplexors and demultiplexors,
they have been customized to work directly with

the control signals from the allocators

The simulator was designed under an object-
oriented paradigm [5, 6]. The data infrastructure
was modeled by means of 3 classes; one that
represents the network switches in a true bit and
cycle manner, a generator class that is responsible
for imitating the operations that a processing
element normally would do. The generator class is
one of the most important factors in the simulator

because it determines when to start a request for
communication, how often the request is released,
to whom the request is directed, the size of the
information packages, how to set the release signal
once a communication is over and handling the
network contentions. This class was modeled by
means of a finite state machine shown in Figure 7.

Figure 7. Finite state machine controlling
the requests from a node

Finally, a ‘Net’ class is used as a container for all
the pairs "generator – switch.” Besides a container,
the net class gives orders to every element about
what needs to be done to carry out the simulation,
and to register all events going on in the simulated
network. In Figure 8, we provide a class diagram of
all the members of the simulator, as well their
methods and attributes.

Figure 8. Class diagram for the network simulator

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Vol. 12, February 2014 158

4.1 The Switch Class

This class describes all the behaviors and internal
states from a hardware switch; for example,
control and data signals are represented as
boolean attributes. All the attributes are grouped
by the input/output port to which they belong, and
all the attributes that serve as communication
points between instances of the switch class are
made public.

The Switch class uses 8 methods to imitate the
behavior of the hardware module, all these
methods are shown in figure 8 and are used for
tasks such as setting the initial values for the
attributes that will be used in the simulation.

A brief description of what happens during a
simulation cycle inside each switch instance is as
follows: The update switch method is the interface
with the other classes and is in charge of calling all
the subsequent methods to complete a simulation
cycle. The first task that must be done is
executing the _update_rqs() method, this method
works like a positive edge of a clock signal, when
this method is called, all the values from the
attributes representing the output ports from the
neighbors switches are copied to the attributes
representing the input ports of the instance that
called the method; all the values obtained in this
way are used by the _update_<direction>_port()
routines that implement all the work that would be
normally carried out by the allocators. Before a
request is selected by the latter methods, the
priority for the arbitration process must be updated
by the _update_priority() routine that implements
the round-robin algorithm.

4.2 The Switch Class

The generator instances are paired with the switch
objects to form a network node in the simulator.
This class sends all the stimuli that a processing
element would send to the networks switch.
Broadly speaking, the generator can divide its
functions in transmission and reception operations,
and the transmissions going out the node are
managed by the FSM shown in Figure 7.
Nevertheless, it is worth noting that the routing
decisions are made within the method _routing().
This method selects the traffic pattern that will be
used by the node during the entire simulation. Each

generator instance can select different traffic
patterns by sending the correct parameters to the
_routing() method. In order to add new patterns to
this routine, the user must introduce the code with
the new algorithm to select the valid targets nodes
for communications going out of this node. A code
snippet of the _routing() method is shown .

if traffic == 1:
 while True:
 Self.out_port[‘addr_out’] = random.randrange /
 (1,self._out_status[‘total_nodos’]+1)
 if self.out_port[‘add_out’] != self._addr_my:
 break

The reception operation is limited to generate
control signals to acknowledge the acceptance of
incoming requests. Once a request has arrived to a
generator in idle state, the finite state machine
shown in Figure 9, releases the cts signal to let the
source of the request know that it is clear to receive
data packages. Once the number of simulation
cycles necessary for the finalization of the
transmission of the data have taken place, the
_fsm_rx() routine, which implements the reception
operations, sends a release signal to every switch
object in the communication path to let them know
that the transmission of data is over and the
resources assigned must be deallocated.

Figure 9. Finite State Machine controlling all the
requests incoming to a node

4.3 The Net Class

The timing, for the execution of all actions needed
to complete a simulation cycle, is provided by the
net class. First, it receives the parameters to
configure the simulation. The user provides these
parameters by means of a command line interface
that contains the number of nodes, number of
cycles that the simulation will last, the size of
packages, number of data lines between nodes,
how often the nodes will release a request and the
traffic pattern for each node.

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Journal of Applied Research and Technology 159

Once the information is in possession of a net
object, it starts to create instances of switch and
generator classes. The configuration parameters
for each created object are passed by the
_deploy_net() method, and these parameters are
used by the _init_() routines of each object for their
initialization. After the simulated network has been
initialized, a cyclic series of steps are executed
starting with the _clock_edge() routine. This
routine will trigger an update of the attributes
representing the input ports of each switch object.
The next step has as its goal the execution of all
arbitration processes on each switch object and
the evaluation of the finite state machine on every
generator instance; this step is executed by the
_sim_tick() routine.

At this point, all the processes regarding the
functional units of the network have been executed;
hence, the final step is to register the internal state
of each network switch and generator called. This
action is performed by the _observer_log(). This
method has access to all the internal state
attributes of the generator and switch instances;
thus, it will create log files as the one shown in
Figure 10 for each network node on the network. All
the steps above are repeated once for each
simulation cycle requested by the user.

Figure 10. Log file created by the _observer_log()
method. One of these files is created for each node

4.4 Synthetic Workloads

Workloads are one of the most important elements
in the simulations of on chip networks. The workload
represents the test data to be released on the
simulated network; this data represents requests for
data transmissions. A workload planned too lightly
can result in slanted performance profiles, showing
only the best or the worse behavior of the network.

For this work, we used synthetic workloads to
simulate possible scenarios in a digital system. The
flexibility of the use of synthetic loads lies in the

possibility of varying the traffic pattern, the
addresses to which each network switch can
communicate, and the frequency with which each
node releases a communication request to the
network. For example, a random workload will allow
each node in the network to be a possible target for
a communication, while a restricted workload could
only allow communications to nodes numbered
"05", "03" and "07".

5. Results

All results presented in this paper used the next
setup: the switch was implemented in a Virtex 4 -
xc4vlx100-11ff1513, using the synthesis tool
provided by the manufacturer. The performance
results were obtained using the simulator
developed specifically for this network.

5.1 Synthetic Workloads

A detailed look at the logic resources occupied by
every single internal component of the switch, as
shown in Figure 11, lets us know that the critical
path of combinational delays is going to be inside
the allocators.

Figure 11. Logical elements needed to deploy each
module which forms a network switch

These results about occupied area should not vary
in a drastic way, thanks to the decoupling between
the control and data signals.

For the correct characterization of the switch
performance, we synthesized 4 different switches
with a different number of lines for the data
transaction between them. Figure 12 shows the
occupation for each switch model. It is worth
noting that the increment in the width of de data
lines has influence on the occupation because of

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Vol. 12, February 2014 160

the relation between the data signals and the
distributors of the switch; each distributor requires
us to compare the address of the destination
node and its address. This operation infers a
comparator with a width equal to the number of
data signals, as they carry the destination
address. The average percent of extra resources
needed to increase the number of data lines is
around 43.33% between switch models.

The most affected resources are the flip-flops from
the FPGA, as they are needed in each input and
output of the switch to provide a synchronous
operation. It is not possible to use BRAMs because
of the distributed nature of the communications
channels of the switch: therefore, they are
implemented using the logic element of the FPGA.
As a maximum operation frequency we obtained
238.66 MHz for the 32 data lines model of the
switch. All other models results can be consulted in
Figure 12.

Figure 12. Switch occupation in slices, maximum
operating frequency and percentage

occupied on a Virtex 4 device

5.2 Simulation Results

We developed three scenarios with the following
characteristics in common: Each network was
composed of 16 nodes. We let the simulations run
for 25,000 clock cycles, and the information
transactions consisted of packages of 256 bytes.
The results presented in this section are the
average from running a single scenario ten times;
this methodology was used to mitigate the
presence of best/worst case for the simulation.

In particular, the first scenario interconnecting each
network node, with data links of 8 bits wide, uses
activation periods of between 10% and 90%. The
latter refers to the probability that each node would
like to start a data transaction when it is in idle, and
finally the traffic pattern is random, so each node
can select as a valid target all other nodes of the

network. The simulator generates logs with the
behavior of each node of the network. The following
data are found in these logs: at which clock cycle a
node generated a request, the answers to its
requests, how much time it spent waiting to restart
the request for a link after a reject signal, the time
spent simulating an internal processing in the node,
and how many cycles it was inactive.

Figure 13 shows a summary of the log generated
for node number 15 in one simulation from scenario
1. In particular, this node presented an activation
pattern of 90%; hence, each time it was able, it
requested communication with another node.

Figure 13. A high percentage in “waiting for restart”
reflects a network under a heavy traffic

One of the most important parameters to measure in
network is the latency or average time that would
take to complete a satisfactory link between two
nodes of the network. This parameter is highly
volatile as it is affected by the current traffic on the
network, for example, if just a few nodes are
transmitting data then there would be a few paths
occupied so there would not be the need to wait for
"resource contentions". As latency itself is not a
reliable measure, we use a relation between the
latency and the number of already established paths
around the network. Using this relation we can
evaluate the average latency of different on-chip
networks, even if they use different topologies or
data-flow controls. In Figure 14, we present the
average latency presented in a single switch and only
for 1 simulation run under scenario 2, which consists
of a network formed by 16 nodes with 16-bit data
links in width, activation patterns between 10% and
90%, and a random traffic pattern. As we can see,
when 10 of the 16 nodes are trying to establish a
connection, the network was capable of handling 9 of
the connection requests satisfactorily. For global
results we present the average latency of all nodes of
the network from the ten runs of each scenario as
shown in Figure 16 (a).

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Journal of Applied Research and Technology 161

Another key parameter to evaluate a network on-
chip, and therefore their switches, is the average
performance, which we can think of as the number
of connections between nodes that can hold the
network simultaneously, in contrast with the total
number of attended and unattended requests that
are around the network.

For example, Figure 15 shows the average
performance of one node during 10 simulations
under scenario 3, which consists of a network formed
by 16 nodes with 8-bit width data links, activation
patterns of 100%, and a restricted traffic pattern. The
performance results for the simulation of 10 runs of
each scenario are presented in Figure 16 (b).

Figure 14. Average latency for one switch; "spikes",
like the one in "9 requests", are removed,

repeating 10 times each scenario

Figure 15. Average performance presented under
scenario 3, the minimum performance

represents the worst performance

6. Conclusions

In this paper we present the description of a novel
architecture for a network switch, involving a circuit
switching technique, targeted to networks with a
Spidergon topology. As a result, the necessary
logic elements for the deployment of the network
infrastructure are reduced to a minimum. In addition
to the light weight architecture, the switch offers
warranties once a path between 2 nodes has
formed, as in-order data arrival.

It is worth noting from Figure 12 that the best
balance between logic resource consumption and
operation frequency is delivered by the
implementation of the switch with 16-bit width data
ports. In addition to the latter, this switch model
can form NoCs with an ideal bandwidth of 2.29
Mb/Seg in their bisection. The smallest switch of
the family presents 8 lines for data transactions.
This small module can find a place even on small
FPGA devices. As an example of this, a network
formed by 16 of these switch needs only 3.648% of
the Virtex 4 device.

Figure 16. (a) Average latency,
(b) average Performance

To have a better perspective of our small factor
switch, Figure 17 shows a contrast between the
switches proposed in: CoNoChi[15], CuNoC[10],
DyNoC[16], PNoC[2], QuarC[17], RMBoC[3] and
SoCWire[11]. It is easy to see that our module with
32 data lines has the lowest resource requirements;
however, it is worth noting that the switches
presented in the other works have added more
characteristics to their design such as error handling,
quality of service and reliability enhancements.

In the absence of a network simulator, the profiling
of the switch performance on an on-chip network,
under different stress levels, would have been a

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Vol. 12, February 2014 162

more time-consuming task because of the time
needed to design hardware modules that would
play the role of processing elements, and as a
consequence, we would have had to use a limited
number of scenarios for the profiling.

In regards to the average latency, shown in Figure
16 (a), we can notice that it remains under 300
clock cycles, even with a high number of requests
around the network. However, it is worth noting
that the use of a restricted traffic pattern, as in
scenario number 3, improves the average latency
even more than incrementing the number of data
lines connecting each node with its neighbors. If
the traffic pattern is previously known for a system,
the right way to improve the latency will be to
locate IPs with heavy communication necessities
near each other; nevertheless, this is not always
possible, thus the increase of the number of data
lines will be an acceptable choice but with a logical
resource penalty.

Figure 17. Difference between logical resources
necessary for our switch and other works in the area

As for the performance, a network formed with the
switches presented in this paper can handle
satisfactorily up to 5 simultaneous requests; after
this number, the requests start to collide into each
other. This resource contention is independent from
the model of the switch selected for the network.
The ineffectiveness of incrementing the number of
data lines is shown in Figure 16 (b) on the results
between scenario 2 and scenario 3. However, the
analysis of the performance for the scenario 3,
which uses a restricted traffic pattern, shows that
the use of smart planned traffic patterns can
improve significantly the performance of the
network. In this particular case the network in
scenario 3 was able of handling an average of 11
requests at a maximum workload on the network.

An average from the 3 scenarios gives us an idea
of what we can expect from the network under
unknown circumstances; for example, we can see
that the maximum performance that it can achieve
is 57%, i.e., handling 9 links simultaneously
between network nodes. However, if all members
of the network make a simultaneous request, the
performance will drop inevitably below 31.25%.

All results lead us to conclude that a network, with
our switch, will provide a good solution for
communications, inside on-chip digital systems with
highly restricted logic elements. We also note that
the simulator proved to be a valuable tool for
evaluating the impact that some design options
have before synthesis.

Acknowledgements

Heading: left justified, in 9-point Arial italics bold font,
in sentence-case.

Content: All text must be in a two-column format.
Columns are to be 8 cm wide with a .59 cm space
between them. Also, it must be fully justified, single-
spaced, in 9-point Arial regular font.

References

[1] R. Ho, K. W. Mai, and M. A. Horowitz, "The future of
wires," Proceedings of the IEEE, vol. 89, 2001, pp.
490-504.

[2] C. Hilton and B. Nelson, "PNoC: a flexible circuit-
switched NoC for FPGA-based systems," Computers and
Digital Techniques, IEE Proceedings -, vol. 153, 2006,
pp. 181-188.

[3] C. Bobda and A. Ahmadinia, "Dynamic interconnection
of reconfigurable modules on reconfigurable devices,"
Design & Test of Computers, IEEE, vol. 22, pp. 443-451,
2005.

[4] M. Coppola, M. D. Grammatikakis, R. Locatelli, G.
Maruccia, and L. Pieralisi, Design of Cost-Efficient
Interconnect Processing Units: Spidergon STNoC: CRC
Press, Inc., 2008.

[5] M. Lutz, Learning Python: Powerful Object-Oriented
Programming: O'Reilly Media, Inc., 2009.

[6] M. Weisfeld, The Object-Oriented Thought Process:
Sams, 2000.

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Journal of Applied Research and Technology 163

[7] W. J. Dally and B. Towles, "Route packets, not wires:
on-chip interconnection networks," in Design Automation
Conference, 2001. Proceedings, 2001, pp. 684-689.

[8] G. Mas and P. Martin, "Network-on-chip: the intelligence
is in the wire," in Computer Design: VLSI in Computers and
Processors, 2004. ICCD 2004. Proceedings. IEEE
International Conference on, 2004, pp. 174-177.

[9] T. G. Mattson, R. F. Van der Wijngaart, M. Riepen, T.
Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard, S.
Vangal, N. Borkar, G. Ruhl, and S. Dighe, "The 48-core
SCC Processor: the Programmer's View," in High
Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, 2010, pp. 1-11.

[10] S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda,
"CuNoC: A Scalable Dynamic NoC for Dynamically
Reconfigurable FPGAs," in Field Programmable Logic and
Applications, 2007. FPL 2007. International Conference on,
2007, pp. 753-756.

[11] B. Osterloh, H. Michalik, B. Fiethe, and K. Kotarowski,
"SoCWire: A Network-on-Chip Approach for
Reconfigurable System-on-Chip Designs in Space
Applications," in Adaptive Hardware and Systems, 2008.
AHS '08. NASA/ESA Conference on, 2008, pp. 51-56.

[12].S. M. Parkes and P. Armbruster, "SpaceWire: a
spacecraft onboard network for real-time communications,"
in Real Time Conference, 2005. 14th IEEE-NPSS, 2005,
pp. 6-10.

[13] D. Gohringer, L. Bin, M. Hubner, and J. Becker, "Star-
Wheels Network-on-Chip featuring a self-adaptive mixed
topology and a synergy of a circuit - and a packet-switching
communication protocol," in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on,
2009, pp. 320-325.

[14] O. Tayan, "Networks-on-Chip: Challenges, trends and
mechanisms for enhancements," in Information and
Communication Technologies, 2009. ICICT '09.
International Conference on, 2009, pp. 57-62.

[15] T. Pionteck, R. Koch, and C. Albrecht, "Applying Partial
Reconfiguration to Networks-On-Chips," in Field
Programmable Logic and Applications, 2006. FPL '06.
International Conference on, 2006, pp. 1-6.

[16] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete,
and J. van der Veen, "DyNoC: A dynamic infrastructure for
communication in dynamically reconfugurable devices," in
Field Programmable Logic and Applications, 2005.
International Conference on, 2005, pp. 153-158.

[17] M. Moadeli, W. Vanderbauwhede, and A. Shahrabi,
"Quarc: A Novel Network-On-Chip Architecture," in
Parallel and Distributed Systems, 2008. ICPADS '08. 14th
IEEE International Conference on, 2008, pp. 705-712.

