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ABSTRACT  
The use of on chip networks  as interconnection media for systems implemented in FPGAs is limited by the amount 
of logical resources necessary to deploy the network in the target device, and the time necessary to adjust the 
network parameters to achieve the performance goal for the system. In this paper we present a switch architecture, 
with data flow control based on circuit switching and aimed for on-chip networks with a Spidergon topology, which 
seeks to reduce the area occupied without severely affecting the overall network performance. As a result, we 
obtained a switch that requires only 114 slices in its most economic version on a Virtex 4-device. We also provide a 
performance profile, obtained by subjecting a network formed by these switches to different synthetic workloads 
within a simulator. This simulator was developed as part of the design flow of the switch, and it proves to be an 
essential tool for the test and validation process. 
 
Keywords: NoC, SoC, FPGA, RTL, simulator, hardware software co-design. 
 
RESUMEN 
El uso de redes en chip como medio de interconexión para sistemas digitales implementados en FPGA se encuentra 
limitado por la cantidad de recursos lógicos necesarios para implementar la infraestructura de red dentro del dispositivo, 
además del tiempo necesario para el ajuste de características de la red para obtener las metas de desempeño 
requeridas por el sistema. En este documento presentamos una arquitectura para conmutadores de red en chip, con 
control de flujo de datos basado en conmutación de circuitos, desarrollada con el objetivo de formar redes de topología 
Spidergon, y buscando reducir el área necesaria para su implementación sin castigar sobremanera el desempeño de la 
red. Como resultado de nuestro trabajo presentamos un conmutador que requiere solamente 114 slices de un 
dispositivo Virtex 4, en su versión más económica. Además proveemos de un perfil de desempeño de una red formada 
por nuestros conmutadores dentro de un simulador a medida. Este simulador fue desarrollado como parte del flujo de 
diseño del conmutador y demostró ser una herramienta esencial para la prueba y la validación del módulo. 
 

 
1. Introduction 
 
Network on-Chip (NoC) is an emerging technology 
for interconnecting functional blocks in a digital 
system consisting of multiple processing units. The 
concept of NoC [1, 7, 8] has attracted interest in 
academia and in the development of commercial 
applications [9]. However, even with multiple 
research teams working on new developments, the 
NoC interconnect structures have not reached a 
technical maturity for emerging as the communication 
infrastructure that gives solution to the challenges 
present in modern digital systems. 

 
 
A Network-on-Chip is the adaptation of the 
concept of computer networks applied within an 
integrated circuit. The network concept from 
computer science includes the interconnection of 
computers or network resources that could be 
mass storage units (NAS or SAN), firewalls, or 
dedicated servers; all of them sharing 
information through the network infrastructure, 
made of routers, switches, or bridges. The 
performance of a computer network is defined by 
its topology, the method of controlling data flow 
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and the strategy used to guide the information 
through the network. 
 
To ground these concepts in silicon, it is necessary 
to tailor the experience in the area of computer 
networks to a more restricted environment, such 
as an integrated circuit. In an integrated circuit, the 
processing elements are represented by IP blocks, 
general purpose processors, or memory elements. 
 
The interconnection infrastructure can be reduced to 
routers or switches, given the limited area in which 
the digital system may extend, and the transmission 
medium is composed of metal lines inside the 
integrated circuit. The network performance is 
proportional to the amount of information that moves 
between its members and the time that the 
communication channels are active. 
 
2. Related Work 
 
Some previous work in the area of on-chip 
networks that are worth mentioning are the 
following: PNOC [2], this work was develop for 
reconfigurable devices. PNOC implements two 
different kinds of network switches, one for single 
processing units that can communicate inside a 
small group of same, known as processing island, 
and another for a message passing between 
different islands. CUNOC [10] is an on-chip 
network with a data flow control based on package 
switching, because CUNOC uses a mesh 
topology, there must be two flavors of switches: 
one for the edges of the network and another for 
the central area. SoCWire [11] is an on-chip 
network developed with the objective of being 
compatible with the SpaceWire data transfer 
protocol [12]. This protocol is currently in use on 
missions of the European Space Agency. Star-
Wheels [13], this network has a foray into the new 
"wheel" topology, which is very similar to 
Spidergon topology [4] but with the difference of 
implementing a "super" network switch in the 
center of the communication infrastructure. For a 
wider survey on on-chip networks, refer to [14]. 
 
3. Hardware Description of the Network Switch 
 
The architectural design of the network switch was 
made keeping in mind that the module was aimed 
to be simple and lightweight. Because of these 
objectives, we needed a topology that promoted 

these characteristics. We chose Spidergon as the 
topology to be targeted because it is regular and 
symmetrical; these two characteristics mean that 
the network would look the same from any point of 
the net; and therefore, all the switches would be 
the same.  
 
In addition, a Spidergon switch does not have a 
complete connection between all its communication 
channels, but rather it only provides links between 
input/output ports as shown in Figure 1. For 
example, the right communication channel, from a 
Spidergon switch, can only manage data transfers 
between it and the left channel and the processing 
unit channel. A Thorough analysis of the properties 
of the Spidergon topology fall outside of the scope 
of this document, but a comprehensive treatise can 
be found in [10]. 
 

 
 

Figure 1. Possible connections from (a) processing 
element, (b) diagonal, (c) left, and (d) right channels 

 
Since the selected goal was the optimization of the 
logical resources needed to deploy one switch, a 
connection-oriented philosophy for controlling data 
flow between switches was chosen. This 
philosophy is known as circuit switching, and it 
reduces the number of storage elements needed 
to handle the transactions of information between 
switches. The reduction of storage elements takes 
place because, before every data transaction 
occurs, there must be a physical connection 
between the source and the destination. Once the 
connection is made, the data will flow as if there 
were a hard link between the two nodes, and 
temporary storage for message forwarding will not 
be necessary. 
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3.1 Network Switch: Operation 
 
Broadly speaking, the relationship between 
network switches during a data transfer operation 
occurs as follows: Suppose the proposed network 
is as illustrated in Figure 2. The transaction starts 
when there is a need to transmit information 
between the nodes "02" and "07" of the network. A 
node is defined by a set of one switch and its 
processing element; however, all the 
communication services are provided exclusively 
by the switch. The path to follow to reach the 
destination node requires an intermediate hop on 
node "06", so that node "02" sends a request for 
the exclusive use of the output port that connects 
node "06" to node "07", as Figure 2 (a) shows. 
 

 
 

Figure 2. (a, b) A link is formed between node 02 and 
07. (c, d) In this case, node 06 is already handling a 

connection, thus it denies the request from 05 
 
Node number "06" shall now evaluate the petition 
received and determine whether the requested 
output port is available for assignment or not. In 
the case of a successful allocation by node "06", 
the request sent from node "02" is transmitted 
transparently in the direction of the destination 
node, in this case node number "07". After this 
operation, node "06" has already completed its 
arbitration tasks, hence it is limited to transmit the 
information received in its input port connected to 
node "02" to its output port connected to node "07" 
(This operation does not block the work of 
arbitration and allocation of the other ports that are 
not affected by communication between nodes 
"02" and "07"). 

As opposed to the former case, the transaction 
flow between nodes may not be completed 
because some resources are not available. Our 
network switch is designed to handle this kind of 
situations as show in Figure 2 (c, d), where a data 
link between node "05" and node "07" is desired. In 
this second situation, the way to reach the 
destination node is by performing a jump through 
node "06", which is already handling a link 
between node "02" and node "07"; nevertheless, 
the knowledge of pre-existing connections is not 
available for each network switch, therefore node 
"05" sends a request through its output port toward 
node "07", and this request must make a stop in 
node "06". Node "06" receives the request, but it 
determines that the requested port is currently in 
use, hence it generates a reject signal towards 
node "05". After node "05" gets the reject signal, it 
may opt to keep the request and wait for it to be 
resolved satisfactorily, or it can, as in this example, 
momentarily withdraw its request and make 
another attempt after a period of time established 
by the processing unit. 
 
3.2 Network Switch: Internals 
 
The switch includes four communication channels, 
each of which is formed by two transmission ports: 
a port dedicated to data logging, and a port for 
sending data out of the switch. At the 
microarchitectural level, each output port is 
connected to some of the input ports from the 
other communication channels. 
 

 
 

Figure 3. The dotted line represents all control 
signals of the switch, while solid lines 

represent the data lines 
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The signals on each input port can be classified 
into control signals and data signals. The control 
signals are shown in Figure 3; they are used 
during the formation and destruction of a link 
between switches. During an operation of data 
transmission, the control signals do not have an 
active role on the switch. The data signals are 
used during the establishment of a link as carriers 
of the address of the destination node; after that, 
they serve as medium to move data packages 
between nodes. 
 
The control signals are used at three stages in the 
switch, these stages are responsible for 
implementing a policy of "decode - arbitrate - 
retain". The first stage is implemented by a 
distributor module, shown in Figure 4, whose main 
task is sending all the signals entering the switch 
through an input port towards the correct output 
port, which eventually will lead the target node. 
 

 
 

Figure 4. The distributor for one of the output ports, the 
diagonal and processing element distributors need to 

connect to an extra allocator since they can form a link 
with the diagonal opposed switch and the processing 

element of the node, respectively 
 
The mechanism used by the distributor to select 
which output port is the objective of the request is 
made from a comparator and a retainer; at this 
point, the destination address, which is carried by 
the data signals, is compared with the address of 
the current node. If the addresses are equal, it 
would mean that the current node is the final 
destination of the request, therefore, all signals are 
routed toward the output port of the processing 
element channel. Otherwise, the request will 
continue in the same direction from where it enters 
the switch, i.e., if entered by the left channel, the 
signal will abandon the switch through the right 
channel. As can be noticed, the switch does not 
have the ability to change the trajectory of the 
requests, which means simpler control logic. 
 

The propagator module is in charge of passing the 
results of an arbitration process. In other words, it 
will let us know if a link has been successfully 
formed ahead or if the request has been rejected. 
 
The next stage inside the switch is carried out by 
the allocator. There is an allocator per output port 
and its task is to choose which request will have 
exclusive access to the output port. As shown in 
Figure 5, the allocator is fed by the distributors. 
The arbiter-retainer module asks the priority 
generator which distributor will have the highest 
priority for the current arbitration process. The 
priority generator is a hardware implementation of 
the round-robin algorithm, meaning that the priority 
rotates among all entrances to the allocator, 
always giving lowest priority to the winner of the 
last resource arbitration process. 
 

 
 

Figure 5. Block diagram for the allocator module 
 
The retention stage affects both the distributor and 
the allocator that were involved in the last 
successful arbitration process. When the allocator 
selects a winner, the path between the distributor 
and the allocator, needs to be locked, so that all 
data arriving through the input port of the 
distributor may go directly to the output port of the 
allocator. This link must not have any meta-states 
while a release signal (release_in) does not arrive 
to the allocator. 
 
Finally, there is the need to interconnect the 
distributors with their respective allocators; this 
connection is done by the transport logic, which 
consists of an arrangement of customized 
multiplexors and demultiplexors, designed to 
interact directly with the control signals from the 
allocators. Figure 6 shows the relationship between 
all the modules from the switch. 
 
To complete all the stages inside a switch, one 
clock cycle is needed; for that reason, the default



 

Hardware and Software Co‐design: An Architecture Proposal for a Network‐on‐Chip Switch based on Bufferless Data Flow, S. Ortega‐Cisneros et al. / 153‐163

Journal of Applied Research and Technology 157

latency between two nodes is equal to the number 
of hops between them. The inverse process of 
tearing down a link between two nodes also takes 
one clock cycle per switch to be completed; 
however, once a switch has received the tear 
down signal, it is ready to establish a different link 
at the next clock cycle. 
 
4. Switch Simulator 
 
As part of the development flow of our switch, we 
made a network simulator. The principal role of the 
simulator was to provide a framework where we 
can test different combination of values for the 
switch parameters; for example, we can generate 
an estimate of performance for a network made of 
16 switches, once we get the estimate, we can 
change the number of data lines between nodes 
and resimulate the network to know how these 
changes affect the performance.  
 

 
 

Figure 6. Complete block diagram for the network 
switch. Although the communication path seems to be 

made of simple multiplexors and demultiplexors, 
they have been customized to work directly with 

the control signals from the allocators 
 
The simulator was designed under an object-
oriented paradigm [5, 6]. The data infrastructure 
was modeled by means of 3 classes; one that 
represents the network switches in a true bit and 
cycle manner, a generator class that is responsible 
for imitating the operations that a processing 
element normally would do.  The generator class is 
one of the most important factors in the simulator

because it determines when to start a request for 
communication, how often the request is released, 
to whom the request is directed, the size of the 
information packages, how to set the release signal 
once a communication is over and handling the 
network contentions. This class was modeled by 
means of a finite state machine shown in Figure 7. 
 

 
 

Figure 7. Finite state machine controlling 
the requests from a node 

 
Finally, a ‘Net’ class is used as a container for all 
the pairs "generator – switch.” Besides a container, 
the net class gives orders to every element about 
what needs to be done to carry out the simulation, 
and to register all events going on in the simulated 
network. In Figure 8, we provide a class diagram of 
all the members of the simulator, as well their 
methods and attributes. 
 

 
 

Figure 8. Class diagram for the network simulator 
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4.1 The Switch Class 
 
This class describes all the behaviors and internal 
states from a hardware switch; for example, 
control and data signals are represented as 
boolean attributes. All the attributes are grouped 
by the input/output port to which they belong, and 
all the attributes that serve as communication 
points between instances of the switch class are 
made public. 
  
The Switch class uses 8 methods to imitate the 
behavior of the hardware module, all these 
methods are shown in figure 8 and are used for 
tasks such as setting the initial values for the 
attributes that will be used in the simulation. 
 
A brief description of what happens during a 
simulation cycle inside each switch instance is as 
follows: The update switch method is the interface 
with the other classes and is in charge of calling all 
the subsequent methods to complete a simulation 
cycle. The first task that must  be done is 
executing the _update_rqs() method, this method 
works like a positive edge of a clock signal, when 
this method is called, all the values from the 
attributes representing the output ports from the 
neighbors switches are copied to the attributes 
representing the input ports of the instance that 
called the method; all the values obtained in this 
way are used by the _update_<direction>_port() 
routines that implement all the work that would be 
normally carried out by the allocators. Before a 
request is selected by the latter methods, the 
priority for the arbitration process must be updated 
by the _update_priority() routine that implements 
the round-robin algorithm. 
 
4.2 The Switch Class 
 
The generator instances are paired with the switch 
objects to form a network node in the simulator. 
This class sends all the stimuli that a processing 
element would send to the networks switch. 
Broadly speaking, the generator can divide its 
functions in transmission and reception operations, 
and the transmissions going out the node are 
managed by the FSM shown in Figure 7. 
Nevertheless, it is worth noting that the routing 
decisions are made within the method _routing(). 
This method selects the traffic pattern that will be 
used by the node during the entire simulation. Each 

generator instance can select different traffic 
patterns by sending the correct parameters to the 
_routing() method. In order to add new patterns to 
this routine, the user must introduce the code with 
the new algorithm to select the valid targets nodes 
for communications going out of this node. A code 
snippet of the _routing() method is shown . 
 
if traffic == 1: 
    while True: 
        Self.out_port[‘addr_out’] = random.randrange    / 
        (1,self._out_status[‘total_nodos’]+1) 
        if self.out_port[‘add_out’] != self._addr_my: 
            break 
 
The reception operation is limited to generate 
control signals to acknowledge the acceptance of 
incoming requests. Once a request has arrived to a 
generator in idle state, the finite state machine 
shown in Figure 9, releases the cts signal to let the 
source of the request know that it is clear to receive 
data packages. Once the number of simulation 
cycles necessary for the finalization of the 
transmission of the data have taken place, the 
_fsm_rx() routine, which implements the reception 
operations, sends a release signal to every switch 
object in the communication path to let them know 
that the transmission of data is over and the 
resources assigned must be deallocated. 
 

 
 

Figure 9. Finite State Machine controlling all the 
requests incoming to a node 

 
4.3 The Net Class 
 

The timing, for the execution of all actions needed 
to complete a simulation cycle, is provided by the 
net class. First, it receives the parameters to 
configure the simulation. The user provides these 
parameters by means of a command line interface 
that contains the number of nodes, number of 
cycles that the simulation will last, the size of 
packages, number of data lines between nodes, 
how often the nodes will release a request and the 
traffic pattern for each node. 
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Once the information is in possession of a net 
object, it starts to create instances of switch and 
generator classes. The configuration parameters 
for each created object are passed by the 
_deploy_net() method, and these parameters are 
used by the _init_() routines of each object for their 
initialization. After the simulated network has been 
initialized, a cyclic series of steps are executed 
starting with the _clock_edge() routine. This 
routine will trigger an update of the attributes 
representing the input ports of each switch object. 
The next step has as its goal the execution of all 
arbitration processes on each switch object and 
the evaluation of the finite state machine on every 
generator instance; this step is executed by the 
_sim_tick() routine. 
 
At this point, all the processes regarding the 
functional units of the network have been executed; 
hence, the final step is to register the internal state 
of each network switch and generator called. This 
action is performed by the _observer_log(). This 
method has access to all the internal state 
attributes of the generator and switch instances; 
thus, it will create log files as the one shown in 
Figure 10 for each network node on the network. All 
the steps above are repeated once for each 
simulation cycle requested by the user. 
 

 
 

Figure 10. Log file created by the _observer_log() 
method. One of these files is created for each node 

 
4.4 Synthetic Workloads 
 
Workloads are one of the most important elements 
in the simulations of on chip networks. The workload 
represents the test data to be released on the 
simulated network; this data represents requests for 
data transmissions. A workload planned too lightly 
can result in slanted performance profiles, showing 
only the best or the worse behavior of the network. 
 
For this work, we used synthetic workloads to 
simulate possible scenarios in a digital system. The 
flexibility of the use of synthetic loads lies in the 

possibility of varying the traffic pattern, the 
addresses to which each network switch can 
communicate, and the frequency with which each 
node releases a communication request to the 
network. For example, a random workload will allow 
each node in the network to be a possible target for 
a communication, while a restricted workload could 
only allow communications to nodes numbered 
"05", "03" and "07". 
 
5. Results 
 
All results presented in this paper used the next 
setup: the switch was implemented in a Virtex 4 - 
xc4vlx100-11ff1513, using the synthesis tool 
provided by the manufacturer. The performance 
results were obtained using the simulator 
developed specifically for this network. 
 
5.1 Synthetic Workloads 
 
A detailed look at the logic resources occupied by 
every single internal component of the switch, as 
shown in Figure 11, lets us know that the critical 
path of combinational delays is going to be inside 
the allocators.  
 

 
 

Figure 11. Logical elements needed to deploy each 
module which forms a network switch 

 
These results about occupied area should not vary 
in a drastic way, thanks to the decoupling between 
the control and data signals. 
 
For the correct characterization of the switch 
performance, we synthesized 4 different switches 
with a different number of lines for the data 
transaction between them. Figure 12 shows the 
occupation for each switch model. It is worth 
noting that the increment in the width of de data 
lines has influence on the occupation because of 
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the relation between the data signals and the 
distributors of the switch; each distributor requires 
us to compare the address of the destination 
node and its address. This operation infers a 
comparator with a width equal to the number of 
data signals, as they carry the destination 
address. The average percent of extra resources 
needed to increase the number of data lines is 
around 43.33% between switch models. 
 
The most affected resources are the flip-flops from 
the FPGA, as they are needed in each input and 
output of the switch to provide a synchronous 
operation. It is not possible to use BRAMs because 
of the distributed nature of the communications 
channels of the switch: therefore, they are 
implemented using the logic element of the FPGA. 
As a maximum operation frequency we obtained 
238.66 MHz for the 32 data lines model of the 
switch. All other models results can be consulted in 
Figure 12. 
 

 
 

Figure 12. Switch occupation in slices, maximum 
operating frequency and percentage 

occupied on a Virtex 4 device 
 

5.2 Simulation Results 
 
We developed three scenarios with the following 
characteristics in common: Each network was 
composed of 16 nodes. We let the simulations run 
for 25,000 clock cycles, and the information 
transactions consisted of packages of 256 bytes. 
The results presented in this section are the 
average from running a single scenario ten times; 
this methodology was used to mitigate the 
presence of best/worst case for the simulation. 
 
In particular, the first scenario interconnecting each 
network node, with data links of 8 bits wide, uses 
activation periods of between 10% and 90%. The 
latter refers to the probability that each node would 
like to start a data transaction when it is in idle, and 
finally the traffic pattern is random, so each node 
can select as a valid target all other nodes of the 

network. The simulator generates logs with the 
behavior of each node of the network. The following 
data are found in these logs: at which clock cycle a 
node generated a request, the answers to its 
requests, how much time it spent waiting to restart 
the request for a link after a reject signal, the time 
spent simulating an internal processing in the node, 
and how many cycles it was inactive. 
 
Figure 13 shows a summary of the log generated 
for node number 15 in one simulation from scenario 
1. In particular, this node presented an activation 
pattern of 90%; hence, each time it was able, it 
requested communication with another node. 
 

 
 

Figure 13. A high percentage in “waiting for restart” 
reflects a network under a heavy traffic 

 
One of the most important parameters to measure in 
network is the latency or average time that would 
take to complete a satisfactory link between two 
nodes of the network. This parameter is highly 
volatile as it is affected by the current traffic on the 
network, for example, if just a few nodes are 
transmitting data then there would be a few paths 
occupied so there would not be the need to wait for 
"resource contentions". As latency itself is not a 
reliable measure, we use a relation between the 
latency and the number of already established paths 
around the network. Using this relation we can 
evaluate the average latency of different on-chip 
networks, even if they use different topologies or 
data-flow controls. In Figure 14, we present the 
average latency presented in a single switch and only 
for 1 simulation run under scenario 2, which consists 
of a network formed by 16 nodes with  16-bit data 
links in width, activation patterns between 10% and 
90%, and a random traffic pattern. As we can see, 
when 10 of the 16 nodes are trying to establish a 
connection, the network was capable of handling 9 of 
the connection requests satisfactorily. For global 
results we present the average latency of all nodes of 
the network from the ten runs of each scenario as 
shown in Figure 16 (a). 
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Another key parameter to evaluate a network on-
chip, and therefore their switches, is the average 
performance, which we can think of as the number 
of connections between nodes that can hold the 
network simultaneously, in contrast with the total 
number of attended and unattended requests that 
are around the network. 
 
For example, Figure 15 shows the average 
performance of one node during 10 simulations 
under scenario 3, which consists of a network formed 
by 16 nodes with 8-bit width data links, activation 
patterns of 100%, and a restricted traffic pattern. The 
performance results for the simulation of 10 runs of 
each scenario are presented in Figure 16 (b). 
 

 
 

Figure 14. Average latency for one switch; "spikes", 
like the one in "9 requests", are removed, 

repeating 10 times each scenario 
 

 
 

Figure 15. Average performance presented under 
scenario 3, the minimum performance 

represents the worst performance 
 
6. Conclusions 
 
In this paper we present the description of a novel 
architecture for a network switch, involving a circuit 
switching technique, targeted to networks with a 
Spidergon topology. As a result, the necessary 
logic elements for the deployment of the network 
infrastructure are reduced to a minimum. In addition 
to the light weight architecture, the switch offers 
warranties once a path between 2 nodes has 
formed, as in-order data arrival. 

It is worth noting from Figure 12 that the best 
balance between logic resource consumption and 
operation frequency is delivered by the 
implementation of the switch with 16-bit width data 
ports. In addition to the latter, this switch model 
can form NoCs with an ideal bandwidth of 2.29 
Mb/Seg in their bisection. The smallest switch of 
the family presents 8 lines for data transactions. 
This small module can find a place even on small 
FPGA devices. As an example of this, a network 
formed by 16 of these switch needs only 3.648% of 
the Virtex 4 device. 
 

 
 

Figure 16. (a) Average latency, 
(b) average Performance 

 
To have a better perspective of our small factor 
switch, Figure 17 shows a contrast between the 
switches proposed in: CoNoChi[15], CuNoC[10], 
DyNoC[16], PNoC[2], QuarC[17], RMBoC[3] and 
SoCWire[11]. It is easy to see that our module with 
32 data lines has the lowest resource requirements; 
however, it is worth noting that the switches 
presented in the other works have added more 
characteristics to their design such as error handling, 
quality of service and reliability enhancements. 
 
In the absence of a network simulator, the profiling 
of the switch performance on an on-chip network, 
under different stress levels, would have been a 
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more time-consuming task because of the time 
needed to design hardware modules that would 
play the role of processing elements, and as a 
consequence, we would have had to use a limited 
number of scenarios for the profiling. 
 
In regards to the average latency, shown in Figure 
16 (a), we can notice that it remains under 300 
clock cycles, even with a high number of requests 
around the network.  However, it is worth noting 
that the use of a restricted traffic pattern, as in 
scenario number 3, improves the average latency 
even more than incrementing the number of data 
lines connecting each node with its neighbors. If 
the traffic pattern is previously known for a system, 
the right way to improve the latency will be to 
locate IPs with heavy communication necessities 
near each other; nevertheless, this is not always 
possible, thus the increase of the number of data 
lines will be an acceptable choice but with a logical 
resource penalty. 
 

 
 

Figure 17. Difference between logical resources 
necessary for our switch and other works in the area 

 
As for the performance, a network formed with the 
switches presented in this paper can handle 
satisfactorily up to 5 simultaneous requests; after 
this number, the requests start to collide into each 
other. This resource contention is independent from 
the model of the switch selected for the network. 
The ineffectiveness of incrementing the number of 
data lines is shown in Figure 16 (b) on the results 
between scenario 2 and scenario 3. However, the 
analysis of the performance for the scenario 3, 
which uses a restricted traffic pattern, shows that 
the use of smart planned traffic patterns can 
improve significantly the performance of the 
network. In this particular case the network in 
scenario 3 was able of handling an average of 11 
requests at a maximum workload on the network. 
 

An average from the 3 scenarios gives us an idea 
of what we can expect from the network under 
unknown circumstances; for example, we can see 
that the maximum performance that it can achieve 
is 57%, i.e., handling 9 links simultaneously 
between network nodes. However, if all members 
of the network make a simultaneous request, the 
performance will drop inevitably below 31.25%. 
 
All results lead us to conclude that a network, with 
our switch, will provide a good solution for 
communications, inside on-chip digital systems with 
highly restricted logic elements. We also note that 
the simulator proved to be a valuable tool for 
evaluating the impact that some design options 
have before synthesis. 
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