

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 22 (2024) 627-637

Original

Presence monitoring system in a data center using facial
recognition, multitasking, and an IoT platform

J. I. Vega-Lunaa* G. Salgado-Guzmána F. J. Sánchez-Rangela

J. F. Cosme-Acevesa V. N. Tapia-Vargasa E. A. Andrade-Gonzálezb

aDigital Systems Area, Electronics Department, Universidad Autónoma Metropolitana-Azcapotzalco,
Ciudad de México, México

 bCommunications Area, Electronics Department, Universidad Autónoma Metropolitana-Azcapotzalco,
Ciudad de México, México

Received 04 03 2024; accepted 05 22 2024

Available 10 31 2024

Keywords: Arduino, data center, face recognition, IoT, mobile robot, Raspberry Pi

Abstract: Data processing and telecommunication equipment are installed in facilities called
equipment sites. The presence of people in these places is permanently monitored by different means,
such as closed-circuit television and through routes by surveillance personnel. However, there are
points that are not covered by video cameras, or where there may be a presence, even when the guards
are at equipment sites. This paper presents a system based on a mobile robot that travels through the
equipment site of a data center to detect the presence of people and attempt to recognize their faces.
When a person is detected, the robot sends a WhatsApp alert message through the Twilio Internet of
Things (IoT) platform to the phone of the data center administrator. The robot integrates an Arduino
board for navigation control and a Raspberry Pi for face recognition using a Local Binary Pattern
Histogram algorithm. The test results indicated a recognition accuracy of 99.5%.

∗Corresponding author.
E-mail address: vlji@azc.uam.mx (J. I. Vega-Luna).
Peer Review under the responsibility of Universidad Nacional Autónoma de México.

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:vlji@azc.uam.mx
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 628

1. Introduction

Data centers are facilities where information processing,
storage, and telecommunication equipment are installed.
This information is fundamental to the operations and
productivity of both companies and institutions. Data centers
are one of the main elements of online computing, e-
commerce, and IoT platforms, as they provide cloud services
(Ma et al., 2022). Therefore, it is critical to safeguard equipment
and information processed by a data center. The security
mechanisms used in data centers vary in nature. Security
measures include physical and logical access control,
protection against fires and natural phenomena, presence
and perimeter monitoring, data backup, and recovery (Rawat
et al., 2021).

Data centers have closed-circuit televisions (CCTV) and
mechanisms with sensors through which both access to the
facilities and the presence of people in all the areas that
comprise them are permanently monitored (Dong et al., 2021).
The most important sites in data centers are equipment sites.
Only restricted access to operation and maintenance
personnel, equipment owner personnel, and surveillance
personnel is permitted in these places. At certain equipment
sites, CCTV cameras are activated only when they detect
people or objects. In other data centers, the monitoring of
personnel inside the equipment sites is strictly rigorous, it is
not sufficient to permanently activate CCTV, and the
surveillance personnel make periodic tours (Jiang et al., 2019).
However, there are always points in some sectors of the facility
that are not covered by the CCTV cameras or sensors.
Furthermore, the human factor in the surveillance personnel's
routes influences when a person or intruder is not detected,
seen, or deliberately reported to cause damage or attack
(Mann et al., 2023). These were the main reasons for, and
justification for, the application presented here.

The objective of this study was to develop a system that
uses a mobile robot to follow a fixed route in the equipment
room of a data center and monitor the presence of people.
When the robot detects a person, it stops moving, captures an
image of the face, attempts to recognize it, and transmits an
alert message to the mobile phone of the data center
administrator, indicating whether the person is known or
unknown. An advantage of using a robot for this purpose is
that it avoids surveillance personnel routes and contact with
people in the equipment room, which is, and will continue to
be, a sanitary measure during and after the COVID-19
pandemic. This study was developed using a two-wheeled
robot that integrates an Arduino card and a Raspberry Pi 4
card with a video camera. The software was created using
Python and the open-source libraries OpenCV, dlib, face-
recognition, and the Python multiprocessing package.

With current technology, it is possible to develop devices that
conduct automated supervision and presence detection inside
the equipment sites of some data centers using autonomous
mobile robots (AMR) (Aoki et al., 2022). The operation of this
type of robot is based on different technologies, the state-of-
the-art of which are constantly evolving. Some of these
technologies and devices include sensors and cameras that
allow the detection and measurement of the environment to
navigate safely and efficiently, actuators, control systems for
decision-making and sending commands to the actuators of
robots, Artificial Intelligence (AI), and wireless communications
(Jiang et al., 2022). AMRs can perform activities and tasks using
minimal, if any, human interventions. They can make decisions
based on the collection of information from sensors to assess
the situation to understand and navigate their environment or
perform specific tasks according to their programming (Wu et
al., 2021).

Currently, mobile robots are used in different sectors of
human life such as health, agriculture, exploration,
surveillance, military, industry, and customer service. One of
the most widely used robots of this type is the line follower,
such as those used in this study (Chen & Kim, 2019). They are
designed to follow a route track or circuit, autonomously read
optical sensors, and use control algorithms to follow a line
drawn on the route (Kim et al., 2022). IR sensors connected to
a microcontroller that adjusts the speed and direction of the
robot are commonly used. Some of the advantages that line-
following-robots have, and which was a technical reason for
using such a robot in this work, are the following. They are low
cost, easy to use and program, and have a certain degree of
precision. Used in certain applications of delicate tasks, such
as those in the automotive industry (Vieira et al., 2022).
Research conducted in recent years in the AMR sector has
focused on the development of navigation techniques based
on computer vision and environment mapping, using
technologies such as simultaneous localization and mapping
(SLAM), AI and machine learning (ML).

Various facial recognition algorithms and methods are
suitable for different lighting environments, poses, and
applications. Some commonly used algorithms that offer
acceptable results of precision and speed and can be easily
implemented with open-source software are the Haar-
Cascades, Eigenfaces, Fisherfaces, and Local Binary Pattern
Histogram (LBPH) (Wang et al. 2020).

The Haar-Cascades algorithm is one of the most widely
used cascade classifiers for face and object detection,
regardless of the size and location in the image, including real-
time and video streams. It was proposed by Paul Viola and
Michael Jones in 2001 and can easily be implemented using
OpenCV functions (Tamanani et al., 2021). Some algorithms
for detecting objects in an image use convolutions and matrix

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 629

windows or kernels, which slide across the image from left to
right and top to bottom, calculating the value of the center
pixels in each window to obtain image characteristics and
determine or classify whether the window contains a face. This
algorithm provides an acceptable degree of precision; however,
it requires that the classifier be trained by supplying a
considerable number of positive images, which contain the face
to be detected, and negative images, which do not contain the
face (Pawełczyk & Wojtyra, 2020). The cascade function built
into this classifier uses a machine-learning approach. OpenCV's
Haar classifier uses a sliding window to determine the
rectangular features in the face using five rectangular areas such
as Haar basis functions and Haar wavelets. Satisfactory results
were obtained with this classifier when frontal images of the
face were captured (Musil et al., 2020).

The eigenvalue algorithm is based on the principal
component analysis (PCA) statistical method. This method
allows for the analysis of enormous amounts of data with
multiple dimensions by reducing the number of dimensions to
visualize the information more easily. One of its applications is
in image compression for facial recognition (Abate et al., 2020).
The classifier training creates a space of features called
eigenspace from face images (Zarachoff et al., 2022).

The Fisherfaces algorithm is an improvement over the
eigenfaces algorithm. It works in an analogous manner to
eigenfaces and presents the advantages offered by the
eigenfaces algorithm. However, Eigenfaces require images of
faces to be captured frontally and under identical lighting
conditions. These two limitations of eigenfaces do not exist in
Fisherfaces because they are not limited to light variations or
the angles of the faces (Cárabe & Cermeño, 2021).

The LBPH algorithm is an improvement over the Eigenfaces
and Fisherfaces algorithms because it is immune to lighting
variations. It is based on image analysis, not as a high-
dimensional vector, but on describing the local or regional
characteristics of an object (Mahdi et al., 2022). Although it was
originally created to describe textures, its operation is based
on dividing the image of faces into regions because the
descriptors of some regions of the face provide more
information than others; therefore, texture descriptors
average the information they describe (Alpaslan & Hanbay,
2020). Even though data center equipment sites have good
lighting, at some points the equipment racks obstruct the
passage of light. Therefore, the LBPH algorithm was used in
the developed system software (Yazid et al., 2021).

The state-of-the-art in the field of facial recognition,
achieved in research and applications recently developed,
uses different techniques, methods, and algorithms, including
the use of deep learning (DL) to recognize human emotions
using facial expressions (Karnati et al., 2023), ML, and DL to
consider age in recognition (Dalvi et al., 2021; Li et al., 2022),

Multi-Scale Part-Based Syndrome Classification of 3D Facial
Images (Mahdi et al., 2022), the geometry of the face resulting
from different poses (Zhang et al., 2020; Liu et al., 2021), face
reconstruction when the capture is performed with partial
occlusion (Poux et al., 2022; Wang et al., 2020), and the use of
neural networks to recognize faces of people in motion (Li et
al., 2022).

This study presents several contributions. It allows
determining the presence of people in places with restricted
access, in blind spots that are out of reach of CCTV cameras. It
is a solution that complements or can replace the routes of
security personnel, who may not detect the presence of a
person in the facility. Additionally, the robot can recognize the
face of the detected people and send a notification via the
Internet. Although robots with some functions like the one
developed in this study are commercially available, their cost
is at least 10 times higher than that presented here.
Furthermore, the design of this robot was made based on
multitasking programming, which provides more efficiency
and speed to detect and recognize people and faces,
compared to commercially existing ones.

The practical implication of this system is that it provides a
second level of security and access to the data center. The first
level is the one used at the access door, either biometric or
through identification cards. The second is the one
implemented by the robot. Since the robot follows a fixed
route, it will not represent a problem in the internal security of
the data center. When it detects a person or obstacle, it stops
moving, thus avoiding a collision. In the literature review, no
studies or systems were found with the characteristics of the
robot presented here. However, data center security is
improved from the point of view of detecting people who may
not be authorized to enter and have somehow gained access.
This allows the person responsible for security to react early to
any eventuality from wherever they are.

Python allows multitasking to be implemented in two ways,
multithreading, and multiprocessing. Multithreading multiple
threads shares the same code, data, and files but runs on a
different register and stack. With multiprocessing, it is possible
to multiple a single processor, replicating the code, data, and
files. It is recommended to use multithreading in applications
based on IO-bound processes, such as those that access the
network or databases concurrently, and to use
multiprocessing to execute CPU-bound processes, such as
performing computationally heavy tasks, such as facial
recognition implemented in this work, to take advantage of
the availability of several processors. In the application
presented here, Python's multiprocessing functionality was
exploited to implement the tasks of Raspberry Pi and obtain a
more robust system.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 630

2. Materials and methods

The system was developed by dividing it into three functional
modules. A mobile robot, Raspberry Pi 4 board, and system
software.

2.1. Mobile robot
To implement this module, a two-wheeled mobile robot of
the KS0191 keyestudio Smart Small Turtle type was used, as
it was not the objective of this study to design or build the
robot, but rather to use a commercially available robot to
take advantage of its mechanical capabilities. The robot has
several functions, one of which is that it can be programmed
for autonomous line tracking with obstacle avoidance and
can be controlled using infrared or Bluetooth wireless
communication.

The components that this robot integrates are the
following. 1) One card with Arduino MCU series atmega-328,
2) two 6.0 V and 100 rpm servomotors used for the movement
of the wheels, 3) one L298N driver board with dual-H bridge
for DC motor control, 4) one module of two HC-SR04
ultrasonic sensors, 5) one line tracking TCRT5000 infrared
double tube module for monitoring a black line, 6) one
digital IR receiver for remote control, and 7) one Bluetooth
XBee Wireless transceiver module HC-06. The main reason
this robot was used in the implementation of this work was
that it is based on the Arduino open-source hardware
platform, for which there are a considerable number of free-
use function libraries and hardware modules available for
user application developers. Therefore, functionality can be
incorporated into a robot using additional circuitry, such as
that used in this study.

In addition, a Raspberry Pi 4 card was installed in the robot
to work with the Arduino card in the master-slave mode. The
Arduino board is the master, and the Raspberry Pi is the
slave. Communication between the two cards was
performed through Bluetooth interfaces of both cards using
AT commands. The Arduino board sends commands, and
the Raspberry Pi transmits the responses. The main task of
the robot is to follow a fixed route marked by a black line that
is drawn on the floor of the data center site equipment,
whereas the tasks of Raspberry Pi 4 are the registration of
known people and the recognition of the faces of people it
detects on the route it takes on the site equipment. The robot
IR remote control is used only in emergency cases when
there is a need to stop the robot during an unforeseen event
or contingency. The KS0191 keyestudio robot used in this
application is shown in Figure 1.

Figure 1. KS0191 keyestudio robot with integrated Raspberry Pi 4.

2.2. Raspberry Pi card
An additional card installed in the robot was the Raspberry Pi
4 Model B card. This card is one of the most used computers
in mobile applications because of its compact size, recent
technology, low cost, low power consumption, and superior
performance compared to its peer types available today. In
general, it has the following hardware resources: one 1.5 GHz
quad-core ARM Cortex-A72 CPU, up to 4 GB of RAM, which can
carry out 4 K video decoding at 60 fps, VideoCore VI GPU, 1-8
GB LPDDR4 SDRAM memory, Bluetooth 5.0, Wi-Fi 802.11ac,
and Gigabit Ethernet communication interfaces, two USB 2.0,
two USB 3.0, two micro HDMI ports, a Camera Serial Interface
(CSI), a micro-SD memory card slot, and a 40-pin general
purpose input output (GPIO) connector. The variety of
hardware resources commonly used to connect input and
output devices, such as video cameras, SD memory, video
monitors, and keyboards, as well as the performance provided
by state-of-the-art CPU, were the main reasons this computer
was chosen as the basis of the system.

The Raspberry Pi 4 Model B card works with the Raspberry
Pi OS with a desktop and recommended software, release
date February 21, 2023, and kernel version 5.15, which was
installed on the micro-SD memory card. This operating system
is based on Debian and is optimized for the Raspberry Pi
hardware. It also integrates more than 35 000 pre-compiled
software packages, including Python programming language,
which in this case is version 3.1.

Raspberry Pi Camera Rev 1.3 was connected to the CSI of
Raspberry Pi to capture the faces. This device can record high-
definition videos and capture images. The camera has a
resolution of 5 megapixels, and it can operate in one of the
following video modes: 1080p30, 720p60, and 640×480p60/90.
It has an OmniVision OV5647 sensor with a resolution of
2592×1944 pixels and a fixed focus. It offers a Horizontal Field
of View of 53.50+/-0.13 degrees and a Vertical Field of View of
41.41+/-0.11 degrees.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 631

2.3. System software
The system software consisted of two programs: the first
running on the Arduino atmega-328 series MCU, and the
second running on the Raspberry Pi board. The Arduino MCU
software was created using the Arduino IDE 1.8.18
development platform and oversees the black line. When the
robot reached the end of the line, the program waits two
minutes before the robot started the next run on the same
route. The program keeps the robot traveling the route
continuously in such a way that, when it detects an obstacle
or person, it stops it and asks the Raspberry Pi card to capture
an image so that it tries to recognize the person's face. At the
end of these tasks, the Raspberry Pi responds to the Arduino
card, indicating that the robot should continue marching.

The black line is drawn in the center of the corridors, which
are located between the cabinets or racks of the data center
equipment, such that the robot does not detect them and
causes false positives. The ultrasonic sensors had a nominal
range of 2-450 cm. Although the robot has a module of two HC-
SR04 ultrasonic sensors located at the front, two modules of
this type were added to cover a larger detection area. One of
these modules was installed on the right side, and the other
on the left side. The sensors on the front were set to have a
range of 200 cm to detect people in the path of the robot,
whereas the side sensors were set to have a range of 100 cm
so that the robot would not detect the racks of the equipment
and avoid false positives. The width of the corridors was 240
cm, and a black line on the route was drawn at the center.
There was a 110 cm gap between the robot and the racks,
located on the left and right sides. The Arduino board software
constantly monitors the sensors to detect obstacles and keeps
the robot moving forward.

Three LEDs were connected to three terminals configured as
the output of the Arduino MCU: red, yellow, and green. Similarly,
a push-button was connected to a terminal configured as an
input. Upon reaching the end of the route, the robot stops for
two minutes and turns on the red LED. This allows the data
center administrator to register the face of a known person in
the database. This database resides on a micro-SD memory
card. While the robot is stopped, the program waits for a
maximum time of three minutes for the push button to be
activated. If the administrator needs to register with a person,
he must press a push-button. If the time expires and the push
button is not pressed, the program turns off the red LED, turns
on the green LED, and resumes the robot's march. If the push
button is pressed, the program turns off the red LED, flashes the
yellow LED to indicate that it will start the registration process,
sends the registration order to the Raspberry Pi card, and waits
for a response. Upon receiving the response from Raspberry Pi,
the Arduino board program turned off the yellow LED, turned on
the green LED, and restarted the robot.

The Raspberry Pi board software was run using the Raspberry
Pi OS operating system. Additionally, the function libraries dlib,
face-recognition, opencv-contrib-python and the Python
multiprocessing module were installed on the Raspberry Pi OS.
The first is an open software licensing C++ toolkit that integrates
machine learning algorithms and computer vision tools that
enable image processing. It can detect sixty-eight key points on
a human face. The face-recognition library allows the
recognition and manipulation of faces from programs written in
Python. It uses the dlib library and nominally provides an
accuracy of 99.38% for face recognition. OpenCV and dlib
libraries were used to perform different tasks; the former was
used for image processing, and the latter was used for machine
learning. In this study, versions 19.23.0, 1.3.0, and 4.5.5.62 of dlib,
face-recognition and opencv-contrib-python were installed,
respectively. The libcamera function library integrated into the
Raspberry Pi OS was used to capture the images. This library
allows access to a video camera from the Linux operating
system open-source code that runs on ARM processors. It is a
C++ API that facilitates the configuration of the camera that
captures images and videos in different formats, such as JPEG,
and is an open-source Linux community project.

The Raspberry Pi software performs simultaneously the
following three tasks or processes: communication with the
Arduino MCU, known face registration, and facial recognition.
To implement this software, the main program executes the
following actions: a) configure and initialize the video camera,
Bluetooth, and Wi-Fi interfaces to connect the Raspberry Pi to
the Internet, b) define the functions or code for each of the three
processes, c) create the processes, and d) start the execution of
the processes. Figure 2 shows a flowchart of the main program.

Figure 2. Main program flowchart.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 632

Multitasking was implemented through multiprocessing
using the Python multiprocessing module. The main program is
the parent process and creates-fork, using the multiprocessing
API and three child processes. Each child process executes the
code indicated in the functions RxTx-Arduino, register-face, and
recognition-face, as shown in Figure 3.

Figure 3. Process management with multiprocessing.

The RxTx-Arduino function of the first process consists of a
continuous cycle, where it waits for the command sent by the
Arduino MCU through the Bluetooth interface. If the command
received is to register a known face, set the register flag to
indicate that it should be performed. If the command is to
recognize a registered face, set the recognition flag, wait for the
flag to be deactivated, and transmit the response to the
Arduino MCU so that the robot can continue the march. Figure
4 shows a flowchart of the RxTx-Arduino function.

Figure 4. RxTx-Arduino function flowchart.

The register-face function of the second process consists of
a continuous cycle in which the state of the register flag is
explored. If the flag is not set, then it remains in the loop. When
the flag is activated, it performs the following tasks. i) Start a
cycle to capture 500 images and detect the person's face in
each one, through the detection-face routine; ii) copy the 500
detected faces to an array; iii) select the method or algorithm
that will be used to train the classifier, calling the
cv2.face.LBPHFaceRecognizer_create() function; iv) train the
classifier using the function face_recognizer.train, indicated as
an input parameter an array that stores the 500 faces detected
and delivers the model that contains the characteristics of the
faces; v) store the model obtained in an XML file by calling the
function face_recognizer.write(model.xml); and vi) deactivate
the register flag and return to the beginning of the cycle. At the
end of the cycle, there is a model with the characteristics of the
faces of 500 registered and known individuals with different
poses. Figure 5 shows a flowchart of the register-face function.

Figure 5. Register-face function flowchart.

The detection-face routine performs the following activities.

1) Captures the image of the person's face, executing the
libcamera-jpeg function; 2) stores the image in a face database
file, using the OpenCV function cv2.imwrite; 3) selects the
OpenCV algorithm classifier and the pre-trained model of
faces in the frontal position, by using the function
cv2.CascadeClassifier (haarcascade_frontalface_default.xml);
4) converts the captured image to RGB format by executing the
cv2.cvtColor(cv2.COLOR_BGR2RGB) function; and 5) detects

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 633

the face in the image of the person, returning the location of
the rectangle that contains the face. This is done through the
faceClassif.detectMultiScale function; 6) resizing the image
contained in the rectangle, by means of the cv2.resize function,
with the objective that all the captured faces are of the same
size. With this function, it was established that the registered
faces were 170 pixels in width and height, thus preserving the
aspect ratio. This function cuts or extracts the face from the
captured image, and 7) stores the image in a face file, using the
OpenCV function cv2.imwrite. Figure 6 shows the detection-
face routine flowchart.

Figure 6. Detection-face routine flowchart.

The recognition-face function of the third process consists

of a continuous cycle, where it explores the state of the
recognition flag. If the flag is not set, then it remains in the loop.
When the flag is activated, it performs the following tasks. a)
Invokes the detection-face routine to capture the image of the
user to recognize and detect the face; b) selects the method or
algorithm that is used in the training of the classifier and that
it is the same one that will be used in the recognition, calling
the cv2.face.LBPHFaceRecognizer_create() function; c) reads
the XML model resulting from training, calling the
face_recognizer.read(xml) function; and d) predicts the result
of comparing the features of the detected face with the
features of the faces of known users and registered by means
of the function face_recognizer.predict(). This function returns
the values of confidence, prediction, or distance, which allows
us to determine whether a person is recognized.

This result indicates the distance to be considered a match
in the comparison. The lower, or close to zero, result of the

captured face, which is trying to be recognized, will have more
similarity with respect to those used in training, whereas high
values indicate less similarity; e) compare the confidence
obtained against 50. If the result is less than 50, the face is of a
recognized person; if it is equal to or greater, the face is not
recognized; f) sends to the administrator's mobile phone,
using the Twilio platform, the user's face, and the alert
message with the text recognized or not recognized, and g)
finally deactivates the recognition flag and returns to the
beginning of the cycle. Figure 7 shows the recognition-face
function flowchart.

Figure 7. Recognition-face function flowchart.

The Twilio Internet platform is a communications platform

as a service (CPaaS) cloud communications and service
platform that enables the development of applications for
making phone calls, sending text messages, and
communication and registration functions using an API. The
Internet primarily uses the HTTP protocol in the application
layer. Telephone networks use a variety of complex protocols
that are sometimes proprietary and appropriate for the
services they offer. It is difficult to implement and work with
these protocols, which increases the cost and time of
application development. Twilio provides an interface
through an API, which makes it easy for software developers to
perform tasks between Internet and telephone operators.
Twilio's public REST API receives HTTP requests and performs

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 634

required tasks. Using Twilio, one can make phone calls and send
text messages, among other services. In this application, the
Twilio-python helper library was installed on the Raspberry Pi OS.
This library allows the use of the Twilio WhatsApp API in Python
and sends a WhatsApp alert message to the administrator. It was
necessary to create an account on the Twilio platform to obtain
the account SID and the auth token to send WhatsApp messages.
In the Raspberry Pi software, two actions were performed to send
the message: initialize the Twilio client, using the
client=Client(account_sid,auth_token) function, and send the
message using the client.messages.create() function.

3. Results and discussion

Line follower robots have the disadvantage of requiring a line to
be well-drawn and sufficiently clear to be detected by ultrasonic
sensors, which limits their use in certain environments.
However, in this application, the data center equipment sites
are places where a limited number of people circulate, so the
line is, in addition to being well-lit, always in good condition.
However, the use of the robot presented here is not the only
presence monitoring measure, nor is it an access control
system; it is an additional measure to CCTV that is used instead
of tours currently conducted by surveillance personnel.

Three groups of tests were conducted to verify system
performance. The first one had as objective was to determine
the accuracy of the LBPH algorithm in recognizing people by
varying the number of images in different poses captured from
each person and used in the training of the classifier. These
images formed the basis for creating the classifier model. The
first involved training the classifier using 200 images from each
registered and known user. The robot detected 200 people,
captured their faces, and recognized 195 people, indicating an
accuracy of 97.5%. In the second test, 300 images were
captured for training, and 197 of the 200 people were
recognized, resulting in an accuracy of 98.5%. In the following
tests, 400, 500, and 600 images were captured, and the robot
recognized 198, 199, and 199 individuals, respectively. The
precisions obtained were 99, 99.5, and 99.5%, respectively.
These tests showed that the greater the number of images
used in the training, the greater the precision achieved, as
shown in Figure 8. According to the results of these tests, 500
images were captured for training using classifier software.

The second group of tests was derived from the previous
one, and its purpose was to determine the time required to
train by varying the number of people used with the classifier.
The number of images for each person was fixed, and 500
images were used for each person. The first test used 100
people, and the training took 3.2 ms. In the second test, 150
people were used, and the training took 3.6 milliseconds. In
the following tests, 200, 250, 300, 350, 400, 450, and 500 people
were used, the training time being 3.7, 3.8, 3.85, 3.87, 3.89, 3.90,

and 3.91 ms, respectively, as indicated in the graph. of Figure
9. The results of these tests are important because they show
how long the training takes when the administrator adds the
faces of known people, and it is necessary to perform the
training. It is estimated that, normally, there will not be more
than 100 registered users in the micro-SD memory of the
Raspberry Pi; therefore, the time consumed by the training is
acceptable.

Figure 8. System recognition accuracy.

Figure 9. Classifier training time.

The last group of tests was aimed at determining the
appropriate value of the confidence or distance result of the
recognizer. To execute these tests, 500 images from 200
people were used in the training, and the robot captured the
faces of 300 people they tried to recognize. Confidence values
of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 were used, collecting
199 participants with the first five values and 190, 185, 180, 178,
and 170 with the remaining five values. These results indicate
that the acceptable confidence value was 10.

Regarding Raspberry software, there were two options for
programming implementation. The first was to use sequential
programming and the second was to use concurrent
programming or multitasking. The first option would have
implied conducting the main program in a polling cycle and
monitoring the Bluetooth interface to receive the order from
the Arduino MCU.

Depending on the command, the program must call either
the register-face routine or the recognition-face routine. In the
second option, multithreading can be used instead of
multiprocessing.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 635

The use of multithreading is recommended when there are
processes that involve the intensive use of IO devices, and
multiprocessing when the processes make intensive use of the
CPU. For this reason, in this application, multiprocessing was
used to perform facial recognition, which uses more CPU than
IO devices. Additionally, multitasking allows for a more robust
and efficient system, making modular software that can grow
easily and in a straightforward way, such that tasks and
processes can be added without significantly impacting the
programming conducted.

It was chosen to use a multiprocessing approach to take
advantage of the four cores of the Raspberry Pi 4 Model B card
and the functionality of Python to implement it. Using the
multithreading approach was not explored. However, one of
the objectives of the second version of the system is to use the
multithreaded approach in the software to compare both in
terms of performance and reliability.

Additionally, we chose to use multiprocessing because it was
considered that the easy recognition task can benefit from this
approach. Additionally, if it is necessary to add functions to the
robot in the future, these can be implemented as tasks that can
be executed more quickly and efficiently by one of the cores of
the Raspberry Pi 4 Model B card that are not being used.

The system does not currently have security measures in
place to preserve data privacy when collecting and
transmitting facial recognition information. The data center
network is secure, since, if the information managed by the
robot is vulnerable, so is the information in the applications on
the data center servers. However, work is being done on an
improvement to the robot using the Secure Sockets Layer
protocol at the transport layer and implementing a more
robust security level.

It was considered to use other robots apart from the KS0191
keyestudio Smart Small Turtle used in this system. For example,
the Adeept PiCar-Pro robots, Anki's Vector Robot and FXQIN
were analyzed. However, the cost of these robots and their size
are larger compared to the ones used here. This is important,
since a key factor in the robot's performance is that it interferes
as little as possible with the operation of the data center and
that its work is discreet. Using free access software allowed the
cost of the system to be reduced. This is one of the reasons why
robots with functions like this one are higher in cost.
Additionally, the simplicity and size of the robot used in this
system allows its operation and maintenance to be easier.

4. Conclusions

A presence monitoring system with facial recognition was
developed at the equipment site of a data center by using a
two-wheeled mobile robot. The robot has two built-in cards:
an Arduino and Raspberry Pi 4. The first card controls the
robot's navigation as a black line follower, and the second

card performs face recognition of a person detected as an
obstacle. The system sends a WhatsApp alert message to the
mobile phone of the data center administrator indicating the
presence of a known or unknown person. This does not
replace the permanent monitoring of CCTV, but rather
strengthens the security of the data center and avoids tours
that are commonly conducted by surveillance personnel. An
accuracy of 99.5% was achieved for the face recognition.
 If it is necessary to modify the path of the robot, it only
implies making changes in the path drawn on the equipment
site without modifying the hardware and software of the
system. Similarly, if it is necessary to use a facial recognition
algorithm other than LBPH, used in this work, only a few lines
of the software must be changed to select the classifier and
confidence value when performing the recognition.
 One aspect that facilitated and contributed to reducing the
development time of the system was the use of an operating
system and open-source function libraries, which can be easily
adapted to the requirements of the application or
environment. Finally, tasks can be easily added to the robot by
creating and starting processes in Raspberry Pi software.
 The software was created such that the processes were
executed concurrently using Python multiprocessing. With
only this modular software architecture, it is necessary to
include the code of the task or process, create it, and start it,
which allows an increase in the functions of the robot.

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgements

The authors want to thank the Electronics Department,
Universidad Autónoma Metropolitana-Azcapotzalco for
supporting this study.

Funding

This work was supported by UAM.

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 636

References

Abate, A. F., Barra, P., Barra, S., Molinari, C., Nappi, M., &
Narducci, F. (2020). Clustering facial attributes: Narrowing the
path from soft to hard biometrics. IEEE Access, 8, 9037-9045.
https://doi.org/10.1109/ACCESS.2019.2962010

Alpaslan, N., & Hanbay, K. (2020). Multi-scale shape index-
based local binary patterns for texture classification. IEEE
Signal Processing Letters, 27, 660-664.
https://doi.org/10.1109/LSP.2020.2987474

Aoki, S., Yonezawa, T., & Kawaguchi, N. (2022). RobotNEST: Toward
a viable testbed for IoT-enabled environments and connected and
autonomous robots. IEEE Sensors Letters, 6(2), 1-4.
https://doi.org/10.1109/LSENS.2021.3139624

Cárabe, L., & Cermeño, E. (2021). Stegano-morphing:
Concealing attacks on face identification algorithms. IEEE
Access, 9, 100851-100867.
https://doi.org/10.1109/ACCESS.2021.3088786

Chen, J., & Kim, W. J. (2019). A human-following mobile robot
providing natural and universal interfaces for control with
wireless electronic devices. IEEE/ASME Transactions on
Mechatronics, 24(5), 2377-2385.
https://doi.org/10.1109/TMECH.2019.2936395

Dalvi, C., Rathod, M., Patil, S., Gite, S., & Kotecha, K. (2021). A
survey of ai-based facial emotion recognition: Features, ml &
dl techniques, age-wise datasets and future directions. Ieee
Access, 9, 165806-165840.
https://doi.org/10.1109/ACCESS.2021.3131733

Dong, H., Munir, A., Tout, H., & Ganjali, Y. (2021). Next-
generation data center network enabled by machine learning:
Review, challenges, and opportunities. IEEE Access, 9, 136459-
136475.
https://doi.org/10.1109/ACCESS.2021.3117763

Jiang, C., Qiu, Y., Gao, H., Fan, T., Li, K., & Wan, J. (2019). An edge
computing platform for intelligent operational monitoring in
internet data centers. IEEE Access, 7, 133375-133387.
https://doi.org/10.1109/ACCESS.2019.2939614

Jiang, R., He, B., Wang, Z., Zhou, Y., Xu, S., & Li, X. (2022). A novel
simulation-reality closed-loop learning framework for
autonomous robot skill learning. IEEE Transactions on
Cognitive and Developmental Systems, 14(4), 1520-1531.
https://doi.org/10.1109/TCDS.2021.3118294

Karnati, M., Seal, A., Bhattacharjee, D., Yazidi, A., & Krejcar, O.
(2023). Understanding deep learning techniques for
recognition of human emotions using facial expressions: A
comprehensive survey. IEEE Transactions on Instrumentation
and Measurement.
https://doi.org/10.1109/TIM.2023.3243661

Kim, T., Lim, S., Shin, G., Sim, G., & Yun, D. (2022). An open-
source low-cost mobile robot system with an RGB-D camera
and efficient real-time navigation algorithm. IEEE Access, 10,
127871-127881.
https://doi.org/10.1109/ACCESS.2022.3226784

Li, Y., Wei, J., Liu, Y., Kauttonen, J., & Zhao, G. (2022). Deep
learning for micro-expression recognition: A survey. IEEE
Transactions on Affective Computing, 13(4), 2028-2046.
https://doi.org/10.1109/TAFFC.2022.3205170

Liu, D., Bellotto, N., & Yue, S. (2020). Deep spiking neural
network for video-based disguise face recognition based on
dynamic facial movements. IEEE transactions on neural
networks and learning systems, 31(6), 1843-1855.
https://doi.org/10.1109/TNNLS.2019.2927274

Liu, X., Cheng, X., & Lee, K. (2021). GA-SVM-based facial
emotion recognition using facial geometric features. IEEE
Sensors Journal, 21(10), 11532-11542.
https://doi.org/10.1109/JSEN.2020.3028075

Ma, L., Su, W., Wu, B., Yang, B., & Jiang, X. (2022). Joint
emergency data and service evacuation in cloud data centers
against early warning disasters. IEEE Transactions on Network
and Service Management, 19(2), 1306-1320.
https://doi.org/10.1109/TNSM.2022.3147247

Mahdi, S. S., Matthews, H., Nauwelaers, N., Vanneste, M., Gong,
S., Bouritsas, G., ... & Claes, P. (2022). Multi-scale part-based
syndrome classification of 3D facial images. Ieee Access, 10,
23450-23462.
https://doi.org/10.1109/ACCESS.2022.3153357

Mann, Z. Á., Metzger, A., Prade, J., Seidl, R., & Pohl, K. (2023).
Cost-optimized, data-protection-aware offloading between
an edge data center and the cloud. IEEE Transactions on
Services Computing, 16(1), 206-220.
https://doi.org/10.1109/TSC.2022.3144645

https://doi.org/10.1109/ACCESS.2019.2962010
https://doi.org/10.1109/LSP.2020.2987474
https://doi.org/10.1109/LSENS.2021.3139624
https://doi.org/10.1109/ACCESS.2021.3088786
https://doi.org/10.1109/TMECH.2019.2936395
https://doi.org/10.1109/ACCESS.2021.3131733
https://doi.org/10.1109/ACCESS.2021.3117763
https://doi.org/10.1109/ACCESS.2019.2939614
https://doi.org/10.1109/TCDS.2021.3118294
https://doi.org/10.1109/TIM.2023.3243661
https://doi.org/10.1109/ACCESS.2022.3226784
https://doi.org/10.1109/TAFFC.2022.3205170
https://doi.org/10.1109/TNNLS.2019.2927274
https://doi.org/10.1109/JSEN.2020.3028075
https://doi.org/10.1109/TNSM.2022.3147247
https://doi.org/10.1109/ACCESS.2022.3153357
https://doi.org/10.1109/TSC.2022.3144645

J. I. Vega-Luna et al. / Journal of Applied Research and Technology 627-637

Vol. 22, No. 5, October 2024 637

Musil, P., Juránek, R., Musil, M., & Zemčík, P. (2020). Cascaded
stripe memory engines for multi-scale object detection in
FPGA. IEEE Transactions on Circuits and Systems for Video
Technology, 30(1), 267-280.
https://doi.org/10.1109/TCSVT.2018.2886476

Pawełczyk, M., & Wojtyra, M. (2020). Real world object
detection dataset for quadcopter unmanned aerial vehicle
detection. IEEE Access, 8, 174394-174409.
https://doi.org/10.1109/ACCESS.2020.3026192

Poux, D., Allaert, B., Ihaddadene, N., Bilasco, I. M., Djeraba, C.,
& Bennamoun, M. (2022). Dynamic facial expression
recognition under partial occlusion with optical flow
reconstruction. IEEE Transactions on Image Processing, 31,
446-457.
https://doi.org/10.1109/TIP.2021.3129120

Rawat, D. B., Doku, R., & Garuba, M. (2019). Cybersecurity in big
data era: From securing big data to data-driven security. IEEE
Transactions on Services Computing, 14(6), 2055-2072.
https://doi.org/10.1109/TSC.2019.2907247

Tamanani, R., Muresan, R., & Al-Dweik, A. (2021). Estimation of
driver vigilance status using real-time facial expression and
deep learning. IEEE Sensors Letters, 5(5), 1-4.
https://doi.org/10.1109/LSENS.2021.3070419

Vieira, R., Argento, E., & Revoredo, T. (2022). Trajectory
planning for car-like robots through curve parametrization
and genetic algorithm optimization with applications to
autonomous parking. IEEE Latin America Transactions, 20(2),
309-316.
https://doi.org/10.1109/TLA.2022.9661471

Wang, K., Peng, X., Yang, J., Meng, D., & Qiao, Y. (2020). Region
attention networks for pose and occlusion robust facial
expression recognition. IEEE Transactions on Image
Processing, 29, 4057-4069.
https://doi.org/10.1109/TIP.2019.2956143

Wu, K., Hu, J., Lennox, B., & Arvin, F. (2021). Finite-time bearing-
only formation tracking of heterogeneous mobile robots with
collision avoidance. IEEE Transactions on Circuits and Systems
II: Express Briefs, 68(10), 3316-3320.
https://doi.org/10.1109/TCSII.2021.3066555

Yazid, M., Fahmi, F., Sutanto, E., Shalannanda, W., Shoalihin, R.,
& Horng, G. J. (2021). Simple detection of epilepsy from EEG
signal using local binary pattern transition histogram. IEEE
Access, 9, 150252-150267.
https://doi.org/10.1109/ACCESS.2021.3126065

Zarachoff, M. M., Sheikh-Akbari, A., & Monekosso, D. (2022).
Non-decimated wavelet based multi-band ear recognition
using principal component analysis. IEEE Access, 10, 3949-
3961.
https://doi.org/10.1109/ACCESS.2021.3139684

Zhang, F., Zhang, T., Mao, Q., & Xu, C. (2020). Geometry guided
pose-invariant facial expression recognition. IEEE
Transactions on Image Processing, 29, 4445-4460.
https://doi.org/10.1109/TIP.2020.2972114

https://doi.org/10.1109/TCSVT.2018.2886476
https://doi.org/10.1109/ACCESS.2020.3026192
https://doi.org/10.1109/TIP.2021.3129120
https://doi.org/10.1109/TSC.2019.2907247
https://doi.org/10.1109/LSENS.2021.3070419
https://doi.org/10.1109/TLA.2022.9661471
https://doi.org/10.1109/TIP.2019.2956143
https://doi.org/10.1109/TCSII.2021.3066555
https://doi.org/10.1109/ACCESS.2021.3126065
https://doi.org/10.1109/ACCESS.2021.3139684
https://doi.org/10.1109/TIP.2020.2972114

