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Abstract: PyTorch, an open-source machine learning framework built on the Torch library, is used in 
this application to apply deep learning to image classification in a boiler section and to design an entity 
algorithm for predicting the amount of oxygen available in the furnace section. The physical features 
of this flame are viewable using pictures obtained from a Charge Coupled Device (CCD). By removing 
the nonlinear elements, a multilayer CNN forecasts the amount of oxygen in the flue gas from a boiler. 
From the results of experiments conducted on-site in a real-time combustion system, images of boilers 
under various settings, including temperatures, air pressures, and gas conditions, have been obtained. 
Classification models are then applied. The precise quantity of oxygen content is calculated with these 
photos as input and comparing the outcomes with the test data set. More insightful information about 
the flame's physical features can be defined using a convolutional neural network (CNN) model and a 
multilayer representation of the flame images. The flame images captured on-site from an actual 
combustion system are utilized to illustrate this notion. The oxygen content is predicted using a 
multilevel-based, unsupervised, and semi-supervised deep entity algorithm by taking 12 classes and 
training 4,203,592 images each flame image in the tests has a resolution of 24 bits per pixel and a size 
of 658*492 pixels. After training the model, the loss is as low as 3%, and the attained accuracy is 97%. 
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Table 1. Key findings and observations of existing literature. 
 

Findings Methods Limitation/Observation Ref. 
CNN demonstrated a significant 
characteristic of local feature 
representation, suitable for soft 
sensor modeling. 

A multichannel 3-D tensor 
multichannel CNN (MCNN) is 
suggested for representing 
different local dynamic 
features. 

The fundamental issue that the 
proposed MCNN model addresses 
is the inability of CNN to cover 
process variables that are 
topologically far off, using the 
same convolution kernel. 

(Yuan, Qi, 
Shardt, et al., 

2020) 

The material distribution is 
influenced by the instability 
present in the combustion system 
due to the circulating fluidized 
bed which hampers the 
operation.  
Accurate bed pressure prediction 
required 

In this study, a bed pressure 
prediction system based on 
deep learning is suggested. To 
filter the input variables, the 
Pearson correlation 
coefficient with time 
adjustment was applied. The 
extraction of inertial delay 
characteristics from the data 
was carried out using 
Gaussian convolution kernels. 

Model accuracy was not taken 
into account when considering 
the effects of coal quality change 
and coal slime mixing ratio. The 
technique required to 
characterize mixing ratios of the 
aforesaid quantities in the 
learning model needs to be taken 
care of in future development. 

(J. Chen et al., 
2022) 

In this article, the author 
discussed the need to establish 
the precise rolling force 
beforehand to produce a coil with 
a precise thickness post the 
rolling operation. 

The rolling force can be 
calculated using deep neural 
networks (DNN) and gradient 
boosting-based decision tree 
models, which can be applied 
in-line in actual plants. By 
using the inverse calculation 
of the conventional 
mechanical model of hot 
rolling, a particular 
temperature of the coil was 
determined and fixed as the 
output value. 

The database is continually filled 
with data from the rolling process. 

(Hwang et al., 
2020) 

 

1. Introduction 
 

The deep learning model trained in PyTorch can predict 
new data instances with a finalized model that uses CNN for 
image classification, object detection, image recognition, 
among others. PyTorch is an open-source Python library 
machine learning framework (Subramanian, 2018). It is widely 
used in artificial intelligence modeling, especially to create 
image classifiers. The efficiency of a boiler increases by this 
method, saves the fuel, and reduces heat losses in flue gases 
(Buhre et al., 2005; Zaporozhets, 2019). Optical radiation of a 
hot body (furnace) is the key- factor of a combustion process. 
Prediction of oxygen is a challenging task. With the aid of 
digital image processing, monitoring of live flame images can 
be done cost-effectively (Liu et al., 2017). Using high-definition 
flame images acquired by Charge Coupled Devices (CCD) and 
a grabber of flames, digitized images are obtained (Lu & Yan, 
2006). Some noteworthy contributions towards the research 
area are as shown in Table 1. The NCDBN model's MAE and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MRE values were reduced by 62% and 63%, respectively, in an 
author's research (Tang et al., 2020), while the MSE decreased 
by 80%. With respect to the testing data of datasets D2 and D3, 
the NCDBN model's error metrics significantly decreased. 
Furthermore, for each of the three datasets, the NCDBN 
model's error metrics were less than those of the LSSVM, RBF, 
LSTM, and BPs models. For every dataset, the NCDBN model's 
error metrics surpass those of the lone DBN model (Tang et al., 
2020). Now in this research of entity model improve error set 
compare with NCDBN model after model training the data 
using entity model while training accuracy was around 99% 
testing accuracy is 97% These facts show that new techniques 
and technologies must be searched to optimize boiler 
operation. Efficiency will increase by the heat recovery and is 
an ecological aspect of burning carbon fuel. To forecast the 
oxygen content, different modeling algorithms, and training 
data sets have been applied to various models involving 
multiple color changes using efficient soft sensing methods 
(Shakil et al., 2009). 
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Findings Methods Limitation/Observation Ref. 

To derive training and testing 
datasets for the MBFCNN 
network, tests on hydrogen-
fueled scramjets with various 
equivalency ratios were done in a 
supersonic pulse combustion 
wind tunnel with an input Mach 
number of 2.5. 

Convolutional neural network 
techniques were contrasted 
with the proposed deep 
learning architecture method. 

The fuel injection system receives 
input from the combustor flow 
field image information, that aids 
in improving the combustor's real-
time performance. 

(Kim et al., 
2022) 

According to author Chuanwang 
Song, the channel attention 
technique is used extensively in 
deep learning. The local 
information of the feature image 
is stressed in this module and 
uses convolution to determine 
the regional channel weight, 
before integrating the data to fully 
utilize the regional information. 

To identify the anomaly of the 
blast furnace tuyere, the local 
channel attention module and 
residual module are merged, 
and the local channel 
attention residual network 
LSERNet is built, datasets are 
obtained with the aid of 
experiments on the blast 
furnace tuyere. 

The model might need to be 
retrained when moving to a new 
dataset because of the various 
camera placements and sensor 
resolutions. Retraining the model 
using a fresh dataset is all that is 
required. Although retraining is 
necessary, the training period is 
reasonable and does not 
necessarily have an impact on the 
method's applicability. 

(H. Chen et al., 
2022) 

To optimize ultra-low emission 
systems, pollutant prediction for 
coal-fired circulating fluidized bed 
units is essential. 

 

This study examined the 
interaction between the 
single-layer Gated Recurrent 
Unit neural network model 
and the differential equation 
model with the first-order 
Taylor expansion. 

Optimization of the fluidized bed 
is not exactly described by single 
layer gated recurrent unit neural 
network model defined 

(Sun et al., 
2021) 

(1) An early-fusion, time-invariant 
layer that can learn to pull out the 
power spectral density of 
succeeding image frames, which 
is a network layer that can be 
combined with any backbone 
network already in use.  
(2) A late-fusion layer that 
aggregates a backbone network's 
outputs at many time steps to 
forecast the current combustion 
state 

Early-fusion layer to a 
backbone network as 
increasing the number of 
input photos. Furthermore, it 
is demonstrated that 
handcrafted weights are 
superior to learned weights 
for the late-fusion layer. 

 

Two layers are proposed for a 
single gas turbine combustor 
which is a time-consuming 
process 

(Choi et al., 
2020) 

Power plant clean production is 
evaluated using the selective 
catalytic reduction (SCR) 
denitrification efficiency of coal-
fired boilers. The effectiveness of 
denitrification can be increased 
by making precise forecasts of 
NOx emissions at the SCR inlet. 

 A prediction method based 
on the random forest (RF) 
algorithm and lightweight 
convolutional neural network 
(CNN) was developed using 
deep learning. 

The accuracy of Nox emission is 
not ever reduced anymore 

(Wang et al., 
2023) 
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In the combustion process, the entity technique is very 
rarely applied. The development of a CNN soft sensor system 
for a real-time combustion process quality prediction is 
attempted for the first time in this research (Mohammadi et al., 
2018).Using the entity model, a reduction in the losses and 
increase in the efficiency can be done. The following topics are 
discussed in the present work: 

• classification of boiler images,  
• application of entity modelling method to gas-fired 

boilers and  
• diminution in the number of process variables 

(Tsoumalis et al., 2022). 
 The combustion process is analyzed, and the actual 

oxygen content is monitored using the existing methods 
during the modelling stage. The value of the air, temperature, 
and fuel are acquired. From a real-time boiler system, the 
images of the process are captured, and the aforementioned 
variables are compared. The data is sectioned into training 
and test sets. With the aid of the training data set, a 
generalized model is developed, that is, further verified using 
test data sets. Prediction of the target variable for the 
unobserved data can be done using this model (Romero et al., 
2005; Le Moullec, 2013).  

The following five sections delineate the work: the first 
section is the introduction; Section 2 describes the details of the 
boiler system, its working, the Python-Pytorch framework, and 
a brief part regarding the CNN classification; Section 3 briefs the 
methodology; Section 4 explains, results, analysis, and the 
findings; and section 5 comprises results and discussions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Working and efficiency of a boiler  
 

2.1. Working of a boiler 
By burning coal, heat energy is produced, which is further used 
for steam production to rotate turbine blades. Loss of heat in 
flue gases causes a major loss in efficiency. Other efficiency 
losses are heat radiation and convection to the boiler 
surroundings. In the BFG gas-fired system, there are two 
drums; one is termed a steam drum, and another is a mud 
drum. As seen in the image, two tubes-the down-comer and 
riser tubes-connect the upper drum and lower drum (Wu et al., 
2021). The lower drum's water is heated, creating steam that 
naturally rises to the top drums through the riser attached. 
Steam spontaneously separates from water in the upper drum 
and is kept above the water line. Because cold water is heavier 
than the hot water in the lower drum and the water in the riser, 
cold water pushes the hot water upward through the riser 
when it is fed from the feed water inlet at the upper drum 
(Sarkar, 2015). Typically working of the boiler shown in Fig. 1. 

 
2.1.1.  Efficiency of a boiler 
In this system, fuel and air are taken from a blast furnace and 
used as an injector for fuel in a boiler system. To save running 
expenses and to adhere to environmental requirements, 
emission level, and combustion efficiency should be managed 
at a suitable level. However, measurement of NOx and oxygen 
in the exhaust gas by the gas analyzers will be delayed. In such 
a case, an oxygen-content-based feedback controller is prone 
to overcompensate (Sirainen, 2016). A digital color camera  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1. Boiler SCADA image. 
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was used to take photographs of the flames in the furnace. 
When sharing information from a CCD camera interface to a 
PC, a shield-like cooling mechanism is included (Huang et al., 
2000). Each flame image used in the test has a resolution of 24 
bits per pixel and measures 658 by 492 pixels. One frame every 
five seconds is the rate at which the pictures were taken (Chen 
et al., 2013; Huang et al., 2000). 

 
2.2. Python PyTorch framework 
Py-Torch is an open-source library for machine learning, using 
which deep learning models based on neural networks can be 
created and trained. The Facebook AI research team is 
principally responsible for its development. Both Python and 
C++ are used with PyTorch. Of course, the Python interface is 
better designed. PyTorch is very well-liked in research labs and 
supported by major corporations like Facebook, Microsoft, 
SalesForce, and Uber (Gao et al., 2020; (Jadon & Garg, 2020; 
Sharma & Bhusnur 2003b). PyTorch is gaining popularity 
quickly. However, it is not yet widely used in production 
systems, dominated by Tensor flow (backed by Google) and 
other similar frameworks (Chollet, 2021). A schematic PyTorch 
framework shown in Fig.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Python PyTorch framework (Yamashita et al., 2018). 
 
Although other frameworks like Tensor flow are popular, 

PyTorch excels in dynamic computation rather than static 
computation and hence gives more flexibility for complex designs. 
The structures, classes, loops, and other constructs of Python 
provide better comprehension (Singh, 2022). Simple PyTorch 
implementation steps are described in Fig.3 (Längkvist et al., 2016).  

 

 
 
 
 
 
 
 
 

Figure 3. PyTorch implementation steps. 

2.3.CNN classification 
CNN architectures are of two primary types: segmentation and 
classification types. CNNs classify each pixel into one or more 
classes, given a set of real-world object categories (Längkvist 
et al., 2016). Steps of CNN layer structure is given below. 

i. Input layer: Input images pass through this layer. 
ii. Convolutional layer 1: This layer uses a series of filters to 

extract basic elements from the input image, like edges 
and corners. Convolutional layer output is input to the 
rectified linear unit (ReLU) activation function. 
Additionally, there are other activation features 
available. The model now has non-linearity due to this. 

iii. Pooling layer 1: The feature maps created by the leading 
convolutional layer are down-sampled in this layer, 
which lowers their dimensionality and increases their 
processing efficiency. 

iv. Convolutional layer 2: The output of the first max pooling 
layer is subjected to a series of filters in this layer to 
extract more intricate features, such as patterns and 
textures. The rectified linear unit (ReLU) activation 
function receives the output from the convolutional 
layer.  

v. Max pooling layer 2: The second convolutional layer's 
feature maps are further de-dimensionalized by this 
layer's downsampling. (Yamashita et al., 2018). 

Further refinement can be done in the third set of the 
convolutional and pooling layers. 

CNN finds applications in learning tasks related to the 
classification of images, detection of objects, face recognition, 
among others. Researchers quite often use sentiment analysis 
while assessing opinions. In this study, a decision tree 
classifier and a sentiment analysis will be used. 

 
3. Methodology 

 
Classification and data entity models are used for image 
extraction and prediction of boiler images at different 
temperature and time variants to ensemble all the data and 
find error metrics. The gas-fired boiler combustion system’s 
oxygen level lies in the range of 2.7 to 3.8, which makes it hard 
to train a prediction model. The primary reason is that the 
images corresponding to the oxygen range between all the 
values from 2.7 to 3.8 are unavailable as the boiler conditions 
change rapidly during combustion. Hence, a prediction model 
will not lead to a generalized model. A CNN architecture 
presented in Fig. 4. 

To map the oxygen percentage predicted, with the original 
values, the most frequent oxygen levels observed by the boiler 
are selected to form a good dataset that is, robust and able to 
work in real-time. Classification has been used sparingly for 
finding the oxygen level in the boiler and predicting with a data 
entity model. The images were clicked using a high-end 
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camera over some time at various temperatures, parallelly 
measuring the amount of oxygen in the boiler. After obtaining 
labeled images, CNN architecture was structured to assign the 
images to one of the 12 classes, depending on the oxygen 
content. So, given an image, the network is framed for a 
classification task, which will classify the image into one of the 
classes based on the oxygen level. The model consists of 7 
convolution layers, three max-pooling layers, and three fully 
connected layers. 

 

 
Figure 4. CNN Layered architecture. 

 
3.1. Soft sensor modeling 
Due to the coupling between mass and heat transfer 
mechanisms in any industrial process, there is an interaction 
between various process variables irrespective of whether 
they are topologically far or near. The conventional CNN is 
known to be good at extracting local features from the local 
region, and therefore the interaction due to process variables 
that are topologically far may not be learned entirely. To 
describe the correlations of the variables despite their 
topological organization, a multichannel CNN (MCNN) is 
proposed (Yuan, Qi, Wang, & Xia, 2020).  The multichannel CNN 
concept involves a 3-D tensor that represents the information 
at one sampling instance, and each 2-D section of which is 
called a channel. It can include different orders of both 
dynamic and local features of variables that further enhance 
the prediction process (Panagakis et al., 2021). 

Initially, the dataset is divided into training and testing 
datasets, as shown in Fig 5. Further training datasets are 
subjected to feature extraction and processed further for 
machine learning. Also, a pattern is analyzed, followed by 
labeling. In another way, classification is re-defined and 
combined with the entity model. 

In order to predict oxygen level, two ensemble settings have 
been experimented with: one which directly uses the weighted 
sum of the two models and the other which combines the 
feature vectors from the two models to create a new set of fully 
connected layers. Few artificial neural network techniques, 
such as CNN, have been used to study combustion processes. 
The CNN techniques have been applied to combustion 
systems rarely. The CNN soft sensor system proposed in this 

research is a unique method in the combustion process for real-
time quality forecast. The oxygen content is predicted using a 
multilevel-based, unsupervised, and semi-supervised deep 
entity algorithm by taking 12 classes and total 4,203,592 images 
are used for training each flame image in the tests has a 
resolution of 24 bits per pixel and a size of 658*492 pixels. There 
are 12 folders, each with an image of the boiler combustion 
process corresponding to an oxygen level. The folder name and 
the image label indicate the oxygen level. After obtaining the 
labeled images, a CNN architecture developed estimates the 
oxygen level from the photos. Therefore, the best line of action 
is to design the network as a prediction task and to estimate the 
oxygen percentage from an image. 

 

 
 

Figure 5. Flow chart of classification an entity prediction model. 
 

Classification accuracy 𝑌𝑌𝑐𝑐 = 𝑌𝑌𝑐𝑐𝑐𝑐
𝑌𝑌𝑡𝑡𝑐𝑐

∗ 100  (1) 
 

Ycp denotes the number of correct predictions of images; Ytp 
represents the total number of predictions. 
We quantify the performance of our model with F1-Score, 
recall, precision, accuracy, and receiver operating 
characteristic (ROC) curve. 
Note that for evaluation, the lower the measurements, the 
better and the ability of CNN. 
Their definitions are as follows: 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

= 0.426 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

= 0.081 

F1 − Score =2 ∗ Recall ∗ Precision
Recall + Precision

= 0.0347 
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Accuracy = T P + T N 
T P + T N + F P + F N

= 0.98 
 

3.2. Model evaluation 
Performance metrics include F1-score, recall, precision, 
accuracy, and ROC curve. The goal is to achieve low error rates 
and high predictive accuracy for real-world applicability. After 
model training, the loss came as low as 0.9 after training the 
model, and the accuracy was 85%, which is very good for 
prediction tasks, which is excellent for tasks requiring 
prediction. The aim behind the recommended method is to 
enhance control of the boiler combustion process by 
continuously monitoring the oxygen concentration in flue 
gases, despite variations in gas quantity entering the furnace, 
with the aid of an oxygen sensor to regulate fuel combustion. 
As a result, the boiler room system experiences significant 
energy savings. Contribution to model robustness. 

 
3.2.1.  Diverse representation 
3.2.2.  Variability coverage 
The large dataset includes images taken under a wide range of 
conditions, which helps the model learn the underlying 
patterns and relationships more effectively. This variability in 
the data ensures that the model can generalize better when 
encountering new, unseen conditions. 
 
3.2.3.  Class distribution 
With 12 classes of oxygen levels, having a substantial number 
of images for each class helps the model to understand the 
nuances of each class and reduces the chances of bias 
towards any particular class. 

 
3.3. Over fitting prevention 
Performance metrics include F1-score, recall, precision, 
accuracy, and ROC curve. The goal is to achieve low error rates 
and high predictive accuracy 

 
3.3.1.  Exposure to various scenarios 
As overfitting is frequently caused by the model learning 
particular patterns or noise that are only present in a small 
subset of the data, training on a large number of images 
exposes the model to a wide range of scenarios. 

 
3.3.2.  Data augmentation 
The huge dataset makes it possible to apply techniques for 
data augmentation—like rotations, random cropping, and 
other transformations—effectively. These approaches further 
strengthen the model by enriching the training set and 
simulating many variants. 

 
 
 
 

3.4. Improved generalization 
3.4.1.  Comprehensive learning 
Rather than learning specific specifics, the model can learn 
more comprehensive and generalized properties with 
additional data, which are genuinely representational of the 
underlying physical process of combustion. 

 
3.4.2.  Noise reduction 
By averaging out the data's inherent noise, a big dataset 
enables the model to concentrate on the real signal. 

 
4. Data analysis and findings 

 
Dataset composition: The entire dataset comprises 4,203,592 
images, with each image having a resolution of 658 x 492 pixels 
and a color depth of 24 bits per pixel. (shown in Fig. 6). 

Training and testing split: To create and validate the 
predictive model, the dataset is divided into training and 
testing sets. Typically, around 70-80% of the data is allocated 
for training, while the remaining 20-30% is reserved for testing. 

Criteria for ensuring real-world variability: Images were 
captured from a real-time gas-fired boiler combustion system 
under various operating conditions. The operating conditions 
included different temperatures, air pressures, and gas 
compositions, which are critical to capturing the true 
variability found in real-world boiler operations. Temporal 
diversity: Images were taken one frame every five seconds to 
capture dynamic changes in the flame over time. This 
temporal resolution helps in understanding how the oxygen 
content in the flue gas varies with time and operational 
fluctuations. Class-based labeling: The images were 
categorized into 12 distinct classes, each corresponding to a 
specific range of oxygen content in the flue gas. This approach 
allows the model to learn from and predict a wide array of 
oxygen levels, which are essential for various combustion 
states. High-resolution imaging: By employing high-resolution 
images, the convolutional neural network (CNN) could 
capture fine details and subtle variations in the flame's 
appearance. These intricate details are crucial for accurately 
predicting the oxygen levels during combustion. The 
information gathered includes a video of the boiler at several 
different temperatures, each corresponding to a certain 
oxygen level. The video acquired is partitioned into frames and 
saved as images in the labeled folders with names based on 
the oxygen level in the broiler. Images in gas-fired 6 show 
different boiler images taken on-site from a gas-fired boiler at 
one industry from Raipur, at different temperatures and 
oxygen content. 
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4.1. Result and implementation 
The results shown in Table 2 depict the boiler oxygen 
percentage at different temperatures, different air and gas 
quantity inlet, observation time, for 12 different classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graphs have been plotted to show variation in oxygen 
percentage at different levels of air and gas quantity 
considering different sections of temperatures in the range 
between 550oC to 750oC, as shown in Figure 7 and Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Real time flame images with their corresponding oxygen contents in ascending order. 

Table 2. The boiler oxygen percentage at varying temperatures, air and gas inlet quantities, and observation times for 12 different classes. 
 

Sr.No Temperature  Air Quantity Gas Quantity O2 % Image Taken Time 

1 550 28000 12000 3.07 3:46 PM 

2 575 27500 12004 3.1 3:43 PM 

3 600 27000 12004 3.15 3:42 PM 

4 625 27000 13500 3.17 3:39 PM 

5 650 26200 13500 3.24 3:37 PM 

6 675 27000 16800 3.32 3:27 PM 

7 700 26000 18000 3.37 3:24 PM 

8 725 18800 18800 3.39 3:17 PM 

9 750 21600 22000 2.7 3:15 PM 

10 775 22300 24500 2.7 3:10 PM 

11 800 23400 26000 2.8 3:07 PM 

12 818 32000 32000 2.9 3:03 PM 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 7. (a). Oxygen linearity with variable gas and air quantity 

between 550OC to 575OC; (b) Between 575OC to 600OC: (c) between 
600OC to 625OC; (d) between 625OC to 650OC. 

 

 
(a) 

 

 
(b) 

 

 
 

(c) 
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(d) 

Figure 8. (a). Oxygen linearity with variable gas and air quantity 
between 650OC to 765OC; (b) between 675OC to 700OC; (c) between 

700OC to 725OC; (d) between 725OC to 750OC. 
 
Figs. 7 and 8 show the experimental results of the 

dependence of the boiler power from the concentration of 
residual oxygen in the flue gases at various boiler loads. 

The combined characteristics of air amount, gas quantity, 
and oxygen level are shown in Fig. 8 at various temperature 
ranges between 550 and 850 degrees Celsius. A 256 x 256 color 
image is the network's input, made possible through 
preprocessing and normalizing the image's R, G, and B color 
channels. The image is then processed by several layers that 
reduce its resolution to 252 x 252, 126 x 126, and so on, until it 
reaches the fully connected layers, which employ the features 
gathered from the working layers to forecast the oxygen level. 
Here, the ReLU function is used as an activation function as it 
can converge quickly and solve the diminishing gradient 
problem. Using the L1 loss function, the difference back 
propagates between targets. 

The experiment is simulated in Python 3.6, and PyTorch is 
the framework used. PyTorch is a machine learning tool kit 
built on the Torch library (Habib et al., 2011; Ketkar & Santana, 
2017; Mannes, 2017) and widely used by Meta AI (Mohammadi, 
2018) for applications like artificial intelligence and natural 
language processing (Patel, 2017). It is open-source software 
available for free, as per the Modified BSD license. Although 
PyTorch has a C++ interface, the Python interface has received 
the majority of development attention (Ketkar & Santana 
2017). 

Tesla Autopilot is one of the deep-learning applications built 
on top of PyTorch. Using a CPU with an i9 processor, 128 GB of 
RAM, and 32 GB of RTX 5000 graphics, Uber completed Pyro 
Training. The model needed training for 1600 epochs in one day. 
The parameters and hyper parameters of the models are 
selected. Finally, the learning rate was 0.0001, with cross- entropy 
loss and ADAM optimizer utilized, two high-level features 
provided by PyTorch, followed by Lightning and Catalyst (Ketkar 
& Santana, 2017). Tensor computation (similar to NumPy) with 
significant GPU acceleration (GPU) Using a tape-based automatic 
differentiation method, deep neural networks. 

In Table 2, entity model prediction values acquired, namely, 
the mean average error (MAE), the mean square error (MSE), 
and the mean relative error (MRE), are shown. The model was 
found to be accurately estimating the oxygen content of the 
flue gas. The model is distributed within the minimum interval 
[0, 0.04], and as absolute error increases, its frequency 
gradually decreases. Although the absolute-error frequency of 
the algorithm declined quickly, and none of the distributions 
appeared in the higher absolute error interval, the frequency 
distributions of the models were similar to another algorithm. 
This outcome explains why the nonlinear combination 
increases the predictive power of two sub-models. As a result, 
the model's absolute error is at its lowest and exhibits good 
prediction accuracy. In the dataset testing data findings, the 
entity model's MAE and MRE exhibit reductions, with 64% and 
67%, respectively, while the MSE reduced by 82%. The 
methodology includes a multilevel-based unsupervised and 
semi-supervised deep entity algorithm to handle the wide 
variability in the data (Sharma & Bhusnur, 2023a). This 
approach is designed to be robust against the operational 
variability by encompassing multiple layers of data 
abstraction and prediction refinement. Fig. 9 presents the 
distribution of training and testing curve of the entity model 
while the predicted result shown in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 3. Entity model prediction result. 

 
Data 
Set 

Error Metrics Entity Model 
Output 

 Train Test 
MAE 0.0142 0.0152 
MRE 0.4842 0.5052 
MSE 0.0004 0.0004 

 
Reported performance metrics 
Accuracy: The model achieved training accuracy of around 
99% and testing accuracy of 97%. 
During evaluation, the accuracy was reported to be 85% when 
considering precision, recall, and F1-Score metrics. 
Loss: The model's loss during training was reported to be as low 
as 0.9. After further optimization, the loss was reduced to 3%. 

 

Figure 9. Training and testing curve of entity model. 
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Comparison with industry standards and Current models  
The study contrasts their findings with a number of current 
models and techniques. This is how their performance 
compares: NCDBN model (Tang et al., 2020):   
     When compared to more conventional models such as 
LSSVM, RBF, LSTM, and BPs, the performance of the NCDBN 
model significantly improved in terms of mean absolute error 
(MAE) and mean relative error (MRE).  
The entity model employed in this study, according to the 
authors, has better error metrics than the NCDBN model, 
demonstrating a notable improvement in the prediction of the 
oxygen level during combustion. 

Multichannel CNN (MCNN): Although this model is well-
known for its proficiency in managing local dynamic features, 
it is not well-suited to capturing interactions between 
topologically distant process variables. According to the 
paper, these shortcomings are addressed by their model's 
multilevel-based unsupervised and semi-supervised deep 
entity algorithm, which offers a more thorough feature 
extraction and classification capabilities. 

 
5. Conclusion and discussion  

 
In a gas-fired boiler, combustion is an essential process that 
may be measured directly to cut down on losses. This study 
attempts to forecast the oxygen concentration in flue gases by 
utilizing the CNN model that was developed specifically to 
deal with this kind of issue. Based on an aggregation of 12 
individual images, the entity model and CNN model were 
utilized to predict the amount of oxygen in a power plant 
boiler. Using the PyTorch library, the entire process was 
divided into three parts: feature selection, data pre-
processing, and data analysis modeling. The entity model 
used in the CNN Technique generated accurate data, in 
contrast to the DBN Method. CNN architecture predicted the 
oxygen content from the pictures. Using the information 
acquired from the convolution and max-pooling layers, the 
fully linked layers predict the value of the oxygen level. With R2 
= 0.9859, 0.9825, and 0.9879, the NCDBN model performs as it 
did in earlier research. When this performance is compared to 
that of the current research, designing a network for the 
purpose of estimating the oxygen percentage from a picture 
becomes viable. Using an entity model for data training after 
the model training accuracy was almost 99%, and testing 
accuracy was 97%. These numbers clearly indicate that the 
model is doing exceptionally well on untested data, is not 
overfitting, and is a great fit for prediction. In the future, 
pressure and ensembles with CNN-based models might be 
identified by gathering boiler timestamp information and 
creating a model based on a time series. Furthermore, multi- 
or hyper-spectral imaging as well as the use of 3D imaging 
techniques to capture a larger range of wavelengths outside of 

the visible spectrum are examples of better feature extraction 
techniques. This can provide more in-depth information 
about the characteristics of the flame and the conditions 
around combustion. In order to better handle complex 
linkages and temporal dependencies in the data, future 
iterations may look at more intricate deep learning 
architectures, such as Transformer models or hybrid models 
that mix long short-term memory with CNNs (LSTM) networks. 
 With the help of this ensemble, pressure may be calculated for 
a predictive control application more precisely since it can 
detect every change in the boiler over time. Maintaining the 
optimal air-to-fuel ratio ensures a more thorough burning of 
the fuel. Reduced Fuel Consumption results from this because 
more efficient combustion uses less fuel to produce the same 
amount of energy. The production of harmful pollutants like 
carbon monoxide (CO), particulate matter, and unburned 
hydrocarbons is decreased by complete combustion. Lower 
excess oxygen concentrations stop NOx from developing 
during combustion. As combustion efficiency increases, less 
CO2 is emitted per unit of energy produced. 
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