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Abstract: Recently, there has been increasing interest in applying machine learning (ML) approaches 
to enhance the performance of optical communication systems. This paper applies some of these 
approaches to design advanced wavelength-division multiplexed (WDM)-coherent optical fiber 
communication (OFC) systems assisted by the constellation shaping technique. A theoretical design 
and performance investigation are reported assuming end-to-end deep learning (E2EDL) autoencoder 
(AE)-assisted system configuration. A flexible artificial neural network (ANNs)-based optical fiber 
channel modeling approach suitable for different multi-span transmission links in OFCs is presented. 
This approach is applied to E2EDL-based geometric constellation shaping WDM systems and the 
results reveal that using a bi-directional gated recurrent unit (Bi-GRU)-neural network (NN) gives the 
best modeling that tracks the numerical nonlinear interference noise fiber model with much less 
computation time(~7%). This work is implemented using the Python programming language and 
utilizing the TensorFlow framework to develop the simulation models.  
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1. Introduction 
 
Coherent optical fiber communication (OFC) systems are 
usually used to transmit high-data rates over long-haul fiber 
transmission link (Neves et al., 2023; Escobar-Landero et al., 
2023).  At the transmitter side, the input binary data is 
embedded in the amplitude A, phase ∅, or both, of the optical 
carrier. This carrier is presented by the electric field e(t) = Acos 
(2πω0t + ∅) emitted from a continuous-wave (CW) laser, where 
ω0 is the optical carrier (laser) radian frequency. This generally 
leads to three types of signal modulation formats, namely 
amplitude-shift keying (ASK), phase-shift keying (PSK), and 
quadrature-amplitude modulation (QAM), respectively, (Yang, 
2021). The QAM signal can be considered as the sum of two 
ASK signals which use the in-phase (I) and quadrature-phase 
(Q) components as their own optical carriers (i.e., cos(2πω0t) 
and sin (2πω0t), respectivelyT) (Binh, 2015). he QAM digital 
signal element (i.e., symbol) can be expressed as (Binh, 2015). 

 
𝑒𝑒𝑄𝑄𝑄𝑄𝑄𝑄(t) = 𝑎𝑎𝑗𝑗 cos(2𝜋𝜋𝜔𝜔0t) + 𝑏𝑏𝑘𝑘  sin(2𝜋𝜋𝜔𝜔0t)                  (1) 
 
where 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑘𝑘  are bipolar discrete electric field 

amplitudes with j = 1, 2, … and k = 1, 2, … . The combination 
of the discrete amplitude sets {𝑎𝑎𝑗𝑗, 𝑏𝑏𝑘𝑘} gives M discrete 
symbols, each has its own amplitude 𝐴𝐴𝑞𝑞  = (𝑎𝑎𝑗𝑗2 + 𝑏𝑏𝑘𝑘

2)1/2 and 
phase ∅𝑞𝑞  = 𝑡𝑡𝑎𝑎𝑡𝑡−1(𝑏𝑏𝑘𝑘/𝑎𝑎𝑗𝑗). Here, q = 1, 2, …, M, and each one of 
the M symbols carries 𝐿𝐿𝐿𝐿𝐿𝐿2M bits of information. Thus, the M-
QAM symbol has 4, 6, and 8 bits when M = 16, 64, and 256, 
respectively. A good graphical representation of the M-QAM 
signal is the constellation diagram (i.e., IQ-plane) which shows 
all the possible transmitted symbols as a collection of points 
(Haroun, 2023). Each symbol is presented by a single point 
with the distance from the origin and the angle with respect to 
the I-axis representing the symbol amplitude and phase, 
respectively. Figures 1 (a) and (b) show the constellation 
diagrams of conventional 16-QAM and 64-QAM signaling, 
respectively. Note that in conventional communication 
systems (including OFC systems), the M-QAM symbols are 
transmitted with equal probability(=1/M). 

 
 
 
 
 
 
 
 
 
 
 
 

The coherent OFC systems usually use coherent detection 
to recover the data at the receiver side (Binh, 2015). Here, the 
received signal electric field is mixed with that of a local CW 
laser whose frequency, phase, and polarization match those 
of the unmodulated transmitter laser. Figure 2 shows a 
simplified block diagram of an optical QAM communication 
system. The input binary data is converted to QAM symbols by 
the QAM mapper and then used to modulate the transmitter 
laser field. For long-haul transmission, the fiber link is 
constructed using multi-span configuration with each span 
consisting of a section of a single-mode fiber (SMF) followed 
by an optical amplifier to compensate the span loss (He et al., 
2023). Thus the transmission link acts as a quasi-lossless 
channel. At the receiver side, the detected symbols are 
converted back to binary data using QAM demapper. The 
propagation of the QAM symbols in the fiber is influenced 
mainly by fiber material dispersion, as a linear effect, and 
nonlinear fiber optics (Liang et al., 2023). This nonlinearity 
effect increases in WDM systems where a group of OFC 
systems uses the same fiber link (Deligiannidis et al., 2023). 
The nonlinear fiber effects and their interaction with fiber 
dispersion lead to nonlinear interference (NLI) which plays a 
key role in determining the bit rate-distance product in WDM-
OFC systems. This issue should be addressed carefully in these 
advanced communication systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Recently, there is increasing interest in using constellation 

shaping (CS) techniques to reduce the effect of NLI in WDM-
OFC systems (Civelli, 2024; Xing et al., 2024). These techniques 
are classified into three categories, namely geometric 
constellation shaping (GCS), probabilistic constellation 
shaping (PCS), and joint GCS/PCS (JGPCS) (Liu et al., 2023). In 
GCS, the locations of the points in the constellation diagram 
are rearranged without changing the probability of the 
symbols (=1/M) (Xing et al., 2024). The PCS technique changes 
the probability of the symbols without affecting their power 
(i.e., their locations in the constellation diagram) (Amirabadi et 
al., 2022). The JGPCS combines the effect of both GCS and PCS 
techniques (Yao et al., 2023). In CS-assisted OFC systems, the 
conventional QAM mapper (demapper) is modified to produce 

 

Figure 1.  Constellation diagrams of (a)16-QAM signaling and 
(b) 64-QAM signaling (Haroun, 2023). 

 

Figure 2.  Simplified block diagram of an optical QAM 
communication system. 
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(deals with) a new constellation diagram by encoding 
(decoding) the binary data according to the used CS 
technique. Therefore, the modified mapper and demapper are 
called encoder and decoder, respectively. The use of the deep 
learning (DL) technique in the design of these two 
components DL attracts increasing interest in recent years. 
These two components can be designed synchronously using 
end-to-end deep learning (E2EDL) techniques and therefore, 
they are lumped as one virtual component called autoencoder 
(AE). The performance of the E2EDL-based GCS-WDM system 
has been investigated by some research groups assuming five 
multiplexed channels (Jones et al., 2018; Jones et al., 2019; 
Oliari et al., 2021; Jovanovic et al., 2022), and (Jovanovic et al., 
2023), 11 multiplexed channels (Gümüs et al., 2020), and more 
number of channels (Abbass & Fyath, 2024). 

The model-driven simulation approach is constructed in a 
divide-and-conquer manner and consists of a series of model 
blocks (Wang et al., 2020). Among these models are laser, 
pulse shaper, modulator, fiber channel, optical amplifiers, 
filters, and detectors. All these blocks are characterized by 
rigorous numerical models (Wang et al., 2020). Commercial 
optical communication software is usually non-open and the 
expensive (Jiang et al., 2022). Furthermore, computation 
complexity of conventional simulations can be very high due 
to the nested-function construct and the repeated iterative 
operation (Jiang et al., 2022). For example, the optical fiber 
channel can be modeled using the split-step Fourier method 
(SSFM). This method is based on solving numerically the 
nonlinear Schrödinger equation (NLSE) which describes pulse  
propagation in the fiber and takes into account both linear 
and nonlinear fiber effects. In this method, the optical fiber is 
divided into multiple short-length segments (steps), and the 
fiber linearities and nonlinearities are calculated separately for 
each step (Yang et al., 2022). Using a shorter-step distance 
offers high modeling accuracy but requires a large 
computation time. To reduce the computation time, a data-
driven proposed to characterize the transmission in OFC 
systems (Neves et al., 2023). In this model, the fiber channel is 
replaced by an ANN which is trained by data collected from 
experimental measures or from first-step simulation 
predictions. This modeling approach applied successfully for 
single-channel (You et al., 2023) and multi-channel (Yang et al., 
2022) OFCs. The investigation in these references focuses on 
comparison with the model-driven approach and to select the 
suitable ANN configuration for that purpose. However, no DL-
based data-driven optical fiber channel modeling is reported 
in the literature for constellation shaping-assisted OFCs even 
with the single-channel operation. This issue is addressed in 
this work where a flexible ANN-based fiber modeling is 
proposed which can be applied to GCS, PCS, and JGPCS WDM-
OFC systems. 

 

2. Related works 
 

In 2020, Wang et al. (2020) proposed a data-driven modeling 
approach utilizing bidirectional (Bi)-long short-term memory 
(LSTM) NNs to mimic fiber channel. Both on-off keying and 
pulse amplitude modulation-4 signals were studied for 
transmission. The Bi-LSTM-based method demonstrated 
strong performance and produced results comparable to the 
conventional SSFM-based model. In 2022, Jiang et al. (2022) 
Investigated data-driven approach utilizing a deep neural 
network (DNN) to predict the nonlinear fiber channel in OFC 
systems. The DNN method effectively represents the transfer 
function of the fiber channel. In 2022, Yang et al. (2022) 
suggested a hybrid model-data-driven approach for rapid and 
precise waveform modeling of long-distance multi-channel 
optical fiber transmission. It utilizes a linear-nonlinear feature 
decoupling distributed waveform modeling technique. The 
conventional approach used for modeling waveforms in 
optical fiber communication systems is the SSFM. In 2023, You 
et al. (2023) suggested a method for modeling optical fibers 
with low complexity LSTM (C-LSTM), and the computational 
complexity of C-LSTM was determined for comparison with 
modeling techniques based on conditional generative 
adversarial networks and SSFM.  

The ANN-based end-to-end deep learning technique have 
been investigated in the literature. Table 1 presents a 
comparison between some of these works and the one 
reported in this paper. 

Based on the previous survey, it is obvious there is no 
document reported in the literature that uses DL-based data-
driven optical fiber channel modeling for CS-assisted WDM 
systems to achieve high-capacity data transmission. To 
achieve this issue, this work presents a flexible ANN-based 
fiber modeling approach that is applicable to these systems. 

 
Table 1. Comparison with related works. 
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(Jiang 
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(You 
et al., 
2023) 

C-LSTM, 
conditional 
generative 

adversarial 
network 
(CGAN) 

1 
200-

1000 SSFM - 

This 
Work 

Bi-GRU, 
CNN 

32, 
64 

1-
2000 

NLIN CS 

 
3. General algorithm of multi-span optical fiber 
modeling-based artificial neural networks 

 
Figures 3 (a)-(c) explain the block diagrams of the main steps 
to design general multi-span optical fiber model-based ANNs, 
and the steps are stated below: 
Step I: Data collection 
Simulate the OFC system assuming a single-span transmission 
link.  Choose a specific fiber channel model in the simulation 
(such as NLIN or SSFM) and record both the input and output 
data of the fiber ( x(t) and y(t)). 
Step II: ANN training 
Choose ANN configuration and train it to model a single-span 
transmission link system. Train this network, ANN-single span 
(ss), using the data collected in step I. 
Step III: Construction of the multi-span link modeling 
The ANN model of the multi-span (ANN-ms) link is constructed 
by  𝑁𝑁𝑠𝑠𝑠𝑠 of ANN-ss where 𝑁𝑁𝑠𝑠𝑠𝑠 is the number of spans. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.  Block diagrams of general multi-span optical fiber 
modeling-based ANN. (a) data collection, (b) ANN training, and (c) 
construction of the multi-span link modeling. SMF: Single-mode 

fiber, OA: Optical amplifier. 

4. Optical fiber communication channel model using 
ANNs 

 
The configuration of the communication system and the 
alternative approach for modeling the OFC using an ANN are 
illustrated in Figure 4. In this figure, the AE simulation platform 
comprises two NNs positioned in the encoder and decoder, 
with a fiber channel model connecting them.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4.  AE simulation platform with optical  

fiber modeling of ANN-ss. 
 
The modulated carrier x(t) is transmitted across the OFC 

channel to produce an output y(t). 
 
y(t) =𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (x(t))                                                        (2) 
 
The NLIN channel model, 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , investigates the impact of 

nonlinear interference on fiber communication (You et al., 
2023). To account for the nonlinear effects that degrade the 
broadcast signal, this model considers the launch power per 
channel as well as the constellation's moments. The NLIN 
model simplifies these nonlinear effects into additive white 
gaussian noise (AWGN), with the variance controlled by the 
fiber communication channel parameters. As a result, the 
channel impairments are controlled by the amplified 
spontaneous emission (ASE) noise, which is dictated by the 
amplifier noise figure Fn, the average launch power per 
channel (referred to as launch power), and the constellation's 
high order moments (You et al., 2023). 

 

μ4 = 𝔼𝔼�|X|4�
(𝔼𝔼[|X|2])2

    and μ6 = 𝔼𝔼�|X|6�
(𝔼𝔼[|X|2])3

          (3) 
 
The noise variance can be calculated as follows 
 
σn2   = σASE2    Fn + σNLIN2                                                                 (4) 
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where  σASE2    Fn is the ASE noise variance, and σNLIN2  is the 
nonlinear interference variance which is a function PL, μ4, and 
μ6. 

The encoder and decoder are both represented by dense 
layers, denoted as NNen(wen) for the encoder and 
NNde(wde) for the decoder. The variables wen and wde 
represent adjustable weights, including biases, that can be 
trained to enhance the performance of the system (Jovanovic 
et al., 2021). The transmitted and the received symbols can be 
represented by tx = NNen (s,wen), and rx = NNde (s�,wde), 
respectively, the role of the encoder is to convert the input 
signals into sent symbols, aiming to minimize the effects of 
channel distortions. The decoder produces output signals 
often expressed as the posterior probability of the transmitted 
messages. Using these probabilities, the receiver can 
successfully recover the original input messages. When 
considering an AE for this system, the input of the encoder 
usually comprises a probability vector, which is sometimes 
referred to as a one-hot vector. This vector denotes the 
symbols that are being transferred. Each one-hot vector is 
represented as s ∈ S = {ei|i =1, ..., M}; where M denotes the 
modulation order and  ei is a binary vector with all elements 
set to zero, save for a single '1' at position i, denoting the 
symbol's position (Zhang et al., 2022; Srinivasan et al., 2023). 
The AE model's encoder optimizes the positioning of the 
constellation points, while the decoder learns the decision 
limits of the distorted symbols (Jovanovic et al., 2022). 

The parameters for training the AE in this work are provided 
in Table 2.  A total of 250 epochs were used. The Glorot 
initialization is employed to initialize the weights set (Rex et al., 
2022). During each epoch of training, a new set of samples is 
created. These samples consist of 𝑁𝑁 = 128 × 𝑀𝑀 one-hot 
encoded vectors that are evenly distributed. The vectors are 
then separated into batches of size 𝐵𝐵 = 16 × 𝑀𝑀. The learning 
rate is optimized to 0.001. The number of batches is 
determined by dividing the total sample size by the specified 
batch size. In order to classify, a softmax layer is employed at 
the decoder. The purpose of this layer is to convert the 
decoder's output into a probability vector, ensuring that the 
sum of its elements is equal to one (Cardarilli et al., 2021). 

The AE technique is founded on the principle of E2EDL, 
which aims for joint optimization of the components of the 
transmitter and receiver within a single process. Nevertheless, 
a significant limitation that obstructs the practical application 
is the requirement of a differentiable channel model, namely 
the knowledge of the gradient of the instantaneous channel 
transfer function. If the channel lacks a differentiable model, 
the gradients cannot be calculated during back-propagation 
to alter the network's parameters during training. 

 
 
 

Table 2. Parameters of the deep learning network. 
 

 
DL has the capability to approximate any function, and it 

can give an effective solution for linear and nonlinear 
problems. DL offers an innovative framework for reevaluating 
the optical communication modeling problem. DL models 
approximate the model functions by mapping independent 
variables to dependent variables that correlate to the input 
and output data (Wang et al., 2020). Therefore, the ANNs are 
strategically used to define the segment located between the 
encoder and the decoder and to accelerate the training 
process of the E2EDL system. Firstly train the AE at a single 
span (ANN-ss) with a span length of 100 km and store the 
outputs and inputs of the encoder and decoder, respectively, 
these values represent the transmitted and received symbols. 
In this situation, the communication fiber channel consists of 
a conventional SMF, and to emulate the OFC, use the 
nonlinear interreference noise (NLIN) fiber model. This model 
is built upon an improved Gaussian noise model. It is 
described as an additive Gaussian noise process and assesses 
its variance and spectrum (Dar et al., 2013; Dar et al., 2014). The 
erbium-doped amplifier (EDFA) is used at the end of the span 
to compensate for the loss of signal. The amplifier has a noise 
figure of 5 dB. This AE is designed based on a WDM system to 
increase data transmission capacity, and Table 3 lists the 
parameter values of the WDM system used in the AE platform. 

After the AE training procedure is finished on a single span, 
the encoder and decoder input-output data are saved. 
Afterwards, the stored data are retrieved and used as inputs 
and labels to train Bi-GRU-NN (Liu et al., 2023) and CNN (Jiang 
et al., 2023) separately. This methodology is utilized to obtain 
an efficient ANN model that is specifically tailored for a single 
span, which is referred to as the ANN-ss model. The trained 
ANN-ss model is stored and retrieved to employ for 
substituting the conventional OFC (NLIN) model for single 
span and then used this model for predicting ANN-multi spans  
 
 
 

Deep learning parameters Encoder Decoder 

Number of input nodes M 2 

Number of output nodes 2 M 

Number of hidden layers 4 4 

Number of nodes per hidden layer 16 16 

Activation function in the hidden layer Rleu Rleu 

Activation function in the output layer Rleu Softmax 
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ANN-ms) by implementing the cascaded of the ANN-ss model 
and it is used as a replacement for the optical fiber spans in 
the communication system as shown in Figure 5. The ANN-ss 
model is configured in a cascaded manner to effectively 
simulate long-distance optical transmission systems using 
different numbers of WDM-channel systems at flexibility. 

 
Table 3. Parameter values of the WDM system used 

 in the AE platform. 
 

Modulation format DP 64-QAM 

Number of WDM 
channels (Nch) 

32, 64 

Symbol rate (Rs) 40 Gbaud 

Central channel 
frequency (fc) 

193.41GHz 

Frequency channel 
spacing (△f) 

50 GHz 

Number of link 
spans (Nsp) 20 

Span length (𝐿𝐿) 100 km 

Fiber nonlinear 
coefficient (ϒ) 

1.3 (W km)−1 

Fiber group-velocity 
dispersion (D) 

16.5 ps/(nm km) 

Fiber dispersion 
slope (S ) ≡ dD/dλ) 

0.08 ps/(nm2 km) 

Fiber attenuation 
(𝛼𝛼) 

0.2 dB/km 

Optical amplifier 
gain (𝐺𝐺) 

20 dB 

Optical amplifier 
noise figure 

5 dB 

 
 

 
Figure 5.  Optical Fiber modeling for ANN-multi-span link. 

 
 
 
 
 

Figure 5. Optical Fiber modeling for ANN-multi-span link. 
 
The BER is a metric that calculates the probability of an 

error using the number of erroneous bits per transmitted bit 
(You et al., 2023). The BER of the M-order modulation format is 
determined using (You et al., 2023). 

 

BER = 2
m

 (1- 1
√M

  erfc ��3m(SNR)
2(M−1)

  �                           (5) 

 

where M is the number of discrete symbols involved in the 
modulation (i.e. modulation order),  m is the number of bits 
per transmitted symbol (m = log2M ),  and  erfc denotes the 
complementary error function. 

 
5. Architecture perspectives: Artificial neural networks 
structures 
  
In this section, describe the architecture of the proposed Bi-
GRU-NN and CNN models, which are used for modeling the 
OFC in AE-based GCS-WDM system for long-haul transmission 
distance. 

 
5.1. Bi-directional gated recurrent neural networks 
This subsection provides a detailed explanation of the 
structure of the GRU and the proposed Bi-GRU-NN models, 
which are employed for optical fiber prediction.  recurrent 
neural networks (RNNs) considered the sequence correlation 
can typically reconstruct the channel crosstalk in most 
situations (You et al., 2023). In addition, RNNs are frequently 
used to identify connections in data that are arranged in a 
sequence and have temporal dependencies. This makes them 
particularly suitable for channel predicting. Among the several 
types of RNNs, the LSTM model is especially proficient at 
mitigating the problems of vanishing gradients and gradient 
explosion that are common in regular RNNs. GRU, a variant of 
LSTM, and GRU provides immunity for gradient explosion, and 
utilizes gated cells to control the flow of input within the network, 
resulting in a simpler implementation compared to LSTM. 
Meanwhile, GRU is a simpler variant of LSTM and uses gated cells 
to regulate the flow of information within the network, making its 
implementation easier than LSTM (Hu et al., 2023). 

Each GRU cell consists of two gates: an update gate and a 
reset gate. An update gate regulates the flow of control 
information into the following instant, while a reset gate 
controls the loss of information. These two gates together 
decide the output of the hidden state (Yin et al., 2021). The 
structure of the GRU unit is explained in Figure 6, the GRU unit 
computes the ultimate result by considering the current input 
txt and the prior state ht−1, taking into account the combined 
impact of these gates. A summary of the internal gate outputs 
of the GRU unit is provided below (Liu et al., 2023). 

 
r𝑡𝑡 = 𝜎𝜎 ( W𝑟𝑟  [ℎ𝑡𝑡−1, tx𝑡𝑡] + 𝑏𝑏𝑟𝑟) 
𝑧𝑧𝑡𝑡 = 𝜎𝜎 ( W𝑧𝑧  [h𝑡𝑡−1, tx𝑡𝑡] + 𝑏𝑏𝑧𝑧) 
ℎ�𝑡𝑡 = tanh ( Wℎ  [r𝑡𝑡 ⨀ h𝑡𝑡−1, tx𝑡𝑡] + 𝑏𝑏ℎ) 
ℎ𝑡𝑡 = (1- 𝑧𝑧𝑡𝑡) ⨀ h𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ⨀ℎ�𝑡𝑡                                  (6) 

 
where W𝑟𝑟, W𝑧𝑧 and Wℎ  denotes the weight matrices for the 

reset gate, the update gate, and the new calculation of the 
memory, respectively. The bias vectors 𝑏𝑏𝑟𝑟 , 𝑏𝑏𝑧𝑧 , and 𝑏𝑏ℎ  relate to 
each other. The sigmoid function σ is used for both the reset 
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and update gate. In the context of memory computation, the 
hyperbolic tangent activation function is denoted as tanh, 
while the Hadamard product is represented as ⨀. 

 

 
 
Figure 6.  Diagram depicting the structural components of a GRU 

memory unit, edited from (Liu et al., 2023). 
 
This work uses two layers of Bi-GRU-NN layers, A Bi-GRU-NN 

layer consists of 64-GRU units that process the input sequence 
in the forward direction and another 64-GRU unit that process 
in the backward manner. The bidirectional GRU helps mitigate 
the problem of error propagation resulting from unidirectional 
prediction. Furthermore, the bidirectional GRU approach 
enhances feature extraction precision by thoroughly 
examining the correlation between nearby data points. The 
output layer comprises a fully connected layer that employs a 
linear activation function to compute the weighted sum of the 
hidden layer outputs. The structure of the Bi-GRU-NN is 
illustrated in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.  Architecture of the Bi-GRU-ANN  
that is used for optical fiber modeling. 

5.2. Conventional neural networks 
In the field of optical communication, CNNs are employed for 
various reasons. They are utilized for different tasks such as 
classification and serve as effective equalizers, exhibiting 
excellent bit error rate (BER) performance and possessing 
robust equalization capabilities (Musumeci et al., 2019). In 
addition, CNN is used for modeling optical fiber 
communication which yields exceptional predictive accuracy 
(Jiang et al., 2023). Therefore, this work uses CNN for modeling 
the optical fiber. This subsection provides a detailed 
explanation of the design of the CNN model, which is 
employed for optical fiber prediction in the AE-based GCS-
WDM system. 

Figure 8 illustrates the architectural setup of the CNN model 
used in this work. The model consists of two layers of one 
dimensional (1D)-CNN that the transmitted symbols tx are 
applied to it, without using max pooling layer, followed by a 
flatten layer. The flatten layer serves the purpose of converting 
the output data into a flattened vector format, guaranteeing 
compatibility with the succeeding fully connected layer (FCL). 
The sequential structure of this model allows for efficient 
extraction of features using convolutional processes. These 
features are then transformed into a one-dimensional vector 
representation, which is suitable for the processing 
requirements of the FCL. The FCL is positioned at the end of 
CNN network architecture and is considered as an output layer 
and it receives input from the preceding convolutional layer. 
The provided input is a vector derived from the feature map 
after it has been flattened (Liu & Zhao, 2023). The presence of a 
substantial number of trainable parameters makes the FCL 
layers necessary to accommodate intricate nonlinear 
discriminant functions in the feature space, where the input 
data pieces are transformed (Basha et al., 2020). 

 
 

 
 

 
 
 
 
 
 

Figure 8.  Architecture of the CNN that is used for optical 
 fiber modeling. 

 
5.3. Comparative analysis: Bi-directional gated 
recurrent neural networks vs. convolutional neural 
networks 
This section presents a performance comparison of the AE-
based GCS- WDM system using both Bi-GRU-NN and CNN 
modeling architectures. Both models undergo training for a 
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total of 150 epochs. The weights set is initialized using the 
Glorot initialization approach, which guarantees an efficient 
initialization of network weights to facilitate optimum learning 
during training (Rex et al., 2022). The batch size equals 1024 for 
each model.  When it comes to regression, the MSE is a reliable 
assessment metric for assessing the quality of an estimator. It 
takes into account both the variance and bias of the estimator. 
Therefore, the MSE is chosen as the assessment indication and 
a highly effective performance (Wang et al., 2020). The MSE in 
this work represents the mean of the squared amplitude 
errors, which is the average of the squared differences 
between amplitude values of the NN-ss produced and the 
NLIN-generated waveforms. The normalized MSE is used to 
statistically assess the similarities between the two simulation 
approaches. Given the simulation of optical communication 
systems using various optical launch powers, it is seen that the 
absolute MSE may grow with higher power levels. Therefore, 
instead of using the absolute MSE, the normalized MSE is 
preferred. The normalized MSE is defined as follows (Jiang et 
al., 2022) 

 

MSE_norm = 
∑ (𝒴𝒴�−𝒴𝒴)2𝑚𝑚
𝑖𝑖
∑ 𝒴𝒴�2𝑚𝑚
𝑖𝑖

                                                (7) 

where m denotes the sample size,  𝒴𝒴� represents the output 
label (i.e., rx) signal and the output signal generated by the 
ANN-ss is 𝒴𝒴. 

A comparison of the normalized MSEs of the ANN-ss versus 
epoch numbers between Bi-GRU-NN and CNN is shown in Figs. 
9 (a) and (b). For DP 64-QAM, baud rate (𝑅𝑅𝑠𝑠) = 40 Gbaud, the 
launch power ( 𝑃𝑃𝑁𝑁 ) = -2 dBm, and the number of channels 𝑁𝑁𝑐𝑐ℎ 
(a) = 32, (b) = 64. The normalized MSEs for both ANN models 
reach low levels of 10−3. More precisely, when 𝑁𝑁𝑐𝑐ℎ  is equal to 
32 and 64, the Bi-GRU-NN model exhibits normalized MSEs of 
3.64x10−3 and 3.90x10−3 respectively. By comparison, the 
normalized MSEs of the CNN for the identical channel 
topologies are 3.81x10−3 and 4.51x10−3. As a result, the ANN-
ss of Bi-GRU-NN shows smaller losses in comparison to CNN. 

 
 

 
 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 

Figure 9. Variation of the normalized MSE of the ANN-ss with 
epoch numbers for Bi-GRU-NN and CNN, DP 64-QAM, respectively. 

𝑁𝑁𝑐𝑐ℎ (a) = 32, (b) = 64, and  𝑃𝑃𝑁𝑁  = -2 dBm. 
 

Figures 10 (a) and (b) depict a comparison of the AE-based 
GCS-WDM system performance using the NLIN model, ANN-
ms using Bi-GRU-NN and CNN for various values of spans at 
𝑁𝑁𝑐𝑐ℎ (a) = 32, (b) = 64, 𝑅𝑅𝑠𝑠  = 40 Gbaud, and 𝑃𝑃𝑁𝑁 = -2 dBm in terms 
of BER as a function of the number of link spans, respectively. 
It is evident from these figures that the BER of the three 
systems is comparable at a small number of spans and gives 
BER values below the BER threshold (𝐵𝐵𝐵𝐵𝑅𝑅𝑡𝑡ℎ) for the different 
number of spans. The performance of the developed AE-based 
GCS-WDM system is enhanced in terms of BER when Bi-GRU-
NN is used to model the multi-span fiber link (i.e., the system 
response has a lower BER than when CNN is used to model the 
multi-span fiber link for the 32 and 64 channels). While an AE-
based GCS-WDM system was devised, it was determined that 
modeling the multi-span fiber link with CNN yields a more 
comparable BER to the optical fiber link. Tables 4 (a) and (b) 
provide a comparative analysis of the AE's performance when 
trained using the same system parameters given above, which 
lists BER for various values of  the results demonstrate that the AE-
based GCS-WDM system using the Bi-GRU-NN model gives better 
performance across various 𝑁𝑁𝑠𝑠𝑠𝑠 values. The simulation results 
reveal that the data-driven (ANN) model reduces computation 
time by approximately 7% compared with the numerical NLIN 
model, and this time reduction is almost independent of the used 
ANN configuration and number of spans. 

Figures 11 (a) and (b) display the learned constellation 
diagrams for 𝑁𝑁𝑠𝑠𝑠𝑠= 10 and 20 for 𝑁𝑁𝑐𝑐ℎ (a) = 32, (b) = 64, 𝑅𝑅𝑠𝑠  = 40 
Gbaud, and 𝑃𝑃𝑁𝑁 = -2 dBm. Using NLIN model, NN-ms for Bi-GRU-
NN and CNN. These figures show that the distribution of 
constellation points in the constellation diagrams at 10 spans 
is nearly identical for all three models at 𝑁𝑁𝑐𝑐ℎ = 32, and = 64, 
respectively, and these points are arranged in regular rings 
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and uniform distribution, which indicates a low BER. While at 
20 spans, leading to a greater BER, it is observed that the 
locations of the inner symbols slightly change so long as the 
BER remains below the 𝐵𝐵𝐵𝐵𝑅𝑅𝑡𝑡ℎ  but the outer rings remain  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

uniform. However, the better arrangement of the learned 
constellation of AE is by using the Bi-GRU-NN model that gives 
lower BER. Furthermore, it is observed that the constellation 
has been learned to tolerate NLI noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

(a)                                                                                                     (b) 
 
Figure 10. Variation of the BER with a number of spans for AE-based GCS-WDM system performance for DP 64-QAM using 
NN-multi-spans of Bi-GRU-NN and CNN for various values of spans. 𝑁𝑁𝑐𝑐ℎ (a) = 32, (b) = 64, and  𝑃𝑃𝑁𝑁  = -2 dBm. 

 

 

Table 4. Comparison of AE-based GCS-WDM system performance using NLIN model, NN-multi-spans for Bi-GRU-NN and CNN for 
various values of spans in terms of BER, assuming DP 64-QAM and 𝑃𝑃𝑁𝑁  = -2 dBm. (a) 𝑁𝑁𝑐𝑐ℎ = 32    (b)  𝑁𝑁𝑐𝑐ℎ = 64. 

 

Channel Model 

Bit Error Rate (BER) 

Number of Spans  𝑁𝑁𝑠𝑠𝑠𝑠  

1 5 10 15       20 

Fiber (NLIN) 7.23 x10−7 3.32 x10−4 1.24 x10−3 2.19 x10−3 3.31 x10−3 

Bi-GRU-NN 6.01 x10−7 2.15 x10−4 9.80 x10−4 1.72 x10−3 2.36 x10−3 

CNN 6.53 x10−7 2.53 x10−4 1.09 x10−3 1.94 x10−3 2.96 x10−3 

 
(a) 

 

Channel Model 

Bit Error Rate (BER) 

Number of Spans  𝑵𝑵𝒔𝒔𝒔𝒔  

1 5 10 15       20 

Fiber (NLIN) 8.03 x10−7 3.34 x10−4 1.26 x10−3 2.22 x10−3 3.35 x10−3 

Bi-GRU-NN 7.24 x10−7 2.56 x10−4 9.85 x10−4 1.65 x10−3 2.52 x10−3 

CNN 7.72 x10−7 2.94 x10−4 1.14 x10−3 1.95 x10−3 3.11 x10−3 

 
(b) 
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Figure 11. Learned constellation diagram at different numbers of spans for AE-based GCS- WDM system, assuming 𝑁𝑁𝑐𝑐ℎ  (a) = 

32, (b) = 64, 𝑁𝑁𝑠𝑠𝑠𝑠 = 10, and = 20, 𝑅𝑅𝑠𝑠  = 40 Gbaud, and 𝑃𝑃𝑁𝑁  = -2 dBm for DP 64-QAM. 
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6. Conclusion  
 

A versatile ANN-based low-computation model has been 
developed for optical fiber channel in WDM systems. The 
model has been applied successfully to a case study 
incorporating E2EDL-based GCS WDM systems designed with  
multi-span transmission link. The simulation results reveal 
that the data-driven (ANN) model reduces computation time 
by approximately 7% compared with the numerical NLIN 
model, and this time reduction is almost independent of the 
used ANN configuration. Further, The performance of the 
developed AE-based GCS-WDM system is enhanced in terms 
of BER when Bi-GRU-NN is used to model the multi-span fiber 
link for the 32 and 64 channels. While an AE-based GCS-WDM 
system was devised, it was determined that modeling the 
multi-span fiber link with CNN yields a more comparable BER 
to the optical fiber link. The better arrangement of the learned 
constellation of AE is by using the Bi-GRU-NN model that gives 
lower BER. Furthermore, it is observed that the constellation 
has been learned to tolerate NLI noise.   
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