

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 22 (2024) 846-862

Original

Intrusion detection system with an ensemble DAE and Bi-
LSTM in the fog layer of IoT networks

G. F. Edakulathura* S. Sheejab A. Johnc J. Josephd

aDepartment of Computer Science, Karpagam Academy of Higher Education, Coimbatore, India
bDepartment of Data Science, Sri Krishna Adithya College of Arts and Science, Coimbatore, India

 cDepartment of Mathematics, St. Thomas College (autonomous), Thrissur, India
dDepartment of Mathematics, Carmel College (autonomous), Mala, India

Received 03 08 2024; accepted 08 29 2024
Available 12 31 2024

Keywords: Intrusion detection, deep autoencoder, bidirectional LSTM, sparrow search
algorithm, multiple attacks detection

Abstract: The world is rapidly arriving at the period of the IoT, which connects all types of technology to digital
services and provides us with great ease. As the quantity of IoT-connected equipment increases rapidly, there may be
a rise in network vulnerabilities, leading to an increase in network threats. Fog computing seems to be a distinctive
paradigm that includes the cloud's network's edge, including practical computation and vital infrastructure. As a result
of easy access to resources, the fog layer renders the system susceptible to several threats. Tackling these challenges
entails detecting intrusions and tracing the route leading to the source of the threat. The objective of this study is to
offer a security mechanism and demonstrate how an intrusion detection system can guarantee the integrity of IoT
networks. Based on deep learning (DL) approaches, several promising intrusion detection systems (IDSs) have been
presented, however, they need time-consuming parameter adjustment in various situations. To address this issue, this
study suggests a hybrid Deep Auto Encoder (DAE) and Bi-LSTM for item installation in the fog due to the need to
safeguard essential infrastructure against prompt and efficient identification of malicious threats. Further sparrow
search optimization algorithm is proposed for parameter tuning. Utilizing IoT-based data, the effectiveness of the
suggested model is assessed. The outcome of the experiment obtained by analyzing the suggested IDS utilizing
CICIDS2017 and Bot-IoT datasets attested to their supremacy over modern systems that are currently available in
terms of precision, accuracy, false alarm rate, and detection rate. To learn more about how well this model works, two
additional metrics are added: Cohen's Kappa coefficients and Mathew correlation. The outcomes of our experiments
and simulations showed that the suggested approach was stable and reliable across a variety of performance criteria
and has achieved and accuracy of 98.7%. The experimental outcomes show that the proposed system can effectively
describe normal activity inside fog nodes and identify various kinds of attacks such as Benign, Port Scan, DDoS, DoS
GoldenEye, DoS Hulk and DoS Slowhttp.

∗Corresponding author.
E-mail address: edakulathur@hotmail.com (G. F. Edakulathur).
Peer Review under the responsibility of Universidad Nacional Autónoma de México.

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:edakulathur@hotmail.com
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 847

1. Introduction

Cyber-attacks are now becoming highly complex, making it
more difficult to accurately identify intrusions. The reliability
of security services, such as data protection, reliability, and
accessibility, could suffer from an inability to halt intrusions.
(Abeshu & Chilamkurti, 2018; Samy et al., 2020) To tackle
hazards to computer security, various detection techniques
have been developed. One of the security techniques that may
be used to identify breaches at any layer of an IoT architecture
and prevent security problems is intrusion detection.
(Ferrández-Pastor et al., 2018; Mohammad et al., 2012;
Vinayakumar et al., 2019). The majority of invasions are started
by attackers or unauthorized users. An attacker may try to use
the Internet to obtain remote access to a system or deactivate
a service. Accurate intrusion detection required knowledge of
how to effectively attack a system. Numerous techniques exist
for detecting intrusions, such as methods that rely on
statistical methods, cluster analysis, deep learning, or artificial
neural networks. An IDS is a proactive intrusion detection
technology used to quickly identify and categorize assaults,
intrusions, security policies, and violations at the host and
network levels of infrastructure. IoT-IDS will react in time to
stop the assault when the attack happens. As a security
measure for IoT networks, this technique can prevent attacks
before they happen. (Kasongo & Yanxia, 2020; Suhaimi etal.,
2019; Vinayakumar et al., 2019). The technology related to the
IoT is referred to as the fourth industrial revolution. It is a
system made up of interconnected software, computer
devices, sensors, mechanical & digital machines, and some
other techniques that allow connectivity and data sharing with
various systems and devices across the Internet without
requiring any interaction between people or computers. IoT
devices are easily attacked by hackers because they have
access to the Internet and lack adequate security safeguards.

Offering a productive structure to serve IoT and fog
computing has evolved as a development of cloud computing.
Fog serves as a facilitator by localized processing of the
endpoint user's demands and reducing communication lag
times between the final user and the cloud through the fog.
Because of this, the receiving network activity on the fog node
devices must be authentic. These systems are exposed to
multiple intrusions. Fog Computing has evolved as a
development of cloud computing by offering a productive
infrastructure to serve IoT. Fog is regarded as an evolution of
the cloud model from the network core to the network edge. It
is a platform that offers a high degree of virtualization, in the
words of Cisco, full cloud computing is often referred to as
fogging or edge computing, which simplifies computer
operations, and networking services between traditional

cloud servers, and end devices. Devices storing data at cloud
centres, end devices, and services connected to network fog
devices make up fog computing data storage. (Hassen et al.,
2020; Ijaz et al., 2021). Fog computing refers to a layer (fog) that
sits close to the edge between the cloud and end users. It has
appeared as a response to the issues with cloud computing's
high latency and high energy usage. Fog devices are
vulnerable to attack from malicious network entities because
they have few resources, such as processors and memory.
(Benrazek et al., 2020; Hussain & Beg, 2019; Liao et al., 2020). A
hacker or intruder could sneak into the network and damage user
information. An IDS is a strong tool for identifying intruders in a
network. IDS is a practical method for enhancing fog computing
privacy. In numerous sorts of research, an IDS based on fog
computing is developed to identify and prevent external threats.
IDS's main purpose is to develop an equal response strategy
according to the actions of the attacker. The performance of DL-
based intrusion detection is superior to other methods among
them. (Raza et al., 2013; V. Kumar et al., 2021).

In an existing model, a hybrid binary kNN-DNN classification
algorithm is proposed. (Khan et a., 2021). The method is based
on DN Network and the k Nearest Neighbour (k-NN) technique.
It's perfect for putting together the initial phase of the two-
stage detection technique used in the proposed design. (Roy
et al., 2022). Another study suggests a unique intrusion
detection model that is built on a classifier and a dimension
reduction technique that may be utilized as an online machine
learning approach. To scale down the dataset's dimensions
from its many different attributes to a select few, the
suggested model employs Principal Component Analysis.
(Pajouh et al., 2016; Salo et al. 2019). An existing technique
called Nave Bayes by anomaly Detect and Genetic Algorithm
Based Wrapper feature selection Model in fog computing
eliminates unnecessary qualities to cut down on processing
time while also creating an improved model that can forecast
outcomes utilizing the Knowledge Discovery Dataset for the
Security Laboratory. (Onah et a., 2021). Figure 1 portrays the
position of fog layer in IoT networks.

Figure 1. Fog computing.

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 848

There have been many deep learning-based intrusion
detection systems suggested for the Internet of Things. It has
merged hundreds of billions of items from various platforms
with the internet. IoT networks have been the target of
numerous hackers as a result of this convergence because it
combines the digital and physical worlds. Combining deep
learning with knowledge-based systems may help to solve the
issue. Therefore, a hybrid model may be the next development
for FOG-cloud IDS. Hence this paper aims to develop a method
for detecting intrusion in the fog computing model using
ensemble classification. In this paper, a hybrid deep
autoencoder (DAE) and Bi-LSTM device architecture that uses
the fog's advantages to deploy a timely and precise detection
of harmful behaviors for the IoT network is suggested. The
primary contributions of this study are as follows:
• A novel approach is suggested that combines the hybrid

deep autoencoder (DAE) and Bi-LSTM for system
implementation in the fog layer to protect essential
infrastructure from accurate and timely detection of
multiple attacks.

• This method is presented a sparrow search optimization
algorithm (SSOA) for parameter tuning.

• In the proposed model the performance of our proposed
methodology is assessed using IoT-based data.

• In comparison to current Models, our obtained results
analyzing the suggested IDS using Bot-IoT and
CICIDS2017 datasets prove their supremacy in terms of
false alarm rate, accuracy, precision, false alarm rate,
error rate, and detection rate.

• In order to better comprehend how this model performs,
two additional metrics: Cohen's Kappa coefficients and
Mathew correlation are considered. The results of our
simulations and experiments demonstrated the stability
and reliability of the suggested framework in terms of
according to a range of performance metrics.

• Utilizing comparison and analysis of the suggested IDS
with different solutions from the literature using the
CICIDS2017 and Bot-IoT datasets.

The structure of the manuscript is as follows: A brief of the
current IDS and related works utilizing various recurrent deep
learning models is given in Section 2. Section 3 suggested the
IDS's specific processes. Section 4 outlines the system
implementation, the experiments' justifications, and the
processing of the data set. The results and analyses are further
explained in Section 5 and the work is indicated and highlighted
in Section 6.

2. Literature survey

A system that detects intrusions, which is essential for a system,
acts as a clear defense line against cyber threats in the cyber
security area. Intrusion detection systems (IDS) are a powerful

method to find intruders in a network. Few research articles
have been validated by the material, discussed in this study.

Sharma et al. (2023) innovative anomaly-based IDS for IoT
networks make use of DL methods. In particular, they created
a DNN model using filter-based FS that eliminates strongly
correlated information. Additional parameters and
hyperparameters were added to the model to fine-tune it.
They employed the UNSW-NB15 database, which consists of
four threat classes, for their study.

A feature extraction method called "k-means clustering,"
which comes from signal processing, was introduced by
Shanker et al. (2023). It divides a collection of \(n\)
observations into \(k\) clusters, each of which is centered
around the observation with the closest mean. They used
Python and the KDDcup99 dataset in their work to use the k-
means algorithm and explore its possibilities. The efficacy of
the outcomes proved how successful their strategy was in
comparison to other publicly accessible options. They have
created a web-based system that can detect network assaults
by examining real network traffic packets.

Shandilya et al. (2023) presented a method for data
collection that entails the use of Wireshark and tcpdump to
record the network traffic of configured virtual computers.
They built up a dataset with 10 machines trying to take
advantage of one another while connected to Router1 on
VLAN 1 in a Docker Bridge network to examine the effects of
different cyberattack scenarios. The collection contains
actions like online surfing and downloading foreign programs,
some of which may be dangerous. Furthermore, a variety of
attack techniques were used to compromise services
including FTP and SSH.

Gudla et al. (2024) have presented a fog-based Internet of
Things attacks prediction system using DL models. The best
deep learning (DL) model with extreme precision is then
predicted for placement at the fog layer after evaluation of
many Deep Learning models, such as CNN + LSTM, GRU, Bi-
LSTM, LSTM, HEM, and DNMLP. To discover flaws in NW security,
this framework uses the LSTM DL model. According to this
study, the LSTMDL techniques surpass DNMLP regarding
properly predicting the attackers, although it requires more
time to detect activity (CBDT) than other models. In order to
evaluate the behavior of end IoT systems, the LSTMDL concept
is configured in such a fog nodes computer module. SDN is
taken into consideration while experimenting on the
Anaconda platform.

Banaamah and Iftikhar (2022) have suggested DL-based
detection techniques built on Gated Recurrent Units (GRUs),
CNN, and LSTM. This study applied an established dataset IoT
for intrusion detection called Bot-IoT. The raw dataset was
processed as part of the pre-processing to ensure it was
suitable for a DL approach. Standardization, normalization,
and data cleaning are all part of this process. In the feature

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 849

selection process, four functionalities for Bot-IoT are selected.
To categorize the attacks, they used three different kinds of
neural networks. For the experiments, the datasets were split
into training and testing datasets. This dataset was compiled
using a realistic network configuration with both botnet and
regular system traffic. They built our classifiers using the Kera
library, which employed TensorFlow as its backend.

Ramkumar et al. (2022) have discussed using a fog
computing platform to implement a hybrid ensemble classifier
driven by optimization. The fog, cloud, and endpoint layers in
fog computing are used as a trio to perform all of the processing.
Three operations, including data transformation, feature
selection, and classification, were executed in the cloud layer.
By using log transformation, data is transformed. A feature is
determined by utilizing Smirnov- Kolmogorov filter based on
correlation. After that, data is classified using ensemble
classifiers such as Shepard CNN, deep Neuro-Fuzzy Network
(DNFN), and RideNN. The created Rider Sea Lion Optimized
(RSLO) technique is used to tune the ensemble classifier. By
combining the optimized Rider algorithm and Sea Lion
Optimization, the RSLO algorithm has been developed.

According to Reddy et al. (2021) the device is exposed to
multiple attacks due to the fog layer's quick access to resources.
A unique breed of services that serve a broad range of IoT device
applications is made possible by fog computing. Their research
aims to provide a security mechanism and ensure that IoT
networks are operating truthfully through the use of an
intrusion detection framework. For device implementation in a
fog based on the Exact Greedy Boosting ensemble technique,
Reddy et al. demonstrated a system for detecting network
intrusions. This suggested model investigates the monitoring of
network traffic new intrusion Database 2020 data by
determining and categorizing the kind of attacks depending on
deviations from typical behavior. Utilizing a variety of machine
learning and upgrading classifiers with XGBoost-based network
IDS (NIDS) under fine-tuning of hyperparameters to detect
anomalies. The fundamental machine learning technique is
employed with several distributions sequentially to find the
defective rule and rectify its existing one, resulting in the
creation of a novel weak prediction. The suggested NIDS model
is trained using the XGBoost approach and is superior to
traditional ML algorithms.

 P. Kumar et al. (2021) have presented IDS based on an
ensemble distributed design that incorporates XG Boost,
Gaussian naive Bayes, and k-nearest neighbors, as the first
individual learners and also is based on fog computing.
Random forest uses the first-level prediction findings to inform
the final categorization at the second level. Pre-processing is
done on the data from the training dataset during the first
phase. It contains feature mapping, which turns categorical
variables into numerical features, mutual information-based
feature selection, imputation of missing values, and standard

scalar feature normalization to create an optimum feature set.
A mapping strategy is utilized that combines one hot label
encoding (OHLE) and one hot encoding (OHE). This method
uses a feature selection mechanism based on clear
understanding. They are subjected to a test using UNSW-
NB15, and the suggested method is verified by the use of an
authentic DS2OS Iot-based dataset.

Yazan et al. (2022) have proposed DL-based IDS on deep
learning to identify security risks in IoT environments. To obtain
the best detection and recognition, our suggested module
combines the Deep Stacked Polynomial Network (DSPN) with
the spider monkey Algorithm (SMA) technique; in the data sets,
SMO chooses the best characteristics, while SDPN categorizes
the data as normal or anomalous. Pre-processing is done in the
beginning to get rid of uncertainties in the normalized data set.
Redundancy removal and missing value replacement are two
efficient methods that are applied during pre-processing. The
pre-processing step was first compared using similarity
measures in the data of the data set which then calculated the
distance between each pair of data using the Minkowski
distance. Best features are chosen from the dataset at this stage
after the pre-processing step, which removes any uncertainties
from the dataset. The SDPN classifier's learning time is reduced
mostly by best feature selection. The SMO model is modified: a
fission-fusion social system-inspired optimization algorithm
based on food foraging, to select the best features. The
technique has been employed in many technical fields since it
is simpler to use in complex optimization problems and
requires fewer control parameters.

Zeeshan et al. (2021) have presented a Deep Intrusion
Detection Based Protocol (DIDBP) method, comparing
characteristics of the Bot-IoT and UNSWNB15 data sources
based on TCP and flow to create a data set of packets of IoT
traffic. Both sets of data's common properties for flow and TCP
category are examined and integrated with PB-DID. The LSTM-
based deep model with 26 features is created using the entire
set of data from the Bot-IoT and UNSW-NB15 data sets via the
suggested DIDBP architecture (by merging them to produce a
single customized data set). The problem of data imbalance
was also overcome during the integration of the data sets.

Intrusion detection is one of the primary security methods
and aims to pinpoint attempted assaults findings from any of
the research on intrusion detection in the Literature Survey are
not satisfactory. Table 1 provide the accuracy obtained by the
existing methods reviewed in this manuscript. Additionally,
they have a high probability of false alarms and poor
detection. In order to prove their effectiveness in real-time
deployments, they must first be trained and assessed on
realistic datasets. Due to the non-representative nature of the
dataset used for training and evaluating the underlying
models, several methods suggested in the literature have
been observed to have low accuracy and be unsuccessful in

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 850

real applications. In order to stop multiple attacks in cloud
networks, a distributed ensemble design-based IDS is
suggested in this research employing fog computing.

Table 1. Datasets and accuracy of existing models.

Model Dataset Accuracy

(Sharma et al., 2023) UNSW-NB15 91.00%
(Shanker et al., 2023) KDDcup99 98.00%
(Shandilya et al., 2023) Generated

Dataset
NA

(Gudla et al., 2022) DDoS-SDN 99.70%
(Gudla et al., 2022) NSL-KDD 99.12%
(Gudla et al., 2022) UNSW-NB15 94.11%
(Gudla et al., 2022) IoTID20 99.88%
(Banaamah & Iftikhar, 2022) Bot-IoT 99.60%
(Ramkumar et al., 2022) UNSW-NB15 97.2%
(Reddy et al., 2021) IoTID20 99.4%
(P. Kumar et al., 2021) UNSW-NB15 93.21%
(P. Kumar et al., 2021) DS2OS 99.17%
(Yazan et al., 2022) NSL-KDD 99.02%
(Zeeshan et al., 2021) UNSW-NB15 96.3%

3. Methodology

Fog computing is a methodology that expands the cloud to
networks to address issues specific to clouds. Fog technology is
a more recent type of computing with a variety of features that
set it apart from cloud computing. As an outcome of insufficient
resources, the fog nodes are vulnerable to cyber-attack. In order
to improve service quality, IDS are a crucial part of the security
of the fog network. IDS are an effective technique for locating
network intruders. The conventional security of a network is
difficult to prevent multi-source intrusion and cross-domain,
much like physical security technologies. Since identifying
malicious traffic is crucial for network security, so a system is
recommended for intrusion detection should be used in fog
circumstances in our research. In this instance, the fog nodes
are in charge of gathering data from various network sensors
and devices and conducting preliminary processing on it.

The steps that follow are included in the proposed method:
Data collection, pre-processing, and feature extraction and
categorization are the initial main steps. The network data are
initially gathered from two benchmark datasets. The following
phase then focuses exclusively on data pre-processing. A
successful learning process depends on this step.
Standardization, data cleansing, and normalization are the
three stages of data pre-processing. Following pre-processing

of the data, features are retrieved using Deep Autoencoder
(DAE) and converted and classified into a format that can be
utilized to instruct a deep learning technique.

The Bi-LSTM method is then trained using the features that
were extracted for the multi-classification. The hybrid deep
autoencoder (DAE) and Bi-LSTM architecture suggested is seen
in Figure 2. The suggested hybrid model has decent accuracy.
The steps that follow are included in the proposed method:
Data collection, pre-processing, and feature extraction and
categorization are the initial main steps. The network data are
initially gathered from two benchmark datasets. The following
phase then focuses exclusively on data pre-processing. A
successful learning process depends on this step.
Standardization, data cleansing, and normalization are the
three stages of data pre-processing. Following pre-processing
of the data, features are retrieved using Deep Autoencoder
(DAE) and converted and classified into a format that can be
utilized to instruct a deep learning technique. The Bi-LSTM
method is then trained using the features that were extracted
for the multi-classification. The hybrid deep autoencoder
(DAE) and Bi-LSTM architecture suggested is seen in Figure 2.
The suggested hybrid model has decent accuracy.

3.1. Data sets
For training and testing, two raw network packet databases
namely CICIDS2017 and Bot-IoT are employed. Unlike other
research using a portion of the dataset, entire data from the
datasets are used for model training. A brief explanation of
both the datasets is given below.

The CICIDS-2017 was launched by the Canadian
Institution of Cyber force (CIC) in 2017. It includes updated
real global attacks as well as the usual flows. It includes
updated real-world attacks as well as common processes.
The information premised on protocols, destination IP
addresses, source timestamps, and attacks are used by
CICFlowMeter to evaluate the network traffic. Additionally,
this dataset includes the most current cyber-attacks,
including Port Scan, Infiltration, DDoS, DoS, SQL injection,
BoT, and Brute Force. 2,830,743 records from the CICIDS-
2017 are contained in eight files with 78 unique features per
record. It also includes research from a CICFlowMeter
network traffic analysis study, which comprised flows
labelled according to the date, destination ports, assaults,
destination IP addresses, and source and protocols.
Kurniabudi et al. (2020). Table 2 displays the CICIDS2017
distribution such as types of attacks in dataset, number of
records on each attack and their percentage.

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 851

The Bot-IoT data was created by the Cyber Range Lab of the

Australian Centre for Cyber Defence. This data set is one of the
newest datasets in the sector. Koroniotis et al. released the
database in 2018 (Koroniotis et al., 2019). It has over 72 million
recordings and combines simulated and real-time settings.
The Bot-IoT dataset is the appropriate dataset for the tests
since it includes IoT-generated network traffic as well as a wide
variety of attacks, and regular updates, and can be used to
distinguish points from new datasets. A recently developed
dataset is used for Bot-IoT assault identification in an IoT

 network context. The four types of attack records are listed
here: Reconnaissance, theft, DoS, and DDoS. The
subcategories of DoS and DDoS include UDP TCP and HTTP.
The dataset comprises traffic flows from botnet attacks as well
as regular traffic on the Internet of Things and many more
cyber-attacks. The realistic testbed is utilized to generate this
dataset with efficient information features in order to track
correct traffic. Table 3 displays the Bot-IoT Dataset
distribution such as types of attacks in dataset, number of
records on each attack and their percentage.

Figure 2. Architecture of the proposed model.

Table 2. CICIDS2017 dataset.

Flow Type
Number of

Records
Percentage

Benign (Normal) 339621 61.32%
DoS GoldenEye 7458 1.35%
DoS Hulk 14108 2.55%
DoS Slowhttp 4216 0.76%
DoS Slowloris 3869 0.70%
SSH Patator 2511 0.45%
FTP Patator 3907 0.71%

Web
Attacks

SQL
Injection

12 0.00%

XSS 631 0.11%
Brute
Force

1353 0.24%

BotNet 1441 0.26%
Port Scan 158673 28.65%
DDoS 16050 2.90%

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 852

Table 3. Bot-IoT dataset.

Flow Type Number of
Records

Percentage

Benign (Normal) 9543 0.013%
Information
Gathering

1821639 2.480%

DDoS 38532480 52.500%
DoS 33005194 45.000%
Information Theft 1587 0.002%

3.2. Data pre-processing
On the CICIDS-2017 and Bot-IoT datasets for training and
testing, the pre-processing steps below were used. Pre-
processing is a helpful technique that aims to clean it up data
and remove noise. The raw dataset is processed in this step to
make it acceptable for this algorithm. This is the method's initial
stage. (Yin et al., 2023). Processing data aim to modify
unstructured database into a simpler and more practical format
for further processing stages. The step is divided into three sub-
steps including standardization, data cleaning, and
normalization. Dataset standardization is the initial stage. This
process is crucial because it makes sure that the data are all
scaled equally, and their normally distributed value lies
between 0 and 1. The normalization of data is the second phase.
The process of normalisation entails data transformation.
Negative values, which neural networks rejected, must be
avoided using this procedure. Each data element in the dataset
was normalised between 0 and 1. In the third and final step,
known as data cleaning, unnecessary data, such as NaN and
null values, are eliminated. (Jairu & Mailewa, 2022) Following are
the various data pre-processing steps.

Standardization is technique that implies that the datasets
will be compressed to fall between zeros (0s) and ones (1s) using
Batch Normalization, which tackles the issues of gradients that
expand or collapse due to rapid learning rate in a conventional
deep network. Normalizing network activations avoids small
parameter changes from amplifying into larger and less variable
gradient activation. i.e., it keeps the training from becoming
trapped in nonlinearities' saturated regimes. The Min-Max
Rescaling method can be used to achieve this. Every value in a
column will be replaced by a new value using Eq. (1) below
when using min-max scaling:

 𝑚𝑚 = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 −𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 :𝑚𝑚 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,
𝑥𝑥=𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 cell value, (1)

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = minimim value of the column,
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = maximum value of the column.

The database was examined by the data cleaning method

to see if any columns or rows contained blank or unutilized
values. Then, the means of the values that were empty or

unused before and after the sample are estimated. Finally, the
null values are replaced with the mean. As a result, outliers
were removed, and more consistent data were generated.

In order to scale the data into a particular range [0, 1],
normalization was used without altering the normalcy of the
data behaviours. By tackling local optimal issues, this stage
facilitates the convergence of the statistical method and deep
learning techniques and helps them fulfil their goals. To
enhance data quality, this method focuses on pre-processing
and normalization. The normalization technique map
characteristics between 0 and 1 using the min-max
normalization in Eq. (2). The minimum value for each feature
is set to 0, the max value to 1, and any other value is
transformed into a decimal number between 0 and 1.

𝑋𝑋[𝑖𝑖] = (𝑋𝑋[𝑖𝑖]− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑋𝑋max − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) (2)

3.3. Features extraction
An intrusion prevention method for the Fog computer system is
suggested in this work. It is essential for protection to recognize
harmful traffic networks. This article describes our Deep Auto
Encoder (DAE) and Bidirectional LSTM (BiLSTM)-based proposed
technique for intrusion detection. Although DAE achieves
decent accuracy on its own, Bi-LSTM is used to improve the
accuracy further. This section contains the method of feature
extraction utilizing a Deep Autoencoder (DAE).

3.3.1. Deep autoencoder
An autoencoder is a traditional unsupervised neural network
that uses repeated back propagation to attempt to set its
target values to equal its inputs. An autoencoder is a type of
neuronal structure that encodes input base data for output
data reconstruction. The autoencoder must first learn to
recognize the key input features in order to start this
procedure. The deep autoencoder is a powerful unsupervised
feature representation method with several buried layers. The
neural idea of learning data is motivated by the fact that the
characteristics of hidden nodes are automatically learned
from the input data and are not manually generated. During
transformation, the deep features in high dimensions are
compressed to low dimensions with very small distortion. The
deep characteristics of the series of frames are learned and
retrieved, together with its underlying patterns and shape
changes utilizing a reliable four-layer stacked autoencoder
design, as shown in Figure 2. The first layer conveys 8000
neurons to a 15000-dimensional feature map, followed by
reductions in dimensions of 4000, 2000, and 1000,
respectively. To make the autoencoder's temporal complexity
less complicated, high-dimensional data is reduced by a half
factor. High computational complexity is produced by
compressing high dimensional data with few deep layers and
simple techniques. In the input data, the DAE learns "part-
whole decomposition” or "hierarchical grouping" (Ullah et al.,

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 853

2019; Badr & Samma, 2022; Tong et al., 2020). The early stages
of the Deep stacked autoencoder collect the changes and
initial order characteristics in the raw original input data. The
second-order features that correspond to the patterns
observed in the first-order features are taught to the
intermediate layers on the other side. (Zhou et al., 2020). The
AE comprises two phases: encoding, in which weights and
biases are added to the data, and some non-linearity function,
such as the sigmoid and relu has given in Eq. (3) Following that,
the data is decoded to the same number of inputs as in Eq. (4).
To bring the mean squared error close to zero; the weights are
modified using a backpropagation algorithm.

ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊𝑊𝑊 + 𝑏𝑏) (3)

𝑥𝑥� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊(ℎ(𝑥𝑥)) + 𝑏𝑏) (4)

In the deep stacked autoencoder, the initial hidden layer
receives input x, meanwhile, the other receives information
from the prior hidden layer, as shown in Eq. (5) and Eq. (6).
Here 𝑥𝑥𝑙𝑙,𝑊𝑊𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑙𝑙 are the data, ‘‘n’’ represents the number of
encoding layers, the biases of the relevant layer, and the
weights, respectively.

ℎ(𝑥𝑥)(𝑙𝑙+1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊𝑙𝑙𝑥𝑥𝑙𝑙 + 𝑏𝑏𝑙𝑙) (5)

𝑋𝑋�(𝑛𝑛+𝑙𝑙+1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊(𝑛𝑛−𝑙𝑙)ℎ(𝑥𝑥)(𝑛𝑛+𝑙𝑙) + 𝑏𝑏(𝑛𝑛−𝑙𝑙) (6)

The suggested DAE can be developed for 400 epochs. The

L2 weights regularisation is used to reduce the "falling into
local minima" and over-fitting problems. Additionally, a sigma
value 0.05 is used for the sparsity regularisation, which results
in an average output of 0.5 for each hidden layer neuron over
the training data.

In order to fine-tune the DAE weights, mean squared fault
(MSE) with L2 regularisation and sparsity adjustment is utilized
as a cost. The mistake is reduced up to 10−2in 300 epochs, and
during the final epoch of the training phase, it was 0.0077.
Testing and training are the two stages of the DAE-IDS. In the
training phase, the system builds a model based on the
suggested DAE model using a training dataset. In the testing
phase, the system uses the model for detecting the label of
unseen data (test dataset) to estimate how well it will function
if deployed online. Input, hidden, and output layers are the
three types of layers that make up DAE. The training dataset
serves as the input layer. The 117 features from the CICIDS2017
and Bot-IoT data base are all represented in the input layer of
our DAE model. (Huang et al., 2015).

3.3.2. Bidirectional LSTM (BiLSTM)
The proposed DAE-based strategy for extracting the feature is
described here. Furthermore, Bi-LSTM is used to classify the

data. Data are grouped by classification based on a label or
target class. The techniques for solving classification issues
belong to the category of supervised learning. In this model,
the Bi-LSTM classification algorithms are employed to assess
how the suggested framework improves classification
performance. A new recurrent neural network learning design
is suggested to address this demand, which can improve the
structure's temporal organization. (Zhu & Nasser, 2021). At the
next time stamp, the output can be instantaneously fed back
into itself. RNN is a model that is frequently used in deep
learning. Deep neural networks have successfully learned the
hierarchical aspects of natural language in recent sentiment
analysis experiments. However, RNN suffers from a slant
disappearing gradient exploding problem, whereas the A
memory module in the LSTM has the ability to select which
data should be stored in memory and when it should be
deleted. As a result, LSTM can successfully address the issues
of gradient disappearance and training challenges by mining
time series with delays in the time series and comparatively
large intervals. There are three layers in a standard LSTM
network framework: input, hidden loop, and output. The cyclic
hidden layer, in contrast to the conventional recurrent neural
network, mostly consists of neuron nodes. Memory modules
serve as the foundational building block of LSTM cyclic hidden
layers. Output gate, forget gate, and Input gate are the three
adaptive multiplication gating units contained in this memory
module. The LSTM's each neuron nodes carry out the
following calculation: The input gate is set at time t in
accordance with the output outcome ℎ𝑡𝑡−1of the unit at the
time in question and is given in Eq. (7). The input 𝑥𝑥𝑡𝑡 at that
precise instant depends on whether to do a calculation to
update the current data in the cell.

𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑊𝑊𝑡𝑡 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑡𝑡) (7)

A forget gate is used to determine whether to keep or put

away the information depending on the most recent hidden
layer output and the current time input and is given in Eq. (8).

𝑓𝑓𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (8)

The previous output result ℎ𝑡𝑡−1 of the hidden layer LSTM
cell determines the value of the current candidate memory cell
and the current input data 𝑥𝑥𝑡𝑡. At this instant, Character ∗ is the
element-wise matrix multiplication, the memory cell state
value 𝐶𝐶𝑡𝑡 modifies the current candidate cell 𝐶𝐶𝑡𝑡 and its own
state 𝐶𝐶𝑡𝑡−1input gate and forget gate. These memory cell state
values are given in Eq. (9) and Eq. (10).

 𝐶̄𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) (9)

 𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶̄𝐶 (10)

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 854

Output gate 𝑜𝑜𝑡𝑡 is determined as shown in Eq. (11) and it is
utilised to regulate the value of the cell status. The result of the
final cell is ℎ𝑡𝑡, which can be written as Eq. (12).

𝑜𝑜𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (11)

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡) (12)

The forward LSTM network and backward LSTM network

make up the Bi-LSTM. Both the forward and the backward
LSTM hidden layers are in charge of extracting features; the
forward layer extracts features in the forward direction. The Bi-
LSTM model can be used to take into account the effects of
each characteristic both before and after the sequence data.
As a result, more detailed feature information is acquired. Bi-
LSTM's current state contains both forward and backward
output and they are given in Eq. (13), Eq. (14) and Eq. (15)

ℎ𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡,𝐶𝐶𝑡𝑡−1) (13)

ℎ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡,𝐶𝐶𝑡𝑡−1) (14)

𝐻𝐻𝑇𝑇 = ℎ𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,ℎ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (15)

Therefore, the proposed model uses a Deep Autoencoder

to extract the feature and a Bidirectional LSTM (Bi-LSTM) to
classify the data. The Sparrow Search Optimization Algorithm
(SSA) will then be used to implement the tuning parameter. By
selecting a range of values and doing the experiments, the
parameters are tuned. The ideal values are selected, resulting
in the highest level of precision (Huang et al., 2015).

3.4. Sparrow search optimization algorithm
A novel version of the swarm intelligence algorithm called the
Sparrow Search optimization Algorithm (SSOA), has been set to
use in a variety of applications. Due to its distinctive qualities,
including its worldwide search capabilities, a small set of tuning
parameters, and clear structure. Around the world, farms and
forests are home to a variety of little birds known as sparrows.

In the past, sparrows could be found all over Europe, as well
as in some regions of North Africa and Asia. However, sparrows
were brought to these regions by migrants from other
continents, such as Australia and the United States, and now
they are part of the local ecosystem. Among the omnivorous
birds, sparrows mostly take seeds but can also eat small insects,
berries, and fruits. Some sparrow species, including pigeons
and house sparrows grown in captivity, are used to residing in
urban areas. This little bird will eat absolutely everything.
Currently, the house sparrow is the wild bird species with the
greatest global distribution. Although this particular species of
the sparrow is intimately tied to human surroundings, other
sparrow species also frequented residential areas. Sparrows

can be found in a wide range of climates and environments;
however, they normally stay closer to inhabited cities and stay
far away from meadows, deserts, and deep forests. This species
has two different types of individuals: the scrounger and the
producer, and while the producers search for sources of food,
the scroungers get their food by nagging the producers. The
birds frequently alternate scrounging and creating, as well as
flexible interactive plans. It can also be said that sparrows
typically employ both producer and scavenger strategies to find
food. The studies suggested that each person in the group
keeps an eye on one other's behaviour. In the meantime, the
flock's predatory birds battle for the food sources of their friends
who consume more than they do. Additionally, sparrows'
energy stores play a key role in their decision-making process
when it comes to hunting tactics; sparrows with insufficient
energy collect more (Zhu & Nasser, 2021).

The sparrow search optimization method makes use of
sparrows' predatory and anti-predatory behaviour as a novel
method for swarm intelligence optimization. The SSA process is
divided into the following steps, and Figure 3 depicts a flow
diagram for its algorithm.

Figure 3. Sparrow search algorithm.

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 855

Step 1: number of explorers, the location of the sparrow,
and the primary components of parameter initialization are
setting the number of sparrows and the number of iterations.
The quantity of n sparrows can be expressed as:





















=

d
nnn

d

d

xxx

xxx
xxx

X









21

2
2
2

1
2

1
2
1

1
1

 (16)

where𝑋𝑋𝑑𝑑𝑛𝑛specifies the location of the 𝑛𝑛𝑡𝑡ℎ sparrow in

dimension d; d is the dimension of the variable to be
optimized, and n is the population size.

Step 2: Establish the objective method and arrange the
sparrow places. The following list identifies the 𝑖𝑖𝑡𝑡ℎ sparrow's
objective function:

𝐹𝐹𝑖𝑖 = 𝑓𝑓� �𝑥𝑥𝑖𝑖1 𝑥𝑥𝑖𝑖2 ⋯ 𝑥𝑥𝑖𝑖𝑑𝑑� � (17)

where the objective function is denoted by F.
Step 3: Determine if the population is safe where it is at the

present and alter the explorer’s location.

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝑖𝑖
𝛼𝛼⋅𝑏𝑏
� ,𝑅𝑅2 < 𝑆𝑆𝑆𝑆

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑄𝑄𝑄𝑄 ,𝑅𝑅2 ≥ 𝑆𝑆𝑆𝑆

 (18)

where 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 denotes the value of the 𝑗𝑗𝑡𝑡ℎdimension in the

𝑖𝑖𝑡𝑡ℎsparrow in 𝑡𝑡𝑡𝑡ℎiteration; max amount of iteration is
represented by the constant 𝑏𝑏;A randomly distributed
number, 𝑅𝑅2 represents the warning factor in the range of [0,
1].; The safety threshold, denoted by the symbol 𝑆𝑆𝑆𝑆, has
values between [0.5, 1.0]; Q is an odd amount subjecting to
standard distribution, L is 1 × 𝑑𝑑 dimensional matrix; When
𝑅𝑅2 > 𝑆𝑆𝑆𝑆 means the nearby area is considered secure, and the
sparrow swarm departs in search of food. On the other hand,
the current area is in danger, thus the explorer must lead the
sparrows swarm together in quest of a fresh food supply.

Step 4: Obtain a position update and ascertain the
follower's status. The following changes have been made to
the area:

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
𝑄𝑄 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑋𝑋𝑤𝑤𝑡𝑡 −𝑋𝑋𝑖𝑖𝑖𝑖
𝑡𝑡

𝑖𝑖2
� , 𝑖𝑖 > 𝑛𝑛 2⁄

𝑋𝑋𝑝𝑝𝑡𝑡+1 + �𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑝𝑝𝑡𝑡+1� ⋅ 𝐴𝐴+ ⋅ 𝐿𝐿 , 𝑖𝑖 ≤ 𝑛𝑛 2⁄
 (19)

where 𝐴𝐴+ = 𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝑇𝑇)−1, 𝑋𝑋𝑤𝑤 is the worst position in the

population of sparrows represents the worse position; 𝑋𝑋𝑝𝑝 is in
place of the ideal explorer; When 𝑖𝑖 > 𝑛𝑛 2⁄ , it means that the
follower its poor positioning and lack of access to food; A is a

1 × 𝑑𝑑 dimensional matrix with random generation of each
dimensional value [−1,1]. Follower needs to go to different
locations where it can receive more food. On the other hand,
it keeps looking for food close to the explorer.

Step 5: When few of the sparrows notice a danger, they
become scouters and update the locations as follows:

()








=













+−

−
⋅+

>−⋅+

=+

gi
wi

t
b

t
ijt

ij

gi
t
b

t
ij

t
b

t
ij ff

ff

XX
KX

ffXXX

X
,

,
1

ε

β
 (20)

Wherein the population of sparrow 𝑋𝑋𝑏𝑏 indicates the

population's ideal position; 𝑓𝑓𝑔𝑔 is the objective functions of the
best value;𝑓𝑓𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ sparrow objective function, and 𝑓𝑓𝑤𝑤is
represents the worst range of the target value; K is a
standardised odd amount with range of [−1,1]; β is a typical
properly a widely spaced odd number. In order to keep the
denominator from reaching zero, ε is a smaller value.

Step 6: Develop a distinct essential performance.
Step 7: Ascertain whether the iteration stop condition is

attained; if it is not, repeat steps 3 through 6.

4. Result and analysis

A detailed discussion of the suggested method's evaluation
criteria and specified dataset is provided in this part. To detect
threats in the IoT network environment, first, the dataset and
then the evaluation criteria are addressed. The Sparrow Search
Optimization Algorithm is used to perform parameter
adjustment after the data was classified by BiLSTM.

4.1. Dataset description
Two datasets, Bot-IoT and CICIDS-2017, were used to test the
DAE-BiLSTM model and compare it to various techniques. The
majority of researchers examine the efficacy of suggested
systems using these datasets.

The Canadian Institution for Cyber-security provided the
CICIDS-2017 database as an open-source intrusion detection
dataset in 2017. The dataset includes safe and recent major
strikes like DoS, Brute force, Web-based, infiltration, heart-
bleed, BOT, and DDoS. The PCAP traffic data are analysed for
network traffic using CIC Flow Meter to produce CSV files. The
mot recent common attacks are listed in the program known
as the CIC Flow Meter, which is available to the public on the
CIC website (Canadian Institute for Cybersecurity, 2017). One
of this dataset's features is its ability to produce realistic
background traffic. The B-Profile creates naturalistic benign
background traffic and is in charge of profiling the abstract
behaviour of human interconnections. The B-Profile for
CICIDS2017 uses HTTPS, HTTP, email protocol, SSH, and FTP to

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 856

extract the abstract behaviour of 25 users. In this work, a total
of 2830743 instances and 80 features are employed, where
there are 2273097 benign and 557646 malicious attacks,
respectively. A ratio of 60% to 40% was used to divide it into
training and test datasets.

Bot-IoT data made accessible by UNSW Cyber Range Lab in
Canberra. Given that it was developed in an environment
specifically designed for the Internet of Things and contains a
sufficient number of records with diverse network profiles.
This dataset provides a true representation of an IoT network.
Over 72 million recordings of network activity in a simulated
Internet of Things environment make up the Bot-IoT dataset.
Additionally, a dataset contained 3.6 million records is used,
for this research. The original dataset contains lists of the top
10 features, which were also utilized in this study. Each of the
training and test datasets has five output classes that
represent both the regular traffic and the four different kinds
of attacks that were made against the IoT.

4.2. Data pre-processing
Data processing is necessary for all information retrieval
processes, particularly network-based intrusion detection
attempts to distinguish between regular and abnormal network
traffic. Kurgan and Musilek evaluated the many formal process
models that have been suggested for knowledge discovery and
data mining (KDDM). These models predict that the data pre-
processing phase requires 50% of the total process work,
whereas the data mining activity only requires 10% to 20% of
the total process effort. So, the data pre-processing stage is the
main emphasis of this work. Standard pre-processing
procedures include standardization, normalization, and data
cleaning. Graphical representation of distribution of records of
each type of attacks before and after data pre-processing is
given in Figure 4 and Figure 5 for CICIDS2017 dataset and in
Figure 6 and Figure 7 for Bot-IoT dataset.

Figure 4. Before pre-processing data (CICIDS2017).

Figure 5. After pre-processing data (CICIDS2017).

Figure 6. Before pre-processing data (Bot-IoT).

Figure 7. After pre-processing data (Bot-IoT).

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 857

4.3. Training and testing
To measure the model's functionality, the dataset was split
into train and test sets. Data were used for training in the
proportion of 80% and testing at 20%. Table 4 provide a brief
description of splitting of dataset records for training and
testing the proposed model.

Table 4. Summary of datasets.

Dataset Attacks Training
Data

Testing
Data

CI
CI

DS
20

17

Normal 3,18,087 1,36,219
Infiltration 5 1
Web Attack 292 134
Port Scan 22,324 9,558
BoT 265 102
DoS/ DDoS 53,427 23,018
Brute Force 1,904 813
Total 3,96,304 1,69,845

Bo
t-

Io
T

Normal 286 191
DoS 1,46,293 97,529
DDoS 1,63,287 1,08,858
Reconnaissance 54,649 36,433
Theft 47 32
Total 3,64,562 2,43,043

Figure 8 and Figure 9 displays how DAE-BiLSTM performed

for the CICIDS2017 dataset in terms of training and analysis
accuracy. With a size of 10 epochs or greater batch, there is an
improvement in the training and testing accuracy for multi-
classification.

Figure 8. Model accuracy using CICIDS2017.

Figure 9. Model loss using CICIDS2017.

Figure 10 and Figure 11 displays the DAE-accuracy BiLSTMs
in training and validation for the Bot-IoT dataset. An increase
in epochs and a batch size of 10 for multi-classification
indicates an improvement in training and testing accuracy.

Figure 10. Model accuracy using Bot-IoT.

Figure 11. Model loss using Bot-IoT.

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 858

4.4. Performance evaluation
Along with various performance evaluation measures such as
accuracy, Error rate, false alarm rate, Detection Latency,
detection rate, and precision, two more performance
measures are added: Matthew Correlation and Cohen's Kappa
Coefficient. The primary motivation for this new adaption is
monitoring the performance stability of recursive networks.
Our proposed DAE-BiLSTM model's effectiveness is
determined. These metrics are provided in the equations
below:

The accuracy of a model's predictions is measured as a
percentage of correct predictions. Based on its confusion
matrix, a classification model's accuracy is measured. A
balanced dataset is used to give a comprehensive evaluation
of the model. It is characterized as the ratio of accurate
predictions to all other predictions, and this can be calculated
utilizing the Eq. (21).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
 (21)

where FN=false negatives, FP=false positives, TN=true

negatives and TP=true positives
The detection rate is expressed as the discrepancy between

the actual and anticipated numbers of anomalous samples.
The DR represents the method's capacity to evaluate attacks,
a crucial indicator in IDSs. The specific computation is stated
as follows:

𝐷𝐷𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐷𝐷𝐷𝐷) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (22)

The false alarm rate also referred to as the false positive

rate, calculates the percentage of regular network traffic flows
that are misclassified. The computation appears as this:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
 (23)

Another important parameter for assessing machine

learning techniques is precision. The equation shows that this
rate is the proportion of accurately predicted malware
samples.

𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
× 100 (24)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 100− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (25)

In machine learning, the MCC is used to assess the efficacy

of binary (2-class) classification, which is typically utilized in
binary classification. MCC measures the degree of agreement
between the precise and anticipated binary classifications,
which typically returns a value of 0 or 1. The MCC value thus
provides a more accurate indication of the classification
model. Meanwhile, this does not negate other performance
criteria. Equation 26 is utilized to determine the MCC metric.

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹×𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
 (26)

J.A. Cohen first established Cohen's Kappa statistic, or just

Kappa (henceforth, also indicated by K), in the field of
psychology as a measure of agreement between two judges.
Later, it was used as a classification performance statistic in
the literature. Kappa is a ratio of agreement between the
observed and predicted or derived groups for cases in a testing
dataset to put it more accurately. It is defined as:

𝐾𝐾 = 𝐴𝐴𝐴𝐴𝐴𝐴−𝑃𝑃𝑒𝑒

1−𝑃𝑃𝑒𝑒
 (27)

Performance measures in prediction modelling do not give

a clear view of our categorization, especially the extremely
balanced dataset used. It can effectively manage classes with
imbalances. The mathematical representation of Cohen's
Kappa (K) coefficient is as in:

𝐾𝐾 = 𝑂𝑂𝑂𝑂𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

1−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (28)

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒,

𝑂𝑂𝑂𝑂𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐴𝐴 + 𝐵𝐵

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒,

𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

𝐵𝐵 =
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

Fog nodes located near network edges gathered

information from IoT devices (detectors and sensors),
analysed it, and recorded it utilizing network edge equipment
in distant network areas. As a result, data flow across the
network was dramatically decreased with high-quality, long-
term, high-speed, high-quality, and localized endpoint
services for real-time connection and low latency, particularly
with time-sensitive or latency applications. Because the
identification of intrusions is a latency-restricted application,
the anomaly detection score must be calculated promptly.
The time needed to compute the discrimination and
reconstruction losses largely determines how long this period
will last. To evaluate the detection latency of our proposed
IDS, the discriminatory loss, total reconstructive loss, and a
composite of both losses are taken into account. But when the
reconstruction loss was also taken into account, the latent
rose. This is due to the fact that calculating the reconstruction
loss and identifying the latency demonstration of a sample
both take time. The encoder within our architecture offers a
significant reducing the time needed to identify intrusions

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 859

because it immediately maps patterns to their latent
representation, whereas earlier research addressed
optimization difficulties during intrusion detection. The
detection of intruders in CPSs, for example, is a good example
of an application where it is much more suitable. Since ALAD
(Adversarially Learned Anomaly Detection) only uses fully
connected and convolutional layers in neural networks, it
does not actually experience the restricted parallelization that
RNN-LSTM networks allow. Being less computationally
intensive, it has a faster detection delay than our technique.
Our IDS does certainly perform better than IDS-based ALADs at
discovering breaches in cyber-physical systems. Figure 12
graphically represent the details of detection latency with
Cumulative Distribution Function.

Figure 12. Detection latency.

Compared to alternative approaches like the Gaussian
naive Bayes, K-NN, and Bayesian classifier, our proposed
method has a lower error rate, and it is displayed in Figure 13.

Figure 13. Error rate.

The matrix's diagonal shows the real detection numbers,
while the other rows and columns display the inaccurate
detection values. The scores the model produced and the
different kinds of error. The weighted average accuracy of the
DAE - Bi-LSTM model achieved the best result. Figure 14 and
Figure 15 exhibits the confusion matrix of the results.

Figure 14. Confusion Matrix.

Figure 15. Confusion matrix with normalization.

4.5. Comparison with other state of the art methods
The necessity to detect intrusions in the contemporary cyber
world has led to extensive research on the subject. For
intrusion detection, researchers have used a wide range of
powerful and sophisticated machine-learning techniques. In
this part, the proposed method's accuracy over the
CICIDS2017-BoTIoT datasets to various methodologies are
evaluated for tool-based intrusion detection using DL and
classic ML techniques. The model expresses excellent
performance across all metrics in precision (0.98816),
accuracy (0.987256), error rate (0.012744), DR - detection rate

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 860

(0.914526), FAR - false alarm rate (0.65536), MCC (0.941027),
and Cohen's Kappa (0.892167). According to Table 5,
approaches based on DAE-BiLSTM have shown better results
than other methods. The techniques listed in Table 4 have
been assessed utilizing CICIDS2017-BoTIoTTrain+ and
CICIDS2017-BoTIoT Test+ datasets.

Table 5. Compare with other state-of-the-art methods.

Methods Accuracy Precision DR FAR

HDT 83.1485 97.2193 72.4694 73.0394

DT 80.9084 96.7753 68.7524 80.3918

KNN 79.1209 70.7361 89.5455 79.0371

SVM 78.5215 71.4286 85.2273 77.7202

Proposed 98.7 98.81 91.45 65.5

5. Conclusion

Intrusion detection is a vital security technology that guards
computer systems and networks against unauthorized access
and attacks. In this research, a viable intrusion detection
method for the fog node to identify threats is constructed. In
order to create an effective attack detection method, this
research used a hybrid deep autoencoder (DAE) and Bi-LSTM
model. After pre-processing of the data, features are retrieved
using Deep Autoencoder (DAE) and converted and classified
into a format that can be utilized to instruct a deep learning
technique. The Bi-LSTM method is used to train the
classification model using the features that were extracted.
Finally, for optimization, to adjust model parameters, Sparrow
Search Optimization Algorithm (SSOA) is used. The DAE-
BiLSTM model was tested and compared with several other
methods using two datasets, Bot-IoT and CICIDS-2017. The
suggested model was found to be stable and robust based on
the outcomes of the simulations and experiments, and for a
more comprehensive view, the efficacy of our model was
assessed using Mathew correlation, Cohen's Kappa
coefficients, and a variety of common metrics. The model
achieved an accuracy of 98.7% and precision of 98.81%. The
results of the experiments demonstrate that the suggested
system is capable of accurately describing typical activities
within fog nodes and recognizing a variety of attack types,
including DDoS, Port Scan, DoS GoldenEye, DoS Hulk, and DoS
Slowhttp. The experimental findings demonstrate that the
proposed system can identify various assaults and describe
the usual activity occurring among fog nodes.

Conflict of interest

The authors do not have any type of conflict of interest to
declare.

Funding

The authors did not receive any sponsorship to carry out the
research reported in the present manuscript.

References

Abeshu, A., & Chilamkurti, N. (2018). Deep Learning: The
Frontier for Distributed Attack Detection in Fog-to-things
Computing. IEEE Communications Magazine, 56(2), 169-175.
http://dx.doi.org/10.1109/MCOM.2018.1700332

Badr L., & Samma H. (2022). Optimized Deep Autoencoder
Model for Internet of Things Intruder Detection. IEEE
Access, 10, 8434-8448.
https://doi.org/10.1109/ACCESS.2022.3144208

Banaamah, A. M., & Iftikhar A. (2022), Intrusion Detection in IoT
Using Deep Learning. Sensors, 22(21), 8417.
https://doi.org/10.3390/s22218417

Benrazek A. E., Kouahla Z., Farou B., Ferrag M. A., Seridi H., &
Kurulay M. (2020). An Efficient Indexing for Internet of Things
Massive Data based on Cloud-fog Computing. Transactions on
Emerging Telecommunications Technologies, 31(3), 2161-3915.
https://doi.org/10.1002/ett.3868

Canadian Institute for Cybersecurity (2017). Intrusion Detection
Evaluation Dataset [Data set].
https://www.unb.ca/cic/datasets/ids-2017.html

Ferrández-Pastor, F.J., Mora H., Jimeno-Morenilla, A., &
Volckaert, B. (2018). Deployment of IoT Edge and Fog
Computing Technologies to Develop Smart Building
services. Sustainability, 10(11), 3832.
https://doi.org/10.3390/su10113832

Gudla, S. P. K., Bhoi, S. K., Nayak, S. R., Singh K. K., Verma A.,
& Izonin I., (2022). A Deep Intelligent Attack Detection
Framework for Fog-Based IoT Systems. Computational
Intelligence and Neuroscience, 2022(1).
https://doi.org/10.1155/2022/6967938

http://dx.doi.org/10.1109/MCOM.2018.1700332
https://doi.org/10.1109/ACCESS.2022.3144208
https://doi.org/10.3390/s22218417
https://doi.org/10.1002/ett.3868
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.3390/su10113832
https://doi.org/10.1155/2022/6967938

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 861

Hassen, H. B., Ayari, N., & Hamdi, B. (2020). A Home
Hospitalization System based on the Internet of Things, Fog
Computing and Cloud Computing. Informatics in Medicine
Unlocked, 20, 100368.
https://doi.org/10.1016/j.imu.2020.100368.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF
models for sequence tagging. arXiv preprint arXiv:1508.01991.
https://doi.org/10.48550/arXiv.1508.01991

Hussain, M.M., & Beg, M.M.S. (2019). Fog Computing for
Internet of Things (IoT)-Aided Smart Grid Architectures. Big
Data and Cognitive Computing, 3(1), 8.
https://doi.org/10.3390/bdcc3010008

Ijaz, M., Li, G., Lin, L., Cheikhrouhou, O., Hamam, H., & Noor, A.
(2021). Integration and Applications of Fog Computing and
Cloud Computing Based on the Internet of Things for Provision
of Healthcare Services at Home. Electronics, 10(9), 1077.
https://doi.org/10.3390/electronics10091077

Jairu P., & Mailewa A. B. (2022). Network Anomaly Uncovering
on CICIDS-2017 Dataset: A Supervised Artificial Intelligence
Approach. In Proceedings of the IEEE International Conference
on Electro Information Technology (eIT). (pp. 606-615). IEEE.
https://doi.org/10.1109/eIT53891.2022.9814045

Kasongo, S. M., & Yanxia S. (2020). A Deep Learning Method
with Wrapper based Feature Extraction for Wireless Intrusion
Detection System. Computers & Security, 92, 101752.
https://doi.org/10.1016/j.cose.2020.101752.

Khan, M. A., Khattak, M., Jan, S. U., Ahmad, J., & Jamal, S. S.,
Shah, A., Pitropakis, N., & Buchanan, W. (2021). A Deep
Learning-based Intrusion Detection System for MQTT Enabled
IoT. Sensors, 21(21), 7016.
https://doi.org/10.3390/s21217016

Koroniotis N., Moustafa N., Sitnikova E., & Turnbull B. (2019).
Towards the Development of Realistic Botnet Dataset in the
Internet of Things for Network Forensic Analytics: Bot-IoT
Dataset. Future Generation Computer Systems, 100, 779-796.
https://doi.org/10.1016/j.future.2019.05.041

Kumar, V., Das, A.K., & Sinha, D. (2021). UIDS: a Unified
Intrusion Detection System for IoT Environment. Evolutionary
Intelligence, 14(1), 47-59.
https://doi.org/10.1007/s12065-019-00291-w

Kumar, P., Gupta G. P., & Tripathi R., (2021). A distributed
ensemble design based intrusion detection system using fog
computing to protect the internet of things networks. Journal
of Ambient Intelligence and Humanized Computing, 12(10),
9555-9572.
https://doi.org/10.1007/s12652-020-02696-3

Kurniabudi, Stiawan D., Darmawijoyo, Idris M. Y. B., Bamhdi A.
M. & Budiarto R. (2020). CICIDS-2017 Dataset Feature Analysis
with Information Gain for Anomaly Detection. IEEE Access, 8,
132911-132921.
https://doi.org/10.1109/ACCESS.2020.3009843

Liao S., Wu J., Mumtaz S., Li J., Morello R., & Guizani M. (2020).
Cognitive Balance for fog Computing Resource in Internet of
Things: An Edge Learning Approach. IEEE Transactions on
Mobile Computing, 21(5), 1596-1608.
https://doi.org/10.1109/TMC.2020.3026580

Mohammad S. H., Abdul M., & Abu N. B. (2012). An
Implementation of Intrusion Detection System using Genetic
Algorithm. International Journal of Network Security & Its
Applications (IJNSA), 4(2), 109-120.
http://dx.doi.org/10.5121/ijnsa.2012.4208

Onah, J., Abdulhamid, S., Abdullahi, M., Hayatu H. I., & Al-
Ghusham, A. (2021). Genetic Algorithm based Feature
Selection and Naïve Bayes for Anomaly Detection in Fog
Computing Environment. Machine Learning with
Applications, 6. 100156.
https://doi.org/10.1016/j.mlwa.2021.100156

Pajouh H. H., Javidan R., Khayami R., Dehghantanha A., & Choo
K. K. R. (2016). A Two-layer Dimension Reduction and Two-tier
Classification Model for Anomaly-based Intrusion Detection in
IoT Backbone Networks. IEEE Transactions on Emerging Topics
in Computing, 7(2), 314-323.
https://doi.org/10.1109/TETC.2016.2633228

Ramkumar M. P., Daniya, T., Mano P., & Rajakumar, S. (2022).
Intrusion Detection using Optimized Ensemble Classification
in Fog Computing Paradigm. Knowledge-Based Systems,
252(2), 109364.
https://doi.org/10.1016/j.knosys.2022.109364

Raza, S., Linus W., & Thiemo V. (2013). SVELTE: Real-time
Intrusion Detection in the Internet of Things. Ad Hoc
Networks, 11(8), 2661-2674.
https://doi.org/10.1016/j.adhoc.2013.04.014

https://doi.org/10.1016/j.imu.2020.100368
https://doi.org/10.48550/arXiv.1508.01991
https://doi.org/10.3390/bdcc3010008
https://doi.org/10.3390/electronics10091077
https://doi.org/10.1109/eIT53891.2022.9814045
https://doi.org/10.1016/j.cose.2020.101752
https://doi.org/10.3390/s21217016
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1007/s12065-019-00291-w
https://doi.org/10.1007/s12652-020-02696-3
https://doi.org/10.1109/ACCESS.2020.3009843
https://doi.org/10.1109/TMC.2020.3026580
http://dx.doi.org/10.5121/ijnsa.2012.4208
https://doi.org/10.1016/j.mlwa.2021.100156
https://doi.org/10.1109/TETC.2016.2633228
https://doi.org/10.1016/j.knosys.2022.109364
https://doi.org/10.1016/j.adhoc.2013.04.014

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862

Vol. 22, No. 6, December 2024 862

Reddy D. K. K., Behera H. S., Nayak J., Naik B., Ghosh U.,
Sharma P. K., (2021). Exact Greedy Algorithm based Split
Finding Approach for Intrusion Detection in Fog-enabled IoT
Environment. Journal of Information Security and
Applications, 60. 102866.
https://doi.org/10.1016/j.jisa.2021.102866

Roy S., Li J., Choi B., & Bai Y. (2022). A Lightweight Supervised
Intrusion Detection Mechanism for IoT Networks. Future
Generation Computer Systems, 127(2), 276-285.
https://doi.org/10.1016/j.future.2021.09.027

Salo, F., Ali B., & Aleksander E. Dimensionality Reduction with
IG-PCA and Ensemble Classifier for Network Intrusion
Detection. (2019). Computer Networks, 148, 164-175.
https://doi.org/10.1016/j.comnet.2018.11.010

Shanker, R., Agrawal, P., Singh, A., & Bhatt, M. W. (2023).
Framework for Identifying Network Attacks through Packet
Inspection using Machine Learning. Nonlinear Engineering,
12(1), 20220297.
https://doi.org/10.1515/nleng-2022-0297

Shandilya, S. K., Ganguli, C., Izonin, I., & Nagar, A. K. (2023).
Cyber Attack Evaluation Dataset for Deep Packet Inspection
and Analysis. Data in Brief, 46, 108771.
https://doi.org/10.1016/j.dib.2022.108771

Sharma, B., Sharma, L., Lal, C., & Roy, S. (2023). Anomaly based
Network Intrusion Detection for IoT Attacks using Deep
Learning Technique. Computers and Electrical Engineering,
107, 108626.
https://doi.org/10.1016/j.compeleceng.2023.108626

Samy, A., Yu, H., & Zhang, H. (2020). Fog-based Attack
Detection Framework for Internet of Things using Deep
Learning. IEEE Access, 8, 74571-74585.
http://dx.doi.org/10.1109/ACCESS.2020.2988854

Suhaimi, H., Suliman, S., Musirin, I., Harun, A., & Mohamad, R.
(2019). Network intrusion detection system by using genetic
algorithm. Indonesian Journal of Electrical Engineering and
Computer Science, 16(3), 1593-1599.
http://doi.org/10.11591/ijeecs.v16.i3.pp1593-1599

Tong J., Luo J., Pan H., Zheng J., & Zhang Q. (2020). A Novel
Cuckoo Search Optimized Deep Auto-Encoder Network-Based
Fault Diagnosis Method for Rolling Bearing. Shock and
Vibration, 2020(1).
https://doi.org/10.1155/2020/8891905

Ullah A., Muhammad K., Haq I. U., & Baik S.W. (2019). Action
Recognition using Optimized Deep Autoencoder and CNN for
Surveillance Data Streams of Non-stationary
Environments. Future Generation Computer Systems, 96, 386-397.
https://doi.org/10.1016/j.future.2019.01.029

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P.,
Al-Nemrat, A., & Venkatraman, S. (2019). Deep Learning
Approach for Intelligent Intrusion Detection System. IEEE
Access, 7, 41525-41550.
https://doi.org/10.1109/ACCESS.2019.2895334

Vinayakumar, R., Soman, K.P., Poornachandran, P., Alazab, M.,
Jolfaei, A. (2019). DBD: Deep Learning DGA-Based Botnet
Detection. In: Alazab, M., Tang, M. (eds) Deep Learning
Applications for Cyber Security. Advanced Sciences and
Technologies for Security Applications. Springer, Cham.
https://doi.org/10.1007/978-3-030-13057-2_6

Yazan O., Liu D., & Nayak A. (2022). DL‐IDS: a Deep Learning–
based Intrusion Detection Framework for Securing
IoT. Transactions on Emerging Telecommunications
Technologies, 33(3).
https://doi.org/10.1002/ett.3803

Yin Y., Jang-Jaccard J., Sabrina F., & Kwak J., (2023). Improving
Multilayer-Perceptron (MLP)-based Network Anomaly Detection
with Birch Clustering on CICIDS-2017 Dataset. In Proceedings of
the 26th International Conference on Computer Supported
Cooperative Work in Design (CSCWD). (pp. 423-431). IEEE.
https://doi.org/10.1109/CSCWD57460.2023.10152640

Zeeshan M., Riaz Q., Bilal M. A., Shahzad M. K., Jabeen H.,
Haider S. A., & Rahim A. (2021). Protocol-based Deep Intrusion
Detection for DoS and DDoS Attacks using UNSW-NB15 and
Bot-IoT Data-sets. IEEE Access, 10, 2269-2283.
https://doi.org/10.1109/ACCESS.2021.3137201

Zhou Q., Yong B., Lv Q., Shen J., & Wang X. (2020). Deep
Autoencoder for Mass Spectrometry Feature Learning and
Cancer Detection. IEEE Access, 8, 45156-45166.
https://doi.org/10.1109/ACCESS.2020.2977680

Zhu, Y., & Nasser Y. (2021). Optimal Parameter Identification of
PEMFC Stacks using Adaptive Sparrow Search
Algorithm. International Journal of Hydrogen Energy, 46(14),
9541-9552.
https://doi.org/10.1016/j.ijhydene.2020.12.107

https://doi.org/10.1016/j.jisa.2021.102866
https://doi.org/10.1016/j.future.2021.09.027
https://doi.org/10.1016/j.comnet.2018.11.010
https://doi.org/10.1515/nleng-2022-0297
https://doi.org/10.1016/j.dib.2022.108771
https://doi.org/10.1016/j.compeleceng.2023.108626
http://dx.doi.org/10.1109/ACCESS.2020.2988854
http://doi.org/10.11591/ijeecs.v16.i3.pp1593-1599
https://doi.org/10.1155/2020/8891905
https://doi.org/10.1016/j.future.2019.01.029
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1007/978-3-030-13057-2_6
https://doi.org/10.1002/ett.3803
https://doi.org/10.1109/CSCWD57460.2023.10152640
https://doi.org/10.1109/ACCESS.2021.3137201
https://doi.org/10.1109/ACCESS.2020.2977680
https://doi.org/10.1016/j.ijhydene.2020.12.107

