
  

 

 

Journal of Applied Research and Technology 
 

www.jart.icat.unam.mx 

Journal of Applied Research and Technology 22 (2024) 846-862 

Original 

Intrusion detection system with an ensemble DAE and Bi-
LSTM in the fog layer of IoT networks 

 
G. F. Edakulathura*   S. Sheejab    A. Johnc   J. Josephd  

 
aDepartment of Computer Science, Karpagam Academy of Higher Education, Coimbatore, India 
bDepartment of Data Science, Sri Krishna Adithya College of Arts and Science, Coimbatore, India 

 cDepartment of Mathematics, St. Thomas College (autonomous), Thrissur, India 
dDepartment of Mathematics, Carmel College (autonomous), Mala, India 

 
 

 
 

Received 03 08 2024; accepted 08 29 2024 
Available 12 31 2024 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

  

Keywords: Intrusion detection, deep autoencoder, bidirectional LSTM, sparrow search 
algorithm, multiple attacks detection 

 
 

Abstract: The world is rapidly arriving at the period of the IoT, which connects all types of technology to digital 
services and provides us with great ease. As the quantity of IoT-connected equipment increases rapidly, there may be 
a rise in network vulnerabilities, leading to an increase in network threats. Fog computing seems to be a distinctive 
paradigm that includes the cloud's network's edge, including practical computation and vital infrastructure. As a result 
of easy access to resources, the fog layer renders the system susceptible to several threats. Tackling these challenges 
entails detecting intrusions and tracing the route leading to the source of the threat. The objective of this study is to 
offer a security mechanism and demonstrate how an intrusion detection system can guarantee the integrity of IoT 
networks. Based on deep learning (DL) approaches, several promising intrusion detection systems (IDSs) have been 
presented, however, they need time-consuming parameter adjustment in various situations. To address this issue, this 
study suggests a hybrid Deep Auto Encoder (DAE) and Bi-LSTM for item installation in the fog due to the need to 
safeguard essential infrastructure against prompt and efficient identification of malicious threats. Further sparrow 
search optimization algorithm is proposed for parameter tuning. Utilizing IoT-based data, the effectiveness of the 
suggested model is assessed. The outcome of the experiment obtained by analyzing the suggested IDS utilizing 
CICIDS2017 and Bot-IoT datasets attested to their supremacy over modern systems that are currently available in 
terms of precision, accuracy, false alarm rate, and detection rate. To learn more about how well this model works, two 
additional metrics are added: Cohen's Kappa coefficients and Mathew correlation. The outcomes of our experiments 
and simulations showed that the suggested approach was stable and reliable across a variety of performance criteria 
and has achieved and accuracy of 98.7%. The experimental outcomes show that the proposed system can effectively 
describe normal activity inside fog nodes and identify various kinds of attacks such as Benign, Port Scan, DDoS, DoS 
GoldenEye, DoS Hulk and DoS Slowhttp. 
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1. Introduction 
 
Cyber-attacks are now becoming highly complex, making it 
more difficult to accurately identify intrusions. The reliability 
of security services, such as data protection, reliability, and 
accessibility, could suffer from an inability to halt intrusions. 
(Abeshu & Chilamkurti, 2018; Samy et al., 2020) To tackle 
hazards to computer security, various detection techniques 
have been developed. One of the security techniques that may 
be used to identify breaches at any layer of an IoT architecture 
and prevent security problems is intrusion detection. 
(Ferrández-Pastor et al., 2018; Mohammad et al., 2012; 
Vinayakumar et al., 2019). The majority of invasions are started 
by attackers or unauthorized users. An attacker may try to use 
the Internet to obtain remote access to a system or deactivate 
a service. Accurate intrusion detection required knowledge of 
how to effectively attack a system. Numerous techniques exist 
for detecting intrusions, such as methods that rely on 
statistical methods, cluster analysis, deep learning, or artificial 
neural networks. An IDS is a proactive intrusion detection 
technology used to quickly identify and categorize assaults, 
intrusions, security policies, and violations at the host and 
network levels of infrastructure. IoT-IDS will react in time to 
stop the assault when the attack happens. As a security 
measure for IoT networks, this technique can prevent attacks 
before they happen. (Kasongo & Yanxia, 2020; Suhaimi etal., 
2019; Vinayakumar et al., 2019). The technology related to the 
IoT is referred to as the fourth industrial revolution. It is a 
system made up of interconnected software, computer 
devices, sensors, mechanical & digital machines, and some 
other techniques that allow connectivity and data sharing with 
various systems and devices across the Internet without 
requiring any interaction between people or computers. IoT 
devices are easily attacked by hackers because they have 
access to the Internet and lack adequate security safeguards. 

Offering a productive structure to serve IoT and fog 
computing has evolved as a development of cloud computing. 
Fog serves as a facilitator by localized processing of the 
endpoint user's demands and reducing communication lag 
times between the final user and the cloud through the fog. 
Because of this, the receiving network activity on the fog node 
devices must be authentic. These systems are exposed to 
multiple intrusions. Fog Computing has evolved as a 
development of cloud computing by offering a productive 
infrastructure to serve IoT. Fog is regarded as an evolution of 
the cloud model from the network core to the network edge. It 
is a platform that offers a high degree of virtualization, in the 
words of Cisco, full cloud computing is often referred to as 
fogging or edge computing, which simplifies computer 
operations, and networking services between traditional  
 
 

cloud servers, and end devices. Devices storing data at cloud 
centres, end devices, and services connected to network fog 
devices make up fog computing data storage. (Hassen et al., 
2020; Ijaz et al., 2021). Fog computing refers to a layer (fog) that 
sits close to the edge between the cloud and end users. It has 
appeared as a response to the issues with cloud computing's 
high latency and high energy usage. Fog devices are 
vulnerable to attack from malicious network entities because 
they have few resources, such as processors and memory. 
(Benrazek et al., 2020; Hussain & Beg, 2019; Liao et al., 2020). A 
hacker or intruder could sneak into the network and damage user 
information. An IDS is a strong tool for identifying intruders in a 
network. IDS is a practical method for enhancing fog computing 
privacy. In numerous sorts of research, an IDS based on fog 
computing is developed to identify and prevent external threats. 
IDS's main purpose is to develop an equal response strategy 
according to the actions of the attacker. The performance of DL-
based intrusion detection is superior to other methods among 
them. (Raza et al., 2013; V. Kumar et al., 2021).   

In an existing model, a hybrid binary kNN-DNN classification 
algorithm is proposed. (Khan et a., 2021). The method is based 
on DN Network and the k Nearest Neighbour (k-NN) technique. 
It's perfect for putting together the initial phase of the two-
stage detection technique used in the proposed design. (Roy 
et al., 2022). Another study suggests a unique intrusion 
detection model that is built on a classifier and a dimension 
reduction technique that may be utilized as an online machine 
learning approach. To scale down the dataset's dimensions 
from its many different attributes to a select few, the 
suggested model employs Principal Component Analysis. 
(Pajouh et al., 2016; Salo et al. 2019). An existing technique 
called Nave Bayes by anomaly Detect and Genetic Algorithm 
Based Wrapper feature selection Model in fog computing 
eliminates unnecessary qualities to cut down on processing 
time while also creating an improved model that can forecast 
outcomes utilizing the Knowledge Discovery Dataset for the 
Security Laboratory. (Onah et a., 2021). Figure 1 portrays the 
position of fog layer in IoT networks. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Fog computing. 
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There have been many deep learning-based intrusion 
detection systems suggested for the Internet of Things. It has 
merged hundreds of billions of items from various platforms 
with the internet. IoT networks have been the target of 
numerous hackers as a result of this convergence because it 
combines the digital and physical worlds. Combining deep 
learning with knowledge-based systems may help to solve the 
issue. Therefore, a hybrid model may be the next development 
for FOG-cloud IDS. Hence this paper aims to develop a method 
for detecting intrusion in the fog computing model using 
ensemble classification.  In this paper, a hybrid deep 
autoencoder (DAE) and Bi-LSTM device architecture that uses 
the fog's advantages to deploy a timely and precise detection 
of harmful behaviors for the IoT network is suggested. The 
primary contributions of this study are as follows: 
• A novel approach is suggested that combines the hybrid 

deep autoencoder (DAE) and Bi-LSTM for system 
implementation in the fog layer to protect essential 
infrastructure from accurate and timely detection of 
multiple attacks. 

• This method is presented a sparrow search optimization 
algorithm (SSOA) for parameter tuning. 

• In the proposed model the performance of our proposed 
methodology is assessed using IoT-based data. 

• In comparison to current Models, our obtained results 
analyzing the suggested IDS using Bot-IoT and 
CICIDS2017 datasets prove their supremacy in terms of 
false alarm rate, accuracy, precision, false alarm rate, 
error rate, and detection rate. 

• In order to better comprehend how this model performs, 
two additional metrics: Cohen's Kappa coefficients and 
Mathew correlation are considered. The results of our 
simulations and experiments demonstrated the stability 
and reliability of the suggested framework in terms of 
according to a range of performance metrics. 

• Utilizing comparison and analysis of the suggested IDS 
with different solutions from the literature using the 
CICIDS2017 and Bot-IoT datasets. 

The structure of the manuscript is as follows: A brief of the 
current IDS and related works utilizing various recurrent deep 
learning models is given in Section 2. Section 3 suggested the 
IDS's specific processes. Section 4 outlines the system 
implementation, the experiments' justifications, and the 
processing of the data set. The results and analyses are further 
explained in Section 5 and the work is indicated and highlighted 
in Section 6. 

 
2. Literature survey 

 
A system that detects intrusions, which is essential for a system, 
acts as a clear defense line against cyber threats in the cyber 
security area. Intrusion detection systems (IDS) are a powerful 

method to find intruders in a network. Few research articles 
have been validated by the material, discussed in this study. 

Sharma et al. (2023) innovative anomaly-based IDS for IoT 
networks make use of DL methods. In particular, they created 
a DNN model using filter-based FS that eliminates strongly 
correlated information. Additional parameters and 
hyperparameters were added to the model to fine-tune it. 
They employed the UNSW-NB15 database, which consists of 
four threat classes, for their study. 

A feature extraction method called "k-means clustering," 
which comes from signal processing, was introduced by 
Shanker et al. (2023). It divides a collection of \(n\) 
observations into \(k\) clusters, each of which is centered 
around the observation with the closest mean. They used 
Python and the KDDcup99 dataset in their work to use the k-
means algorithm and explore its possibilities. The efficacy of 
the outcomes proved how successful their strategy was in 
comparison to other publicly accessible options. They have 
created a web-based system that can detect network assaults 
by examining real network traffic packets. 

Shandilya et al. (2023) presented a method for data 
collection that entails the use of Wireshark and tcpdump to 
record the network traffic of configured virtual computers. 
They built up a dataset with 10 machines trying to take 
advantage of one another while connected to Router1 on 
VLAN 1 in a Docker Bridge network to examine the effects of 
different cyberattack scenarios. The collection contains 
actions like online surfing and downloading foreign programs, 
some of which may be dangerous. Furthermore, a variety of 
attack techniques were used to compromise services 
including FTP and SSH. 

Gudla et al. (2024) have presented a fog-based Internet of 
Things attacks prediction system using DL models. The best 
deep learning (DL) model with extreme precision is then 
predicted for placement at the fog layer after evaluation of 
many Deep Learning models, such as CNN + LSTM, GRU, Bi-
LSTM, LSTM, HEM, and DNMLP. To discover flaws in NW security, 
this framework uses the LSTM DL model. According to this 
study, the LSTMDL techniques surpass DNMLP regarding 
properly predicting the attackers, although it requires more 
time to detect activity (CBDT) than other models. In order to 
evaluate the behavior of end IoT systems, the LSTMDL concept 
is configured in such a fog nodes computer module. SDN is 
taken into consideration while experimenting on the 
Anaconda platform. 

Banaamah and Iftikhar (2022) have suggested DL-based 
detection techniques built on Gated Recurrent Units (GRUs), 
CNN, and LSTM. This study applied an established dataset IoT 
for intrusion detection called Bot-IoT. The raw dataset was 
processed as part of the pre-processing to ensure it was 
suitable for a DL approach. Standardization, normalization, 
and data cleaning are all part of this process. In the feature 
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selection process, four functionalities for Bot-IoT are selected. 
To categorize the attacks, they used three different kinds of 
neural networks. For the experiments, the datasets were split 
into training and testing datasets. This dataset was compiled 
using a realistic network configuration with both botnet and 
regular system traffic. They built our classifiers using the Kera 
library, which employed TensorFlow as its backend. 

Ramkumar et al. (2022) have discussed using a fog 
computing platform to implement a hybrid ensemble classifier 
driven by optimization. The fog, cloud, and endpoint layers in 
fog computing are used as a trio to perform all of the processing. 
Three operations, including data transformation, feature 
selection, and classification, were executed in the cloud layer. 
By using log transformation, data is transformed. A feature is 
determined by utilizing Smirnov- Kolmogorov filter based on 
correlation.  After that, data is classified using ensemble 
classifiers such as Shepard CNN, deep Neuro-Fuzzy Network 
(DNFN), and RideNN. The created Rider Sea Lion Optimized 
(RSLO) technique is used to tune the ensemble classifier. By 
combining the optimized Rider algorithm and Sea Lion 
Optimization, the RSLO algorithm has been developed. 

According to Reddy et al. (2021) the device is exposed to 
multiple attacks due to the fog layer's quick access to resources. 
A unique breed of services that serve a broad range of IoT device 
applications is made possible by fog computing. Their research 
aims to provide a security mechanism and ensure that IoT 
networks are operating truthfully through the use of an 
intrusion detection framework. For device implementation in a 
fog based on the Exact Greedy Boosting ensemble technique, 
Reddy et al. demonstrated a system for detecting network 
intrusions. This suggested model investigates the monitoring of 
network traffic new intrusion Database 2020 data by 
determining and categorizing the kind of attacks depending on 
deviations from typical behavior. Utilizing a variety of machine 
learning and upgrading classifiers with XGBoost-based network 
IDS (NIDS) under fine-tuning of hyperparameters to detect 
anomalies. The fundamental machine learning technique is 
employed with several distributions sequentially to find the 
defective rule and rectify its existing one, resulting in the 
creation of a novel weak prediction. The suggested NIDS model 
is trained using the XGBoost approach and is superior to 
traditional ML algorithms. 

 P. Kumar et al. (2021) have presented IDS based on an 
ensemble distributed design that incorporates XG Boost, 
Gaussian naive Bayes, and k-nearest neighbors, as the first 
individual learners and also is based on fog computing. 
Random forest uses the first-level prediction findings to inform 
the final categorization at the second level. Pre-processing is 
done on the data from the training dataset during the first 
phase. It contains feature mapping, which turns categorical 
variables into numerical features, mutual information-based 
feature selection, imputation of missing values, and standard 

scalar feature normalization to create an optimum feature set. 
A mapping strategy is utilized that combines one hot label 
encoding (OHLE) and one hot encoding (OHE). This method 
uses a feature selection mechanism based on clear 
understanding. They are subjected to a test using UNSW-
NB15, and the suggested method is verified by the use of an 
authentic DS2OS Iot-based dataset. 

Yazan et al. (2022) have proposed DL-based IDS on deep 
learning to identify security risks in IoT environments. To obtain 
the best detection and recognition, our suggested module 
combines the Deep Stacked Polynomial Network (DSPN) with 
the spider monkey Algorithm (SMA) technique; in the data sets, 
SMO chooses the best characteristics, while SDPN categorizes 
the data as normal or anomalous. Pre-processing is done in the 
beginning to get rid of uncertainties in the normalized data set. 
Redundancy removal and missing value replacement are two 
efficient methods that are applied during pre-processing. The 
pre-processing step was first compared using similarity 
measures in the data of the data set which then calculated the 
distance between each pair of data using the Minkowski 
distance. Best features are chosen from the dataset at this stage 
after the pre-processing step, which removes any uncertainties 
from the dataset. The SDPN classifier's learning time is reduced 
mostly by best feature selection. The SMO model is modified: a 
fission-fusion social system-inspired optimization algorithm 
based on food foraging, to select the best features. The 
technique has been employed in many technical fields since it 
is simpler to use in complex optimization problems and 
requires fewer control parameters. 

Zeeshan et al. (2021) have presented a Deep Intrusion 
Detection Based Protocol (DIDBP) method, comparing 
characteristics of the Bot-IoT and UNSWNB15 data sources 
based on TCP and flow to create a data set of packets of IoT 
traffic. Both sets of data's common properties for flow and TCP 
category are examined and integrated with PB-DID. The LSTM-
based deep model with 26 features is created using the entire 
set of data from the Bot-IoT and UNSW-NB15 data sets via the 
suggested DIDBP architecture (by merging them to produce a 
single customized data set). The problem of data imbalance 
was also overcome during the integration of the data sets. 

Intrusion detection is one of the primary security methods 
and aims to pinpoint attempted assaults findings from any of 
the research on intrusion detection in the Literature Survey are 
not satisfactory. Table 1 provide the accuracy obtained by the 
existing methods reviewed in this manuscript. Additionally, 
they have a high probability of false alarms and poor 
detection. In order to prove their effectiveness in real-time 
deployments, they must first be trained and assessed on 
realistic datasets. Due to the non-representative nature of the 
dataset used for training and evaluating the underlying 
models, several methods suggested in the literature have 
been observed to have low accuracy and be unsuccessful in 



 
 

 

G. F. Edakulathur et al. / Journal of Applied Research and Technology 846-862 

 

Vol. 22, No. 6, December 2024    850 
 

real applications. In order to stop multiple attacks in cloud 
networks, a distributed ensemble design-based IDS is 
suggested in this research employing fog computing. 

 
Table 1. Datasets and accuracy of existing models. 

 
Model Dataset Accuracy 

(Sharma et al., 2023)  UNSW-NB15 91.00% 
(Shanker et al., 2023) KDDcup99 98.00% 
(Shandilya et al., 2023) Generated 

Dataset 
NA 

(Gudla et al., 2022) DDoS-SDN 99.70% 
(Gudla et al., 2022) NSL-KDD 99.12% 
(Gudla et al., 2022) UNSW-NB15 94.11% 
(Gudla et al., 2022) IoTID20 99.88% 
(Banaamah & Iftikhar, 2022) Bot-IoT 99.60% 
(Ramkumar et al., 2022) UNSW-NB15 97.2% 
(Reddy et al., 2021) IoTID20 99.4% 
(P. Kumar et al., 2021) UNSW-NB15 93.21% 
(P. Kumar et al., 2021) DS2OS 99.17% 
(Yazan et al., 2022) NSL-KDD 99.02% 
(Zeeshan et al., 2021) UNSW-NB15 96.3% 

 
3. Methodology 

 
Fog computing is a methodology that expands the cloud to 
networks to address issues specific to clouds. Fog technology is 
a more recent type of computing with a variety of features that 
set it apart from cloud computing. As an outcome of insufficient 
resources, the fog nodes are vulnerable to cyber-attack. In order 
to improve service quality, IDS are a crucial part of the security 
of the fog network. IDS are an effective technique for locating 
network intruders. The conventional security of a network is 
difficult to prevent multi-source intrusion and cross-domain, 
much like physical security technologies. Since identifying 
malicious traffic is crucial for network security, so a system is 
recommended for intrusion detection should be used in fog 
circumstances in our research. In this instance, the fog nodes 
are in charge of gathering data from various network sensors 
and devices and conducting preliminary processing on it. 

The steps that follow are included in the proposed method: 
Data collection, pre-processing, and feature extraction and 
categorization are the initial main steps. The network data are 
initially gathered from two benchmark datasets. The following 
phase then focuses exclusively on data pre-processing. A 
successful learning process depends on this step. 
Standardization, data cleansing, and normalization are the 
three stages of data pre-processing. Following pre-processing  
 
 
 
 
 

of the data, features are retrieved using Deep Autoencoder 
(DAE) and converted and classified into a format that can be 
utilized to instruct a deep learning technique.  

The Bi-LSTM method is then trained using the features that 
were extracted for the multi-classification. The hybrid deep 
autoencoder (DAE) and Bi-LSTM architecture suggested is seen 
in Figure 2. The suggested hybrid model has decent accuracy. 
The steps that follow are included in the proposed method: 
Data collection, pre-processing, and feature extraction and 
categorization are the initial main steps. The network data are 
initially gathered from two benchmark datasets. The following 
phase then focuses exclusively on data pre-processing. A 
successful learning process depends on this step. 
Standardization, data cleansing, and normalization are the 
three stages of data pre-processing. Following pre-processing 
of the data, features are retrieved using Deep Autoencoder 
(DAE) and converted and classified into a format that can be 
utilized to instruct a deep learning technique. The Bi-LSTM 
method is then trained using the features that were extracted 
for the multi-classification. The hybrid deep autoencoder 
(DAE) and Bi-LSTM architecture suggested is seen in Figure 2. 
The suggested hybrid model has decent accuracy. 

 
3.1. Data sets 
For training and testing, two raw network packet databases 
namely CICIDS2017 and Bot-IoT are employed. Unlike other 
research using a portion of the dataset, entire data from the 
datasets are used for model training. A brief explanation of 
both the datasets is given below. 

The CICIDS-2017 was launched by the Canadian 
Institution of Cyber force (CIC) in 2017. It includes updated 
real global attacks as well as the usual flows. It includes 
updated real-world attacks as well as common processes. 
The information premised on protocols, destination IP 
addresses, source timestamps, and attacks are used by 
CICFlowMeter to evaluate the network traffic. Additionally, 
this dataset includes the most current cyber-attacks, 
including Port Scan, Infiltration, DDoS, DoS, SQL injection, 
BoT, and Brute Force. 2,830,743 records from the CICIDS-
2017 are contained in eight files with 78 unique features per 
record. It also includes research from a CICFlowMeter 
network traffic analysis study, which comprised flows 
labelled according to the date, destination ports, assaults, 
destination IP addresses, and source and protocols. 
Kurniabudi et al. (2020). Table 2 displays the CICIDS2017 
distribution such as types of attacks in dataset, number of 
records on each attack and their percentage. 
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The Bot-IoT data was created by the Cyber Range Lab of the 

Australian Centre for Cyber Defence. This data set is one of the 
newest datasets in the sector. Koroniotis et al. released the 
database in 2018 (Koroniotis et al., 2019). It has over 72 million 
recordings and combines simulated and real-time settings. 
The Bot-IoT dataset is the appropriate dataset for the tests 
since it includes IoT-generated network traffic as well as a wide 
variety of attacks, and regular updates, and can be used to 
distinguish points from new datasets. A recently developed 
dataset is used for Bot-IoT assault identification in an IoT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 network context. The four types of attack records are listed 
here: Reconnaissance, theft, DoS, and DDoS. The 
subcategories of DoS and DDoS include UDP TCP and HTTP. 
The dataset comprises traffic flows from botnet attacks as well 
as regular traffic on the Internet of Things and many more 
cyber-attacks. The realistic testbed is utilized to generate this 
dataset with efficient information features in order to track 
correct traffic. Table 3 displays the Bot-IoT Dataset 
distribution such as types of attacks in dataset, number of 
records on each attack and their percentage. 

  
Figure 2. Architecture of the proposed model. 

 
Table 2. CICIDS2017 dataset. 

 

Flow Type 
Number of 

Records 
Percentage 

Benign (Normal) 339621 61.32% 
DoS GoldenEye 7458 1.35% 
DoS Hulk 14108 2.55% 
DoS Slowhttp 4216 0.76% 
DoS Slowloris 3869 0.70% 
SSH Patator 2511 0.45% 
FTP Patator 3907 0.71% 

Web 
Attacks 

SQL 
Injection 

12 0.00% 

XSS 631 0.11% 
Brute 
Force 

1353 0.24% 

BotNet 1441 0.26% 
Port Scan 158673 28.65% 
DDoS 16050 2.90% 
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Table 3. Bot-IoT dataset. 
 

Flow Type Number of 
Records 

Percentage 

Benign (Normal) 9543 0.013% 
Information 
Gathering 

1821639 2.480% 

DDoS 38532480 52.500% 
DoS 33005194 45.000% 
Information Theft 1587 0.002% 

 
3.2. Data pre-processing 
On the CICIDS-2017 and Bot-IoT datasets for training and 
testing, the pre-processing steps below were used. Pre-
processing is a helpful technique that aims to clean it up data 
and remove noise. The raw dataset is processed in this step to 
make it acceptable for this algorithm. This is the method's initial 
stage. (Yin et al., 2023). Processing data aim to modify 
unstructured database into a simpler and more practical format 
for further processing stages. The step is divided into three sub-
steps including standardization, data cleaning, and 
normalization. Dataset standardization is the initial stage. This 
process is crucial because it makes sure that the data are all 
scaled equally, and their normally distributed value lies 
between 0 and 1. The normalization of data is the second phase. 
The process of normalisation entails data transformation. 
Negative values, which neural networks rejected, must be 
avoided using this procedure. Each data element in the dataset 
was normalised between 0 and 1. In the third and final step, 
known as data cleaning, unnecessary data, such as NaN and 
null values, are eliminated. (Jairu & Mailewa, 2022) Following are 
the various data pre-processing steps. 

Standardization is technique that implies that the datasets 
will be compressed to fall between zeros (0s) and ones (1s) using 
Batch Normalization, which tackles the issues of gradients that 
expand or collapse due to rapid learning rate in a conventional 
deep network. Normalizing network activations avoids small 
parameter changes from amplifying into larger and less variable 
gradient activation. i.e., it keeps the training from becoming 
trapped in nonlinearities' saturated regimes. The Min-Max 
Rescaling method can be used to achieve this. Every value in a 
column will be replaced by a new value using Eq. (1) below 
when using min-max scaling: 

 
 𝑚𝑚 = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  −𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  
  

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 :𝑚𝑚 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 
𝑥𝑥=𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 cell value,   (1) 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  = minimim value of the column, 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  = maximum value of the column. 

 
The database was examined by the data cleaning method 

to see if any columns or rows contained blank or unutilized 
values. Then, the means of the values that were empty or 

unused before and after the sample are estimated. Finally, the 
null values are replaced with the mean. As a result, outliers 
were removed, and more consistent data were generated. 

In order to scale the data into a particular range [0, 1], 
normalization was used without altering the normalcy of the 
data behaviours. By tackling local optimal issues, this stage 
facilitates the convergence of the statistical method and deep 
learning techniques and helps them fulfil their goals. To 
enhance data quality, this method focuses on pre-processing 
and normalization. The normalization technique map 
characteristics between 0 and 1 using the min-max 
normalization in Eq. (2). The minimum value for each feature 
is set to 0, the max value to 1, and any other value is 
transformed into a decimal number between 0 and 1. 

 
𝑋𝑋[𝑖𝑖] = (𝑋𝑋[𝑖𝑖]− 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  )/(𝑋𝑋max − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  ) (2) 

3.3. Features extraction 
An intrusion prevention method for the Fog computer system is 
suggested in this work. It is essential for protection to recognize 
harmful traffic networks. This article describes our Deep Auto 
Encoder (DAE) and Bidirectional LSTM (BiLSTM)-based proposed 
technique for intrusion detection. Although DAE achieves 
decent accuracy on its own, Bi-LSTM is used to improve the 
accuracy further. This section contains the method of feature 
extraction utilizing a Deep Autoencoder (DAE). 

 
3.3.1.  Deep autoencoder 
An autoencoder is a traditional unsupervised neural network 
that uses repeated back propagation to attempt to set its 
target values to equal its inputs. An autoencoder is a type of 
neuronal structure that encodes input base data for output 
data reconstruction. The autoencoder must first learn to 
recognize the key input features in order to start this 
procedure. The deep autoencoder is a powerful unsupervised 
feature representation method with several buried layers. The 
neural idea of learning data is motivated by the fact that the 
characteristics of hidden nodes are automatically learned 
from the input data and are not manually generated. During 
transformation, the deep features in high dimensions are 
compressed to low dimensions with very small distortion. The 
deep characteristics of the series of frames are learned and 
retrieved, together with its underlying patterns and shape 
changes utilizing a reliable four-layer stacked autoencoder 
design, as shown in Figure 2. The first layer conveys 8000 
neurons to a 15000-dimensional feature map, followed by 
reductions in dimensions of 4000, 2000, and 1000, 
respectively. To make the autoencoder's temporal complexity 
less complicated, high-dimensional data is reduced by a half 
factor. High computational complexity is produced by 
compressing high dimensional data with few deep layers and 
simple techniques. In the input data, the DAE learns "part-
whole decomposition” or "hierarchical grouping" (Ullah et al., 
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2019; Badr & Samma, 2022; Tong et al., 2020). The early stages 
of the Deep stacked autoencoder collect the changes and 
initial order characteristics in the raw original input data. The 
second-order features that correspond to the patterns 
observed in the first-order features are taught to the 
intermediate layers on the other side. (Zhou et al., 2020). The 
AE comprises two phases: encoding, in which weights and 
biases are added to the data, and some non-linearity function, 
such as the sigmoid and relu has given in Eq. (3) Following that, 
the data is decoded to the same number of inputs as in Eq. (4). 
To bring the mean squared error close to zero; the weights are 
modified using a backpropagation algorithm. 
 
ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊𝑊𝑊 + 𝑏𝑏)  (3) 

 
𝑥𝑥� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊(ℎ(𝑥𝑥)) + 𝑏𝑏) (4) 

 

In the deep stacked autoencoder, the initial hidden layer 
receives input x, meanwhile, the other receives information 
from the prior hidden layer, as shown in Eq. (5) and Eq. (6). 
Here 𝑥𝑥𝑙𝑙,𝑊𝑊𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑙𝑙  are the data, ‘‘n’’ represents the number of 
encoding layers, the biases of the relevant layer, and the 
weights, respectively. 

 
ℎ(𝑥𝑥)(𝑙𝑙+1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊𝑙𝑙𝑥𝑥𝑙𝑙 + 𝑏𝑏𝑙𝑙) (5) 

 
𝑋𝑋�(𝑛𝑛+𝑙𝑙+1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊(𝑛𝑛−𝑙𝑙)ℎ(𝑥𝑥)(𝑛𝑛+𝑙𝑙) + 𝑏𝑏(𝑛𝑛−𝑙𝑙) (6)

  
The suggested DAE can be developed for 400 epochs. The 

L2 weights regularisation is used to reduce the "falling into 
local minima" and over-fitting problems. Additionally, a sigma 
value 0.05 is used for the sparsity regularisation, which results 
in an average output of 0.5 for each hidden layer neuron over 
the training data. 

In order to fine-tune the DAE weights, mean squared fault 
(MSE) with L2 regularisation and sparsity adjustment is utilized 
as a cost. The mistake is reduced up to 10−2in 300 epochs, and 
during the final epoch of the training phase, it was 0.0077. 
Testing and training are the two stages of the DAE-IDS. In the 
training phase, the system builds a model based on the 
suggested DAE model using a training dataset. In the testing 
phase, the system uses the model for detecting the label of 
unseen data (test dataset) to estimate how well it will function 
if deployed online. Input, hidden, and output layers are the 
three types of layers that make up DAE. The training dataset 
serves as the input layer. The 117 features from the CICIDS2017 
and Bot-IoT data base are all represented in the input layer of 
our DAE model. (Huang et al., 2015). 

 
3.3.2.  Bidirectional LSTM (BiLSTM) 
The proposed DAE-based strategy for extracting the feature is 
described here. Furthermore, Bi-LSTM is used to classify the 

data. Data are grouped by classification based on a label or 
target class. The techniques for solving classification issues 
belong to the category of supervised learning. In this model, 
the Bi-LSTM classification algorithms are employed to assess 
how the suggested framework improves classification 
performance. A new recurrent neural network learning design 
is suggested to address this demand, which can improve the 
structure's temporal organization. (Zhu & Nasser, 2021). At the 
next time stamp, the output can be instantaneously fed back 
into itself. RNN is a model that is frequently used in deep 
learning. Deep neural networks have successfully learned the 
hierarchical aspects of natural language in recent sentiment 
analysis experiments. However, RNN suffers from a slant 
disappearing gradient exploding problem, whereas the A 
memory module in the LSTM has the ability to select which 
data should be stored in memory and when it should be 
deleted. As a result, LSTM can successfully address the issues 
of gradient disappearance and training challenges by mining 
time series with delays in the time series and comparatively 
large intervals. There are three layers in a standard LSTM 
network framework: input, hidden loop, and output. The cyclic 
hidden layer, in contrast to the conventional recurrent neural 
network, mostly consists of neuron nodes. Memory modules 
serve as the foundational building block of LSTM cyclic hidden 
layers. Output gate, forget gate, and Input gate are the three 
adaptive multiplication gating units contained in this memory 
module. The LSTM's each neuron nodes carry out the 
following calculation: The input gate is set at time t in 
accordance with the output outcome ℎ𝑡𝑡−1of the unit at the 
time in question and is given in Eq. (7). The input 𝑥𝑥𝑡𝑡 at that 
precise instant depends on whether to do a calculation to 
update the current data in the cell. 

 
𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑊𝑊𝑡𝑡 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑡𝑡)  (7) 

 
A forget gate is used to determine whether to keep or put 

away the information depending on the most recent hidden 
layer output and the current time input and is given in Eq. (8). 

 
𝑓𝑓𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (8) 

The previous output result ℎ𝑡𝑡−1 of the hidden layer LSTM 
cell determines the value of the current candidate memory cell 
and the current input data 𝑥𝑥𝑡𝑡. At this instant, Character ∗ is the 
element-wise matrix multiplication, the memory cell state 
value 𝐶𝐶𝑡𝑡 modifies the current candidate cell 𝐶𝐶𝑡𝑡 and its own 
state 𝐶𝐶𝑡𝑡−1input gate and forget gate. These memory cell state 
values are given in Eq. (9) and Eq. (10). 

 
 𝐶̄𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ  (𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) (9) 

 𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶̄𝐶   (10) 
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Output gate 𝑜𝑜𝑡𝑡 is determined as shown in Eq. (11) and it is 
utilised to regulate the value of the cell status. The result of the 
final cell is ℎ𝑡𝑡, which can be written as Eq. (12). 

 
𝑜𝑜𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (11) 

 
 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)  (12) 

 
The forward LSTM network and backward LSTM network 

make up the Bi-LSTM. Both the forward and the backward 
LSTM hidden layers are in charge of extracting features; the 
forward layer extracts features in the forward direction. The Bi-
LSTM model can be used to take into account the effects of 
each characteristic both before and after the sequence data. 
As a result, more detailed feature information is acquired. Bi-
LSTM's current state contains both forward and backward 
output and they are given in Eq. (13), Eq. (14) and Eq. (15) 

 
ℎ𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡,𝐶𝐶𝑡𝑡−1) (13) 

 
ℎ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡,𝐶𝐶𝑡𝑡−1) (14) 

 
𝐻𝐻𝑇𝑇 = ℎ𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,ℎ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (15) 
 
Therefore, the proposed model uses a Deep Autoencoder 

to extract the feature and a Bidirectional LSTM (Bi-LSTM) to 
classify the data. The Sparrow Search Optimization Algorithm 
(SSA) will then be used to implement the tuning parameter. By 
selecting a range of values and doing the experiments, the 
parameters are tuned. The ideal values are selected, resulting 
in the highest level of precision (Huang et al., 2015). 

 
3.4. Sparrow search optimization algorithm 
A novel version of the swarm intelligence algorithm called the 
Sparrow Search optimization Algorithm (SSOA), has been set to 
use in a variety of applications. Due to its distinctive qualities, 
including its worldwide search capabilities, a small set of tuning 
parameters, and clear structure. Around the world, farms and 
forests are home to a variety of little birds known as sparrows.  

In the past, sparrows could be found all over Europe, as well 
as in some regions of North Africa and Asia. However, sparrows 
were brought to these regions by migrants from other 
continents, such as Australia and the United States, and now 
they are part of the local ecosystem. Among the omnivorous 
birds, sparrows mostly take seeds but can also eat small insects, 
berries, and fruits. Some sparrow species, including pigeons 
and house sparrows grown in captivity, are used to residing in 
urban areas. This little bird will eat absolutely everything. 
Currently, the house sparrow is the wild bird species with the 
greatest global distribution. Although this particular species of 
the sparrow is intimately tied to human surroundings, other 
sparrow species also frequented residential areas. Sparrows 

can be found in a wide range of climates and environments; 
however, they normally stay closer to inhabited cities and stay 
far away from meadows, deserts, and deep forests. This species 
has two different types of individuals: the scrounger and the 
producer, and while the producers search for sources of food, 
the scroungers get their food by nagging the producers. The 
birds frequently alternate scrounging and creating, as well as 
flexible interactive plans. It can also be said that sparrows 
typically employ both producer and scavenger strategies to find 
food. The studies suggested that each person in the group 
keeps an eye on one other's behaviour. In the meantime, the 
flock's predatory birds battle for the food sources of their friends 
who consume more than they do. Additionally, sparrows' 
energy stores play a key role in their decision-making process 
when it comes to hunting tactics; sparrows with insufficient 
energy collect more (Zhu & Nasser, 2021). 

The sparrow search optimization method makes use of 
sparrows' predatory and anti-predatory behaviour as a novel 
method for swarm intelligence optimization. The SSA process is 
divided into the following steps, and Figure 3 depicts a flow 
diagram for its algorithm. 

 

 
 

Figure 3. Sparrow search algorithm. 
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Step 1: number of explorers, the location of the sparrow, 
and the primary components of parameter initialization are 
setting the number of sparrows and the number of iterations. 
The quantity of n sparrows can be expressed as: 
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   (16) 

 
where𝑋𝑋𝑑𝑑𝑛𝑛specifies the location of the 𝑛𝑛𝑡𝑡ℎ  sparrow in 

dimension d; d is the dimension of the variable to be 
optimized, and n is the population size. 

Step 2: Establish the objective method and arrange the 
sparrow places. The following list identifies the 𝑖𝑖𝑡𝑡ℎ  sparrow's 
objective function: 

 
𝐹𝐹𝑖𝑖 = 𝑓𝑓� �𝑥𝑥𝑖𝑖1 𝑥𝑥𝑖𝑖2  ⋯  𝑥𝑥𝑖𝑖𝑑𝑑� �    (17) 

 
where the objective function is denoted by F. 
Step 3: Determine if the population is safe where it is at the 

present and alter the explorer’s location. 
 

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝑖𝑖
𝛼𝛼⋅𝑏𝑏
� ,𝑅𝑅2 < 𝑆𝑆𝑆𝑆

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑄𝑄𝑄𝑄          ,𝑅𝑅2 ≥ 𝑆𝑆𝑆𝑆
 

          
 (18) 

 
where 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡  denotes the value of the 𝑗𝑗𝑡𝑡ℎdimension in the 

𝑖𝑖𝑡𝑡ℎsparrow in 𝑡𝑡𝑡𝑡ℎiteration; max amount of iteration is 
represented by the constant 𝑏𝑏;A randomly distributed 
number, 𝑅𝑅2 represents the warning factor in the range of [0, 
1].; The safety threshold, denoted by the symbol 𝑆𝑆𝑆𝑆, has 
values between [0.5, 1.0]; Q is an odd amount subjecting to 
standard distribution, L is 1 × 𝑑𝑑 dimensional matrix; When 
𝑅𝑅2 > 𝑆𝑆𝑆𝑆 means the nearby area is considered secure, and the 
sparrow swarm departs in search of food. On the other hand, 
the current area is in danger, thus the explorer must lead the 
sparrows swarm together in quest of a fresh food supply. 

Step 4: Obtain a position update and ascertain the 
follower's status. The following changes have been made to 
the area: 

 

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
𝑄𝑄 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑋𝑋𝑤𝑤𝑡𝑡 −𝑋𝑋𝑖𝑖𝑖𝑖
𝑡𝑡

𝑖𝑖2
�         , 𝑖𝑖 > 𝑛𝑛 2⁄

𝑋𝑋𝑝𝑝𝑡𝑡+1 + �𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑋𝑋𝑝𝑝𝑡𝑡+1� ⋅ 𝐴𝐴+ ⋅ 𝐿𝐿 , 𝑖𝑖 ≤ 𝑛𝑛 2⁄
      (19) 

 
where  𝐴𝐴+ = 𝐴𝐴𝑇𝑇(𝐴𝐴𝐴𝐴𝑇𝑇)−1, 𝑋𝑋𝑤𝑤  is the worst position in the 

population of sparrows represents the worse position; 𝑋𝑋𝑝𝑝 is in 
place of the ideal explorer; When 𝑖𝑖 > 𝑛𝑛 2⁄ , it means that the 
follower its poor positioning and lack of access to food; A is a 

1 × 𝑑𝑑 dimensional matrix with random generation of each 
dimensional value [−1,1]. Follower needs to go to different 
locations where it can receive more food.  On the other hand, 
it keeps looking for food close to the explorer.  

Step 5: When few of the sparrows notice a danger, they 
become scouters and update the locations as follows: 
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Wherein the population of sparrow 𝑋𝑋𝑏𝑏  indicates the 

population's ideal position; 𝑓𝑓𝑔𝑔  is the objective functions of the 
best value;𝑓𝑓𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ  sparrow objective function, and 𝑓𝑓𝑤𝑤is 
represents the worst range of the target value; K is a 
standardised odd amount with range of [−1,1]; β is a typical 
properly a widely spaced odd number. In order to keep the 
denominator from reaching zero, ε is a smaller value. 

Step 6: Develop a distinct essential performance. 
Step 7: Ascertain whether the iteration stop condition is 

attained; if it is not, repeat steps 3 through 6. 
 

4. Result and analysis 
 

A detailed discussion of the suggested method's evaluation 
criteria and specified dataset is provided in this part. To detect 
threats in the IoT network environment, first, the dataset and 
then the evaluation criteria are addressed. The Sparrow Search 
Optimization Algorithm is used to perform parameter 
adjustment after the data was classified by BiLSTM. 

 
4.1. Dataset description 
Two datasets, Bot-IoT and CICIDS-2017, were used to test the 
DAE-BiLSTM model and compare it to various techniques. The 
majority of researchers examine the efficacy of suggested 
systems using these datasets. 

The Canadian Institution for Cyber-security provided the 
CICIDS-2017 database as an open-source intrusion detection 
dataset in 2017. The dataset includes safe and recent major 
strikes like DoS, Brute force, Web-based, infiltration, heart-
bleed, BOT, and DDoS. The PCAP traffic data are analysed for 
network traffic using CIC Flow Meter to produce CSV files. The 
mot recent common attacks are listed in the program known 
as the CIC Flow Meter, which is available to the public on the 
CIC website (Canadian Institute for Cybersecurity, 2017). One 
of this dataset's features is its ability to produce realistic 
background traffic. The B-Profile creates naturalistic benign 
background traffic and is in charge of profiling the abstract 
behaviour of human interconnections. The B-Profile for 
CICIDS2017 uses HTTPS, HTTP, email protocol, SSH, and FTP to 
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extract the abstract behaviour of 25 users. In this work, a total 
of 2830743 instances and 80 features are employed, where 
there are 2273097 benign and 557646 malicious attacks, 
respectively. A ratio of 60% to 40% was used to divide it into 
training and test datasets. 

Bot-IoT data made accessible by UNSW Cyber Range Lab in 
Canberra. Given that it was developed in an environment 
specifically designed for the Internet of Things and contains a 
sufficient number of records with diverse network profiles. 
This dataset provides a true representation of an IoT network. 
Over 72 million recordings of network activity in a simulated 
Internet of Things environment make up the Bot-IoT dataset. 
Additionally, a dataset contained 3.6 million records is used, 
for this research. The original dataset contains lists of the top 
10 features, which were also utilized in this study. Each of the 
training and test datasets has five output classes that 
represent both the regular traffic and the four different kinds 
of attacks that were made against the IoT.  

 
4.2. Data pre-processing 
Data processing is necessary for all information retrieval 
processes, particularly network-based intrusion detection 
attempts to distinguish between regular and abnormal network 
traffic. Kurgan and Musilek evaluated the many formal process 
models that have been suggested for knowledge discovery and 
data mining (KDDM). These models predict that the data pre-
processing phase requires 50% of the total process work, 
whereas the data mining activity only requires 10% to 20% of 
the total process effort. So, the data pre-processing stage is the 
main emphasis of this work. Standard pre-processing 
procedures include standardization, normalization, and data 
cleaning. Graphical representation of distribution of records of 
each type of attacks before and after data pre-processing is 
given in Figure 4 and Figure 5 for CICIDS2017 dataset and in 
Figure 6 and Figure 7 for Bot-IoT dataset. 

 

 
 

Figure 4. Before pre-processing data (CICIDS2017). 

 
Figure 5. After pre-processing data (CICIDS2017). 

 

 
 

Figure 6. Before pre-processing data (Bot-IoT). 
 

 
 

Figure 7. After pre-processing data (Bot-IoT). 
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4.3. Training and testing 
To measure the model's functionality, the dataset was split 
into train and test sets. Data were used for training in the 
proportion of 80% and testing at 20%. Table 4 provide a brief 
description of splitting of dataset records for training and 
testing the proposed model. 
 

Table 4. Summary of datasets. 
 

Dataset Attacks Training 
Data 

Testing 
Data 

CI
CI

DS
20

17
 

Normal  3,18,087 1,36,219 
Infiltration 5 1 
Web Attack 292 134 
Port Scan 22,324 9,558 
BoT 265 102 
DoS/ DDoS 53,427 23,018 
Brute Force 1,904 813 
Total  3,96,304 1,69,845 

Bo
t-

Io
T 

Normal  286 191 
DoS 1,46,293 97,529 
DDoS 1,63,287 1,08,858 
Reconnaissance 54,649 36,433 
Theft 47 32 
Total  3,64,562 2,43,043 

 
Figure 8 and Figure 9 displays how DAE-BiLSTM performed 

for the CICIDS2017 dataset in terms of training and analysis 
accuracy. With a size of 10 epochs or greater batch, there is an 
improvement in the training and testing accuracy for multi-
classification. 

 

 
Figure 8. Model accuracy using CICIDS2017. 

 
 
 
 
 
 
 

 
 

Figure 9. Model loss using CICIDS2017. 
 

Figure 10 and Figure 11 displays the DAE-accuracy BiLSTMs 
in training and validation for the Bot-IoT dataset. An increase 
in epochs and a batch size of 10 for multi-classification 
indicates an improvement in training and testing accuracy. 

 

 
Figure 10. Model accuracy using Bot-IoT. 

 

 
Figure 11. Model loss using Bot-IoT. 
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4.4. Performance evaluation 
Along with various performance evaluation measures such as 
accuracy, Error rate, false alarm rate, Detection Latency, 
detection rate, and precision, two more performance 
measures are added: Matthew Correlation and Cohen's Kappa 
Coefficient. The primary motivation for this new adaption is 
monitoring the performance stability of recursive networks. 
Our proposed DAE-BiLSTM model's effectiveness is 
determined. These metrics are provided in the equations 
below: 

The accuracy of a model's predictions is measured as a 
percentage of correct predictions. Based on its confusion 
matrix, a classification model's accuracy is measured. A 
balanced dataset is used to give a comprehensive evaluation 
of the model. It is characterized as the ratio of accurate 
predictions to all other predictions, and this can be calculated 
utilizing the Eq. (21). 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
    (21) 

 
where FN=false negatives, FP=false positives, TN=true 

negatives and TP=true positives 
The detection rate is expressed as the discrepancy between 

the actual and anticipated numbers of anomalous samples. 
The DR represents the method's capacity to evaluate attacks, 
a crucial indicator in IDSs. The specific computation is stated 
as follows: 

𝐷𝐷𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐷𝐷𝐷𝐷) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (22) 
 
The false alarm rate also referred to as the false positive 

rate, calculates the percentage of regular network traffic flows 
that are misclassified. The computation appears as this: 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
   (23) 

 
Another important parameter for assessing machine 

learning techniques is precision. The equation shows that this 
rate is the proportion of accurately predicted malware 
samples. 

 
𝑃𝑃𝑃𝑃 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
× 100  (24) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 100− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  (25) 
 
In machine learning, the MCC is used to assess the efficacy 

of binary (2-class) classification, which is typically utilized in 
binary classification. MCC measures the degree of agreement 
between the precise and anticipated binary classifications, 
which typically returns a value of 0 or 1. The MCC value thus 
provides a more accurate indication of the classification 
model. Meanwhile, this does not negate other performance 
criteria. Equation 26 is utilized to determine the MCC metric. 

 
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇×𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹×𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
  (26) 

 
J.A. Cohen first established Cohen's Kappa statistic, or just 

Kappa (henceforth, also indicated by K), in the field of 
psychology as a measure of agreement between two judges. 
Later, it was used as a classification performance statistic in 
the literature. Kappa is a ratio of agreement between the 
observed and predicted or derived groups for cases in a testing 
dataset to put it more accurately. It is defined as: 

 
𝐾𝐾 = 𝐴𝐴𝐴𝐴𝐴𝐴−𝑃𝑃𝑒𝑒

1−𝑃𝑃𝑒𝑒
      (27) 

 
Performance measures in prediction modelling do not give 

a clear view of our categorization, especially the extremely 
balanced dataset used. It can effectively manage classes with 
imbalances. The mathematical representation of Cohen's 
Kappa (K) coefficient is as in: 

 

𝐾𝐾 = 𝑂𝑂𝑂𝑂𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

1−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
   (28) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 

𝑂𝑂𝑂𝑂𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐴𝐴 + 𝐵𝐵

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) 

𝐵𝐵 =
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) 

 
Fog nodes located near network edges gathered 

information from IoT devices (detectors and sensors), 
analysed it, and recorded it utilizing network edge equipment 
in distant network areas. As a result, data flow across the 
network was dramatically decreased with high-quality, long-
term, high-speed, high-quality, and localized endpoint 
services for real-time connection and low latency, particularly 
with time-sensitive or latency applications. Because the 
identification of intrusions is a latency-restricted application, 
the anomaly detection score must be calculated promptly. 
The time needed to compute the discrimination and 
reconstruction losses largely determines how long this period 
will last. To evaluate the detection latency of our proposed 
IDS, the discriminatory loss, total reconstructive loss, and a 
composite of both losses are taken into account. But when the 
reconstruction loss was also taken into account, the latent 
rose. This is due to the fact that calculating the reconstruction 
loss and identifying the latency demonstration of a sample 
both take time. The encoder within our architecture offers a 
significant reducing the time needed to identify intrusions 
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because it immediately maps patterns to their latent 
representation, whereas earlier research addressed 
optimization difficulties during intrusion detection. The 
detection of intruders in CPSs, for example, is a good example 
of an application where it is much more suitable. Since ALAD 
(Adversarially Learned Anomaly Detection) only uses fully 
connected and convolutional layers in neural networks, it 
does not actually experience the restricted parallelization that 
RNN-LSTM networks allow. Being less computationally 
intensive, it has a faster detection delay than our technique. 
Our IDS does certainly perform better than IDS-based ALADs at 
discovering breaches in cyber-physical systems. Figure 12 
graphically represent the details of detection latency with 
Cumulative Distribution Function.  

 

 
 

Figure 12. Detection latency. 
 

Compared to alternative approaches like the Gaussian 
naive Bayes, K-NN, and Bayesian classifier, our proposed 
method has a lower error rate, and it is displayed in Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 13. Error rate. 
 
 

The matrix's diagonal shows the real detection numbers, 
while the other rows and columns display the inaccurate 
detection values. The scores the model produced and the 
different kinds of error. The weighted average accuracy of the 
DAE - Bi-LSTM model achieved the best result. Figure 14 and 
Figure 15 exhibits the confusion matrix of the results. 

 

 
Figure 14. Confusion Matrix. 

 

 
Figure 15. Confusion matrix with normalization. 

 
4.5. Comparison with other state of the art methods 
The necessity to detect intrusions in the contemporary cyber 
world has led to extensive research on the subject. For 
intrusion detection, researchers have used a wide range of 
powerful and sophisticated machine-learning techniques. In 
this part, the proposed method's accuracy over the 
CICIDS2017-BoTIoT datasets to various methodologies are 
evaluated for tool-based intrusion detection using DL and 
classic ML techniques. The model expresses excellent 
performance across all metrics in precision (0.98816), 
accuracy (0.987256), error rate (0.012744), DR - detection rate  
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(0.914526), FAR - false alarm rate (0.65536), MCC (0.941027), 
and Cohen's Kappa (0.892167). According to Table 5, 
approaches based on DAE-BiLSTM have shown better results 
than other methods. The techniques listed in Table 4 have 
been assessed utilizing CICIDS2017-BoTIoTTrain+ and 
CICIDS2017-BoTIoT Test+ datasets. 

 
Table 5. Compare with other state-of-the-art methods. 

 
Methods Accuracy Precision DR FAR 

HDT 83.1485 97.2193 72.4694 73.0394 

DT 80.9084 96.7753 68.7524 80.3918 

KNN 79.1209 70.7361 89.5455 79.0371 

SVM 78.5215 71.4286 85.2273 77.7202 

Proposed  98.7 98.81 91.45 65.5 

 
5. Conclusion  

 
Intrusion detection is a vital security technology that guards 
computer systems and networks against unauthorized access 
and attacks. In this research, a viable intrusion detection 
method for the fog node to identify threats is constructed. In 
order to create an effective attack detection method, this 
research used a hybrid deep autoencoder (DAE) and Bi-LSTM 
model. After pre-processing of the data, features are retrieved 
using Deep Autoencoder (DAE) and converted and classified 
into a format that can be utilized to instruct a deep learning 
technique. The Bi-LSTM method is used to train the 
classification model using the features that were extracted. 
Finally, for optimization, to adjust model parameters, Sparrow 
Search Optimization Algorithm (SSOA) is used. The DAE-
BiLSTM model was tested and compared with several other 
methods using two datasets, Bot-IoT and CICIDS-2017. The 
suggested model was found to be stable and robust based on 
the outcomes of the simulations and experiments, and for a 
more comprehensive view, the efficacy of our model was 
assessed using Mathew correlation, Cohen's Kappa 
coefficients, and a variety of common metrics. The model 
achieved an accuracy of 98.7% and precision of 98.81%. The 
results of the experiments demonstrate that the suggested 
system is capable of accurately describing typical activities 
within fog nodes and recognizing a variety of attack types, 
including DDoS, Port Scan, DoS GoldenEye, DoS Hulk, and DoS 
Slowhttp. The experimental findings demonstrate that the 
proposed system can identify various assaults and describe 
the usual activity occurring among fog nodes. 
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