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Abstract: The Gulf Intracoastal Waterway (GIWW) is one of the most used corridors in the U.S. inland 
waterway commerce network, necessitating accurate travel time estimation for operational planning 
(departure times and on-time arrivals). This paper addresses the significant need to assess GIWW travel times 
and proposes a two-phase approach using Automatic Identification System data and other data sets.  
In the initial phase, forecasting models and event evaluation methods were applied to predict travel 
times based on specific events, and in the second phase, the impact of different variables on system 
performance was investigated.  
The results indicate that sample count (completed trips through a link) does not significantly influence 
travel time across any link. The statistical analysis highlights two critical conditions affecting travel 
time: dredging and shoaling. Furthermore, the analysis presented in this paper estimates the expected 
magnitude of these events and their probability of occurrence.  
By applying the proposed methodology to estimate travel times of the GIWW, this paper contributes to 
enhancing travel time estimation tools, offering valuable information for decision-makers, operators, 
and users navigating this crucial waterway. 
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1. Introduction 
 

Transportation infrastructure connects various kinds of 
facilities (suppliers, production, distribution, warehouses, 
points of sale, and customers) through a supply chain 
network. Transportation infrastructure is important for the 
development of regional and national economies because it 
connects them to international markets (Welch et al., 2023). 
Supply chain transportation is composed of four 
transportations modes: sea, air, train, and road. Maritime is the 
most significant mode of transportation because over 80 
percent of cargo is transported through this transportation 
mode worldwide (Korkmaz et al., 2023). Maritime transport is 
the transportation of humans and goods through waterways. 
This mode of transportation is accomplished over oceans, 
lakes, rivers, and canals; and it includes ports, terminals, locks 
and dams, navigation channels, and shipping vessels 
(Mahmoudzadeh et al., 2021). Although maritime transport is 
the most used cargo transportation mode over oceans, inland 
waterways contribute less to national economies than rail and 
road do, due to underinvestment (Tan et al., 2022). Despite 
recognizing the inherent advantages of inland waterways in 
supply chain coordination and their potential to impact 
consumer prices positively (Wohlgemuth et al., 2020) by 
enabling the flow of goods and services at low costs (Brum et 
al., 2023), there is a growing need to explore their untapped 
potential. 

The study of the transportation of cargo through inland 
waterways is highly relevant because it can help to maintain 
the flow of goods and even alleviate disruptions caused by the 
interruption of other transportation modes, which can have a 
serious impact on businesses and the economy of regions and 
countries (Chen & Li, 2021). Although historically the inland 
waterway modal system has been the subject of research, the 
number of papers studying these organization systems in 
supply chains is limited (de Barros et al., 2022). Moreover, 
these articles focus on analyzing the level of impact that 
waterway infrastructure has in socioeconomic systems 
(Mehan & Casey, 2023), and a few of them focus on the 
estimation of vessel travel or traversal times in inland 
waterways. So far, few models have been developed to 
estimate vessel travel times, and these models estimate travel 
times based on pilots’ experience and navigation reports (Wu 
et al., 2020). These estimates are not fully accurate because 
varied factors, such as a captain’s experience or 
environmental uncertainties, cause discrepancies between 
the actual and reported travel times (Fan et al., 2023). 

 
 
 
 

The study of vessel travel times is important for decision-
makers to evaluate the state of the transportation system, 
determine baseline measures, quantify the effects of factors 
that affect reliability, quantify impacts of operations or 
maintenance decisions, measure capacity and congestion, 
and provide useful information to managers, planners, traffic 
control, inland waterway users, and researchers (Choe et al., 
2001). The outcome of these studies can be used to develop 
strategies, methodologies, and mathematical formulations to 
minimize costs and maximize the efficiencies of inland 
waterway infrastructures, such as the optimization of port 
operations and port safety (Fan et al., 2023). However, there is 
currently a lack of standard performance metrics for marine 
traffic. To address this gap, this paper proposes a 
methodology for evaluating the performance of waterways to 
understand events and/or conditions, focusing specifically on 
the Gulf Intercoastal Waterway (GIWW) (Figure 1). The aim is to 
develop a forecasting and event evaluation methodology to 
estimate vessel waterway travel times and identify key 
influencing factors or vessel performance metrics. 

The forecasting and event evaluation methodology 
developed in this paper uses different databases from the U.S. 
Army Corps of Engineers (USACE) Lock Performance Monitoring 
System (U.S. Army Corps of Engineers, 2023) and the Local 
Notice to Mariners. Data also come from the Automatic 
Identification System (AIS) (U.S. Coast Guard Navigation Center, 
2023), which is a maritime navigation safety communications 
system standardized by the International Telecommunication 
Union and adopted by the International Maritime Organization. 
The AIS sends data from vessels regarding vessel information 
(e.g., identity, type, position, course, speed, navigational status, 
maritime mobile service identity [MMSI], motion trajectory, and 
direct travel times); safety-related information from shore 
stations, other ships, satellites, and aircraft; and automated 
information from similarly fitted ships. The AIS also monitors 
and tracks ships, and exchanges data with shore-based 
facilities. Therefore, AIS records are important data related to a 
vessel’s itinerary, such as speed, motion trajectory, and direct 
travel times (Fan et al., 2023). 

This paper is organized as follows: Section 2 provides a 
review of waterway performance metrics, waterway AIS data 
analysis, and waterway travel time modeling studies. Section 
3 describes a forecasting and event evaluation methodology 
to estimate vessel waterway travel times from origin-
destination (O-D) locations in the mainstream of the GIWW. 
Section 4 describes the case study and results. Section 5 
provides conclusions, limitations, and future research topics. 
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Figure 1. Texas GIWW map. 
 

2. Literature review 
 

The study of maritime traffic flow complexity touches on 
macroscopic and microscopic models. Macroscopic models 
have limitations in inland waterways, necessitating a focus 
on microscopic models to understand irregularity and 
unpredictability in ship travel time sequences. The 
assessment of fluidity and performance metrics in 
waterways has been an important subject of research in 
maritime transportation because these metrics provide 
valuable insights to help understand the dynamics and 
challenges associated with maritime traffic. To overcome 
these challenges, AIS data have played a significant role in 
creating decisions and simulation models to perform error 
analysis, ship behavior clustering, and microcosmic 
simulation models for ship traffic (Li et al., 2018; Xin et al., 
2019; Zhao et al., 2018; Zhou et al., 2019) and for inland 
waterway travel time estimation.  

Yang et al. (2019) published a literature review on the 
various uses of AIS data in the shipping industry. Although 
their study did not focus on travel time forecasting, their study 
outlined different applications, including ship behavior 
analysis relevant to waterway traffic. Their paper highlights the 
use and utility of AIS data to determine traffic flows in 
restricted waterways, providing a valuable resource for 
researchers seeking to understand waterway dynamics and 
traffic flow complexity. 

In the literature, different models have been developed to 
evaluate traffic complexity (Wen et al., 2015), analyze ship 
traffic demand (Zhang et al., 2017), estimate speed–density 
relations (Kang et al., 2018), and calculate geometric 

probabilities of ship collision (Kujala et al., 2009). Near-miss 
risk assessment in ice-covered waters has also been explored 
(Zhang et al., 2016; 2018; 2019), and correlations between ship 
accidents and traffic conditions have been investigated (Bye & 
Aalberg, 2018; Mazaheri et al., 2015). All these models provide 
valuable information about the factors that influence vessel 
waterway travel times. 

Researchers have studied waterway fluidity. Mitchell et al. 
(2019) conducted an analysis using 2017 AIS data to evaluate 
waterway fluidity for the Ohio River, the Mississippi River, and 
the GIWW. Mitchell et al. studied vessel travel times and added 
reliability as a key metric. The authors performed summary 
statistics monthly, calculating vessel trips and speeds in the 
25th percentile by filtering data with a week upper bound. The 
comparison of down and upper bound transport speeds 
revealed significant differences in the Mississippi River, where 
down bound currents were 50 percent faster. This study 
emphasized the impact of current flow on travel speeds, 
providing a foundation for understanding waterway 
dynamics. Wu et al. (2020) expanded on this work by 
developing a model using AIS data to estimate travel time and 
density in the Houston Ship Channel. The authors focused on 
determining vessel travel times in inland channels, 
emphasizing the identification of distances and time stamps 
based on the AIS data. Their methodology identifies 
destination docks, arrival times, and departure times as main 
factors to calculate total travel times. The study found that 
travel times between dock lines and the Beltway 8 Bridge 
followed a lognormal distribution, while travel times between 
the destination and the bridge exhibited a normal distribution. 
Their results indicate that larger ships and tanker ships exhibit 
slower travel times and showed a relation between congestion 
in adjacent areas. Although this study did not predict future 
travel times, it did develop a methodology to estimate travel 
speeds, which could improve estimation of future projections.  

Other researchers have studied waterway travel times. 
Asamer and Prandtstetter (2015) applied a nonlinear 
modeling approach to estimate ship travel times. They 
considered AIS data. Their model differentiates travel times 
between locks and the actual section between them since 
both are affected by different variables. A support vector 
machine measures the travel time when passing a lock and 
sections, and a linear regression is developed to better show 
the relationship between predicted speeds and observed 
ones. Their proposed regression considers ship properties and 
weather conditions because their results show that both 
influence travel times. Like in this paper, their linear regression 
predicts travel times at different sections of the waterway. 
Alessandrini et al. (2019) and Park et al. (2021) researched 
travel time estimation algorithms to estimate travel times, 
dividing an estimated path length by an estimated speed. In 
one instance, Alessandrini et al. (2019) proposed a path 
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selection approach using a grid structure network considering 
a Dijkstra strategy to find the best navigation grid based on 
direction and density features. In another instance, Park et al. 
(2021) employed reinforcement learning to predict paths and 
estimate average speed. The main disadvantage of their 
methods is relying on the linear relationship between distance 
and speed because it invalidates assumptions for long paths 
with increased uncertainties. Finally, DiJoseph et al. (2019) 
developed a methodology to estimate O-D waterway travel 
times from vessel transit data. Their methodology needs 
historic AIS vessel transit data. The methodology does not 
require transit data from all vessels in the whole waterway 
between the origin and destination and works with a sample 
of the vessel population, considering that vessels might 
navigate a small section of the waterway and not necessarily 
the total from origin to destination.  

Lately, researchers have been applying machine learning 
(ML) methods to estimate ship waterway travel times because 
these methods allow recognition of the nonlinear relationship 
between multiple factors and waterway travel times. Yu et al. 
(2018) used an ML method to map vessel arrival times with 
navigation day, month, route type, and vessel length. Xu et al. 
(2022) applied a clustering algorithm to group motion patterns 
and employed support vector regression models for each 
pattern, considering factors like latitude, longitude, speed, 
course, navigation status, and remaining distance. 

Unlike road traffic literature, which extensively considers 
congestion as a major factor that influences travel times, 
waterway travel time studies often lack this factor. Few studies 
explore the impact of traffic congestion on waterway travel 
times. Sui et al. (2020) and Fan et al. (2023) considered 
congestion as a factor to estimate waterway travel times. Sui 
et al. (2020) studied congestion states and interactions 
between vessels using complex network theory and network 
dynamics. Conversely, Fan et al. (2023) considered the impact 
of traffic congestion on vessel travel times. They developed a 
complex vessel interaction network to capture vessel-to-
vessel interactions as input data to feed a convolutional neural 
network, which is a deep learning model, to get spatial 
trajectory information. 

Finally, factors that ensure maritime safety affect waterway 
travel times. Tirunagari et al. (2012) identified the factors that 
cause maritime accidents based on 135 papers produced by 
the Marine Accident Investigation Branch in the United 
Kingdom. These factors are traffic density, ship speed, 
confusion, equipment, severe weather, fatigue, and health. 

In conclusion, the reviewed papers highlight the 
complexity of estimating inland waterway travel times. AIS 
data have a critical role in the development of decision-
making and simulation models and methodologies to 
evaluate  traffic complexity, analyze maritime  traffic, estimate  

speed–density relations, calculate the probability of ship 
collisions, evaluate the effect of congestion in waterways, and 
estimate travel times. The literature review contributes 
significantly to the understanding of maritime traffic dynamics 
and indicates the factors for maritime safety and congestion 
that are relevant to this paper since some of these factors 
affect waterway travel times. Finally, the literature review 
highlights the scarcity of studies tackling the problem of 
estimating inland waterway travel times. Only a few papers 
address this problem but do not focus on estimating travel 
times in the GIWW. Therefore, the aims of this paper provide 
valuable insights into the inland waterway transportation 
system and for regional and U.S. national economies. 

 
3. Methodology 
 
This paper proposes a new methodology to estimate vessel 
waterway travel times from origins to destinations for the main 
channel of the GIWW, which is the focus of this paper. The 
designated O-Ds for the GIWW are port facilities, the Louisiana 
state boundary, the western terminus at the Port of 
Brownsville, and intersections with ship channels or 
tributaries since vessels enter and exit the GIWW there. 

Specifically, the methodology has four activities (Figure 2) 
that include several methods and corresponding steps. 

 
3.1. Activity 1: Data collection and cleansing 
The data collection activity gathers AIS data from vessels: 
speed, motion trajectory, and direct travel times. This activity 
builds on prior work undertaken by USACE (U.S. Army Corps of 
Engineers, 2023), but in this paper, the data acquisition activity 
developed by USACE is modified to account for differences in 
the GIWW from the rest of the inland waterway system. The 
main changes are: 

The GIWW crosses several deep-draft ship channels. 
This activity is intense in freight clusters along the 

waterway. 
When collecting AIS data, many vessels are included that 

are not inland towing vessels. Therefore, the data are filtered 
to include only inland towing vessels. Therefore, the following 
vessel types are required to have an AIS transponder: a self-
propelled vessel of 65 feet or more in length engaged in 
commercial service, a towing vessel of 26 feet or more in 
length and more than 600 horsepower engaged in commercial 
service, a self-propelled vessel certificated to carry more than 
150 passengers, and a self-propelled vessel engaged in 
dredging operations in or near a commercial channel or 
shipping fairway. The U.S. Coast Guard provides details on its 
website (Navcen.uscg.gov) and AIS page on how AIS 
transmitters and receivers operate (U.S. Coast Guard 
Navigation Center, 2023). 
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Figure 2. Methodology activities. 
 
AIS data are not always complete and continuous for a 

given vessel. This is due to atmospheric conditions, physical 
obstructions, or equipment malfunctions. The proposed 
methodology developed in this study overcomes this problem 
by allowing for the fact that transit data are not available for 
the whole of the waterway between O-D pairs. Relying on a 
robust sample of the population means the methodology 
does not require transit data to be available for the entire 
population of vessels on the waterway. The methodology also 
considers that each vessel may not transit the entire distance 
between O-D pairs, instead making shorter transits. 

In this paper, for the main channel of the GIWW, the acquired 
AIS data covers the whole years of 2018 and 2019. The USACE 
Engineering Research and Development Center provided 93 
million raw data points, which were filtered for inland towing 
vessels along the GIWW geofences between Beaumont and 
Brownsville, Texas. The sampling interval is 5 minutes. 

The cleansing data activity involves the following steps: 
Step 1: Remove all records where the stated ship type is 

not an inland towing vessel. 
Step 2: Remove all remaining records where the MMSI is 

not a valid U.S. MMSI. 
Step 3: Remove all remaining records where the MMSI is 

clearly invalid (not enough digits). 

Step 4: Examine all remaining records using multiple public 
sources to determine the vessel type and remove those that are 
not inland towing vessels. For the main channel of the GIWW, 
the main public sources are the U.S. Coast Guard Port 
Information Exchange, the Federal Communications 
Commission wireless license search, the USACE Waterborne 
Transportation Lines of the United States, the National Oceanic 
and Atmospheric Administration vessel search, the USACE 
listing of tugs and towboats, and a general Google search. 

Step 5: Remove all records that do not have information 
about the vessel type. 

Step 6: Use the remaining records as the inland towing 
dataset. 

 
3.2. Activity 2: Case/scenario definition 
The second main activity includes: 

Step 1: Determine O-D points and routes. The entrance to 
each deep-sea port is designated as a destination.  

Step 2: Segment the inland waterway into links with 
lengths that vary considerably because of specific features 
along the coast, intersections with ship channels, and 
floodgates/locks including mooring areas. However, the 
lengths of links should be as identical as possible to prevent 
one location from unduly influencing the analysis of traffic 
behavior. Because floodgates and locks can be contained 
within a single link for their respective rivers, these links isolate 
the effects of the structures on vessel behavior and thus travel 
times. These travel-time-related behaviors include 
deceleration time approaching the lock, queuing time to enter 
the lock, passage time through the lock, and acceleration time 
away from the lock. 

 
3.3. Activity 3: Travel time calculation and statistics 
The third main activity includes: 

Step 1: Divide the waterway between the O-D pairs into 
shorter, consecutive sections, called links, so that each link 
has homogeneous vessel travel behavior. 

Step 2: Estimate the travel time for each link by calculating 
the vessel’s movements from one boundary of a link to the 
other.  

Step 3: Identify and remove travel time outliers defined as 
travel times that exceed the following cutoffs:  

o For links containing floodgates/locks, the cutoff is 48 
hours (2 days). 

o For the link containing the Port of Houston, the cutoff 
is 12 hours. 

o For links without floodgates/locks, the cutoff is the 
amount of time it takes to travel the entire link at 2.6 knots (3 
mph). 

Step 4. Calculate link travel time performance measures 
such as average travel times and standard deviations. 
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Step 5. Calculate the O-D travel time performance 
measures from the link travel time performance measure 
results. 

 
3.4. Activity 4: Predictive method 
This paper proposes a two-phase predictive method that 
delivers travel time forecast projections and assesses how 
special conditions affect travel times. Phase 1 focuses on the 
forecast projections, and Phase 2 focuses on evaluating the 
impacts of special conditions on travel times. 

Phase 1: Forecasting method 
Phase 1 includes: 
Step 1: Data preliminaries: The goal is to look at assessing 

the data for features needed to identify the proper forecast 
model. These features are data visualization to determine 
stationarity (cyclicity and seasonality); application of the 
Dickey-Fuller test to determine stationarity; and application of 
the Box-Pierce’s Q statistic tests, the Schwarz’s Bayesian info 
criteria, the Akaike’s information criteria, and the Hannan and 
Quin information criterion procedures to evaluate correlation 
and partial autocorrelation. 

Step 2: Lag selection: Analyze past data for forecasting and 
capturing dynamic effects. The selection of lags identifies 
which of the previous periods are included as moving average, 
integrated, and autoregressive components. This is 
fundamental in autoregressive moving average models since 
too many lags could increase the error in the forecast whereas 
too few lags could leave out relevant information. 
Autocorrelation identifies the moving average order, and 
partial autocorrelation helps in determining the 
autoregressive order. The integration component, which 
denotes taking differences from specific lags, is only necessary 
when the time series show evidence of being non-stationary. 

Step 3: Forecasts: Separate the data sample into three data 
groups (training data, ex-post data, and ex-ante data), and 
select the most appropriate forecasting model according to the 
analysis of the data series features. Training data or an 
estimation sample is a subsample of the data used as input for 
the forecasting model; ex-post data are a subsample of the data 
used as a benchmark for model comparison; and ex-ante data 
are a projection calculated with the selected forecasting model. 

Phase 2: Special conditions 
Phase 2 includes: 
Step 1: Gather information about the following special 

conditions if available: 
o Major weather threats such as hurricanes that halt 

navigation and, consequently, cause trip data, such as AIS 
data, to be absent.  

o Dredging: The presence of dredging equipment in or 
adjacent to the channel. 

 

o Shoaling: A reduction in available draft large enough 
to warrant a notice to mariners. 

o Bridge closure: The closure of the channel due to 
bridge construction activity. 

o Submerged vessel: The presence of a submerged 
vessel in the vicinity of the channel. 

o Construction: The placement of riprap along the 
banks. 

o Lock closure: The closure of a floodgate or lock to all 
traffic for a defined period. 

o Submerged pipe: The presence of a submerged pipe 
in or near the channel. 

o Bridge clearance: A reduction in the clearance in 
terms of width and/or height at a bridge crossing. 

o Submerged obstruction: The presence of an 
unidentified submerged object in or near the channel. 

o Regatta: A recreational event requiring the use of the 
channel. 

o The number of complete trips through the link (part 
of Step 3). 

Step 2: The information gathered in Step 1 as special 
conditions (all but the number of complete trips through the 
link) must be coded binary (i.e., 1 denoting occurrence and 0 
denoting no presence of a corresponding event or condition) 
and assigned to each link and time (i.e., week) to match the 
travel time data used in Phase 1. 

Step 3: Include the number of complete trips through the 
link in the database to assess their relevance and impact on 
travel times. 

Step 4: Check the linearity between the sample count and 
travel time to determine the general type of models to use for 
assessing the effects of the number of trips on transit time. 

Step 5: Check the collinearity/independence because 
different special conditions may exist at the same time in the 
same link. Collinearity assessment evaluates the redundancy 
of special conditions. If redundancy in the form of collinearity 
is found, then special conditions must be evaluated in 
different models—not combined in a single model—to 
estimate their effects more accurately.  

Step 6: Check the homogeneity and normality. 
Homogeneity focuses on the variability through different 
values of the explanatory variable. Normality validates 
whether the shape of the distribution is normal or not to apply 
the proper model. 

Step 7: Run linear or nonlinear models when the relation 
between sample counts and travel times is not linear, such as 
exponential trend, logarithmic, power curve, reciprocal, log 
reciprocal, modified exponential, Gompertz, and logistic. 

Step 8: Select the best model comparing the mean square 
error, the mean absolute error, and the mean average 
percentage error statistical measures. 
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4. Travel time estimation results 
 

The GIWW begins at the Louisiana border and ends at the 
Brazos Island Harbor Ship Channel near Brownsville, Texas, 
with a length of 379 miles. The GIWW links 11 deep-draft ports 
(25 feet or deeper) and 13 shallow-draft channels (Texas 
Department of Transportation, 2014). The deep-draft ports 
manage both shallow- and deep-draft vessels, so the two 
systems are intertwined. Figure 1 provides a map of the Texas 
GIWW.  

Activity 1: Data collection and cleansing 
The data gathered for this paper are archived by various 

public and private entities as indicated in the methodology in 
Activity 1 (collection) and Step 4 of cleansing. 

Activity 2: Case/scenario definition 
The entrance to each deep-sea port is designated as a 

destination along the Texas GIWW. Additionally, the 
petrochemical complex at Chocolate Bayou just west of 
Houston/Galveston, Texas, the entrance to the channel 
leading to the Port of Victoria, and the entrance to the Arroyo 
Colorado, which leads to the Port of Harlingen, are designated 
as O-Ds. Because the ship channels for Houston, Galveston, 
and Texas City, Texas, all intersect the GIWW near each other, 
these three ports are considered one O-D. Finally, the 
Louisiana–Texas border at Mile Marker 262 is designated as an 
O-D since it marks the eastern terminus of the Texas GIWW, 
while the Port of Brownsville is the western terminus of the 
GIWW. Table 1 presents the O-D points used for this study. 
Figure 3 shows the locations of port and GIWW intersections. 

The Texas GIWW inland waterway is segmented into links 
first defined for ship channel intersections and for the location 
of the Brazos River Floodgates and the Colorado River Locks. 
The reaches between these links are defined as additional 
links. The lengths of these links are primarily determined by 
geographical features with homogeneous operational 
characteristics. The longest link (50 miles) is between Port 
Arthur and the Bolivar Peninsula. The next longest links (44 
miles and 49 miles) are in the Laguna Madre south of Corpus 
Christi. These three links are in areas with no development. 

The links for the floodgates/locks include the mooring 
areas on either side of each river where two vessels wait for the 
opportunity to cross the river. The lengths of these links are 
made identical. Figure 4, Figure 5, and Figure 6 depict the 
locations of all the links. 

Figure 5 shows that link 22 splits into two sub-links: main 
and alternative routes, both of which converge at the Corpus 
Christi Ship Channel. The Lydia Ann Channel sub-link (Link 
22B) is the primary route in this analysis.  
 
 
 
 

Table 1. Origin-destination points. 
 

Origin-destination 
Eastern/ 
northern 

mile marker  

Western/ 
southern 

mile marker 
Port of Beaumont/ 

Port of Port Arthur 
275.5 288 

Ports of Houston/ 
Galveston/Texas City 

348.5 352 

Chocolate Bayou 374.5 392 

Port Freeport 392 398 

Calhoun Port Authority 456 473 

Port of Victoria 487 493 

Port of Corpus Christi 539 549 

Port of Harlingen 642 645 

Port of Port Isabel 665 668 

Port of Brownsville 677 682 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Locations of Port and GIWW intersections. 
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Figure 4. GIWW links 1–13. 
 

 
 

Figure 5. GIWW links 14–24 (including 22A and 22B). 
 

 
 

Figure 6. GIWW links 25–29. 
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Activity 3: Travel time calculation and statistics  
Table 2 shows the average transit time (ATT), standard deviation 

(SD), and coefficient of variation (CV) by direction for 2018 and 2019. 
Conditional color formatting by variable in each column highlights 
higher values in red and lower values in green. In Table 2, the four 
groups of direction and year combinations (i.e., westbound–2018, 
westbound–2019, eastbound–2018, and eastbound–2019) have 
similar color patterns, indicating there is no noticeable change in the 
performance measures. 

The travel times are consistent across both years and directions 
with low variability for most links. This is not surprising given that the 
GIWW has no river current and is not subject to flooding or drought 
conditions. Seasonality is also not a factor. 

Activity 4: Predictive method  
Phase 1: Forecasting method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The input data consist of 104 data points representing 2 years 
(2018 and 2019) of weekly travel time averages for 31 different links. 
The GIWW splits in the vicinity of Port Aransas, with the two branches 
coming together at the Corpus Christi Ship Channel. The branch 
known as the Lydia Ann Channel is the more heavily transited of the 
two. The two branches are links 22A and 22B and are evaluated 
independently. No other data are available that could help explain 
travel time behavior, and therefore there are no explanatory or 
dependent variables. Because of this, the dataset is formed of a single 
series per link. 

Two forecasting methods are selected after applying Activity 4 
Phase 1 of the proposed methodology: The autoregressive integrated 
moving average (ARIMA) and exponential smoothing (Hyndman & 
Athanasopoulos, 2021; Sadeghi Gargari et al., 2019). These two 
methods are selected to estimate tow vessel waterway travel times 
between O-Ds for the main channel of the GIWW. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. GIWW link average and standard deviation of travel time, 2018 and 2019. 
 

Link 

Westbound/southbound trips Eastbound/northbound trips 
2018 2019 2018 2019 

ATT 
(Hour) 

SD 
(Hour) 

CV 
ATT 

(Hour) 
SD 

(Hour) 
CV 

ATT 
(Hour) 

SD 
(Hour) 

CV 
ATT 

(Hour) 
SD 

(Hour) 
CV 

1 1.39 0.37 0.26 1.34 0.33 0.25 1.45 0.31 0.22 1.46 0.32 0.22 
2 1.92 0.55 0.29 1.88 0.53 0.28 2.01 0.55 0.27 1.99 0.54 0.27 
3 0.99 0.23 0.23 0.97 0.23 0.23 1.03 0.25 0.24 1.01 0.25 0.24 
4 9.22 2.09 0.23 9.05 2.11 0.23 9.32 2.06 0.22 9.17 2.03 0.22 
5 0.89 0.27 0.30 0.89 0.27 0.30 0.83 0.21 0.25 0.83 0.21 0.25 
6 0.61 0.69 1.13 0.58 0.53 0.93 0.77 0.95 1.23 0.80 1.06 1.32 
7 0.62 0.13 0.21 0.61 0.14 0.22 0.60 0.11 0.19 0.60 0.12 0.20 
8 2.26 0.50 0.22 2.25 0.52 0.23 2.29 0.51 0.22 2.30 0.50 0.22 
9 0.74 0.17 0.23 0.74 0.18 0.24 0.75 0.17 0.22 0.75 0.16 0.21 

10 2.90 0.64 0.22 2.88 0.68 0.24 3.02 0.66 0.22 3.03 0.68 0.22 
11 1.05 0.24 0.23 1.08 0.27 0.25 1.07 0.23 0.22 1.10 0.25 0.23 
12 4.82 5.07 1.05 6.52 6.81 1.04 5.40 5.68 1.05 7.65 7.86 1.03 
13 6.06 1.38 0.23 6.14 1.50 0.24 6.45 1.33 0.21 6.57 1.47 0.22 
14 5.26 6.62 1.26 6.55 7.34 1.12 4.66 5.56 1.19 5.82 6.08 1.04 
15 1.01 0.21 0.21 1.01 0.21 0.21 1.09 0.21 0.20 1.09 0.23 0.21 
16 1.08 0.28 0.26 1.09 0.28 0.26 1.08 0.21 0.20 1.09 0.22 0.20 
17 2.58 0.42 0.16 2.58 0.44 0.17 2.65 0.43 0.16 2.63 0.43 0.16 
18 2.47 0.54 0.22 2.45 0.54 0.22 2.65 0.71 0.27 2.67 0.71 0.27 
19 1.10 0.26 0.24 1.08 0.26 0.24 1.05 0.21 0.20 1.02 0.20 0.20 
20 2.60 0.44 0.17 2.60 0.46 0.18 2.84 0.62 0.22 2.88 0.66 0.23 
21 0.99 0.24 0.24 1.00 0.26 0.26 1.02 0.21 0.20 1.02 0.21 0.21 
22 4.00 0.70 0.17 4.07 0.80 0.20 4.08 0.72 0.18 4.09 0.74 0.18 

22A 4.32 0.79 0.18 4.43 0.86 0.19 4.35 0.78 0.18 4.33 0.72 0.17 
22B 3.96 0.67 0.17 4.02 0.78 0.20 4.04 0.70 0.17 4.06 0.74 0.18 
23 2.02 0.39 0.19 2.05 0.38 0.19 1.90 0.43 0.23 1.89 0.41 0.22 
24 8.32 1.44 0.17 8.05 1.33 0.17 7.40 1.58 0.21 7.51 2.05 0.27 
25 9.27 1.54 0.17 8.98 1.53 0.17 8.11 1.80 0.22 8.15 1.95 0.24 
26 0.56 0.10 0.18 0.54 0.10 0.19 0.48 0.09 0.19 0.47 0.09 0.19 
27 3.61 0.51 0.14 3.47 0.51 0.15 3.18 0.48 0.15 3.14 0.51 0.16 
28 0.45 0.13 0.30 0.42 0.12 0.27 0.39 0.13 0.33 0.38 0.12 0.30 
29 1.25 0.25 0.20 1.32 0.25 0.19 1.21 0.18 0.15 1.19 0.19 0.16 
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One hundred observations are used as training data, and 
four observations are retained to evaluate forecasts for the 
ARIMA models. In the case of exponential smoothing, because 
there is no need to select the best model lags, the whole 
sample is used for forecasting. The mean square error, the 
mean absolute error, and the mean average percentage error 
indicate that ARIMA is the best model to estimate vessel travel 
times in the main channel of the GIWW. Although 52 weeks are 
projected into the future using the selected model, the 
analysis of the results recommend considering only 12 weeks 
as forecasts because ARIMA tends to converge to single values 
the farther into the future the forecast goes. 

Table 3 shows the forecasted values in hours for the first 12 
weeks (i.e., weeks 105–116) per link with total travel time (TTT) 
at the bottom (considering traveling throughout all links). O-D 
pairs and links are not correspondent one to one. Therefore, 
some O-D pairs cover multiple links, which explains the lack of 
cell borders in the O-D pair column of the table. 

Figure 7 shows the behavior of travel times for the last 12 
weeks of data and the forecasted weeks for all links, with total 
travel time at the top (red dotted line). The black dotted 
vertical line separates actual data (the last 12 weeks on the 
left) from forecasted values. 

Table 3 and Figure 7 show that the forecasted values 
behave more smoothly (i.e., have less variably) than actual 
travel times. This is expected because there is only a single 
data time series available, and thus the necessary use of ARIMA 
and exponential smoothing yields projections that tend to 
converge to specific values overall. Some of the variability in 
the actual values may be explained by special conditions. 

Phase 2: Special conditions 
The data obtained to run this phase of the proposed 

methodology have been gathered as indicated in the 
proposed methodology (Activity 4, Phase 2: Special 
conditions). In this study, 361 occurrences are considered in 
the analysis.  

The statistical analysis suggests that sample counts (i.e., 
completed  trips  through a link)  do not  influence trave l time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

significantly in any link. These results could be because the 
period used as the unit of measurement is far larger than the 
average travel time for each link. In other words, one would 
expect that the amount of traffic in each link would affect 
travel time in the same link. This is analogous to the effect of 
road congestion in road travel time (Yeon et al., 2008). 
However, to capture this effect, the time unit of measurement 
should be at an adequate resolution to the actual travel time. 
For instance, if travel time is a few hours but the time unit of 
measurement is a week—as in this case—then the variations 
in travel time counted in hours due to the number of vessels 
traveling in the same link would dilute and/or net out when 
averaged over a week. For a model to capture such effects, the 
unit of measurement should be hours or days since travel time 
averages for a single link are between 0.41 hours (i.e., 24.6 
minutes) and 9.25 hours for links 28 and 4. Unfortunately, data 
do not allow the necessary resolution to adequately capture 
effects due to changes in the number of trips (sample counts) 
on travel time. (If the number of vessels per hour are counted, 
even the highest number is two vessels per hour [at link 5].) 

Nevertheless, the effects of special conditions on travel 
time are obtained with the application of the proposed 
methodology. Specifically, the statistical analysis deemed two 
special conditions relevant for travel time: dredging and 
shoaling. The effects yielded by the analysis are in the form of 
magnitude and probability of occurrence. On average, when 
dredging is present in a link, there is a probability of 78.9 percent 
that travel time for that link increases by 0.38 hours (i.e., 23 
minutes). Similarly, when shoaling is present on any link, the 
probability is 64.7 percent that travel time for that link increases 
by 0.35 hours (i.e., 21 minutes). These probabilities provide an 
idea of the general effects of these two special conditions; 
however, specific effects vary from link to link. Figure 8 and Figure 
9 show the individual effects per link. The blue columns represent 
the magnitude of the effect in hours, and the orange dots 
represent the probability of that effect occurring. Several links do 
not show effects mostly due to the lack of special conditions on 
those links. 
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Figure 7. Travel times for last 12 weeks of data and forecasted ravel times. 
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Table 3. Twelve-week forecasts per link (hours). 
 

Link O-D pair 105 106 107 108 109 110 111 112 113 114 115 116 
1 Louisiana border to Port 

Beaumont/Port Arthur 
upstream boundary 

1.43 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 

2 Port Beaumont/Port Arthur 
upstream boundary to Port 
Arthur downstream boundary 

1.96 1.95 1.93 1.96 1.98 1.93 1.96 1.94 1.94 1.94 1.94 1.96 

3 Port Arthur downstream 
boundary to Port 
Houston/Pelican Island 
mooring 

1.04 1.01 1.00 1.02 1.01 1.03 1.00 1.01 1.01 1.02 1.02 0.99 
4 9.52 9.55 9.58 9.60 9.62 9.64 9.65 9.66 9.66 9.65 9.65 9.63 
5 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.86 0.86 

6 Port of Houston/ 
Galveston/Texas City 

0.73 0.76 0.78 0.80 0.82 0.83 0.84 0.85 0.85 0.86 0.86 0.87 

7 Port Houston/Pelican Island 
mooring to Chocolate Bayou 

0.62 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.61 
8 2.27 2.27 2.28 2.28 2.28 2.27 2.27 2.27 2.28 2.28 2.27 2.27 
9 0.75 0.75 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 
10 Chocolate Bayou to Port 

Freeport upstream boundary 
2.97 2.97 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 

11 Port Freeport upstream 
boundary to Port Freeport 
downstream boundary 

1.11 1.09 1.10 1.11 1.09 1.09 1.10 1.08 1.08 1.10 1.08 1.08 

12 Port Freeport downstream 
boundary to Colorado River 

6.92 6.82 6.74 6.66 6.59 6.54 6.49 6.44 6.40 6.37 6.33 6.31 
13 6.41 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 
14 Colorado River industry 5.79 5.69 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67 
15 Colorado River to Calhoun 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 
16 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 
17 Port Lavaca (Calhoun Port 

Authority) 
2.63 2.60 2.62 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 

18 Calhoun to Victoria 2.61 2.60 2.60 2.60 2.60 2.59 2.59 2.59 2.59 2.58 2.58 2.58 
19 Port of Victoria 1.06 1.09 1.05 1.07 1.08 1.05 1.07 1.07 1.05 1.07 1.06 1.06 
20 Victoria to Corpus Christi 

upstream boundary 
2.67 2.71 2.77 2.71 2.69 2.69 2.75 2.73 2.71 2.70 2.76 2.69 

21 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 
22 4.08 4.06 4.04 4.03 4.01 4.00 3.99 3.98 3.97 3.96 3.96 3.95 
22A Aransas Pass 4.28 4.23 4.17 4.13 4.09 4.05 4.02 3.99 3.96 3.94 3.92 3.90 
22B Lydia Ann Channel 4.04 4.03 4.02 4.01 4.00 3.99 3.98 3.97 3.97 3.96 3.96 3.95 
23 Corpus Christi upstream 

boundary to Corpus Christi 
downstream boundary 

1.95 1.98 2.00 2.02 2.03 2.03 2.02 2.01 1.99 1.98 1.96 1.96 

24 Corpus Christi downstream 
boundary to Arroyo Colorado 
upstream boundary 

7.74 7.80 7.84 7.88 7.91 7.94 7.95 7.97 7.98 7.99 8.00 8.01 
25 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8.50 8.50 8.50 8.50 

26 Arroyo Colorado upstream 
boundary to downstream 
boundary (Port of Harlingen) 

0.53 0.53 0.50 0.51 0.51 0.52 0.51 0.52 0.53 0.52 0.52 0.51 

27 Arroyo Colorado to Port Isabel 
upstream boundary 

3.32 3.32 3.33 3.33 3.33 3.34 3.34 3.34 3.35 3.35 3.35 3.35 

28 Port Isabel upstream 
boundary to Port Isabel 
downstream boundary 

0.41 0.43 0.44 0.44 0.45 0.45 0.45 0.46 0.46 0.46 0.46 0.46 

29 Port Isabel downstream 
boundary to Port Brownsville 
upstream boundary 

1.19 1.19 1.19 1.19 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

TTT  90.55 90.29 90.25 90.22 90.14 90.03 90.04 89.94 89.83 89.76 89.72 89.55 
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5. Conclusions 

 
AIS data provide a robust sample for the calculation of 
performance measures. Much of the effort involved in using 
AIS data focuses on cleaning the data and reducing it to the 
inland towing traffic that uses the GIWW. 

The GIWW is a complex waterway. Because it crosses 11 
ship channels and connects to numerous shallow-draft 
channels, the waterway must be segmented into small links to 
evaluate performance. Future research may want to 
investigate the interactions with these connections. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since there is no current on the GIWW (as there would be 

on a river), no significant variations in travel times by direction 
were expected, and this turned out to be the case. The links 
containing the Brazos River Floodgates and the Colorado River 
Locks showed a high degree of variability in travel times. This 
could be because of congestion at the structures or a 
hesitancy to cross the rivers when conditions are suboptimal. 

Ideally, a path-based approach is preferable to a link-
based approach for calculating travel times between O-D 
pairs, but some practical considerations such as sample size 
led the authors to  opt for the use of  link-based travel times. A  
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Figure 8. Individual effects (magnitude in hours and probability of occurrence as percentage) per link—dredging. 
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Figure 9. Individual effects (magnitude in hours and probability of occurrence as percentage) per link— shoaling. 
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path approach requires a separate sample to be developed 
and maintained for each O-D pair, and each pair must be 
evaluated independently. Given the complexity of the GIWW, 
this was not a viable approach for this research. 

The predictive analysis was divided into two phases. The 
first phase looked at developing the forecast projections for 
travel time based on historical data. The second phase 
focused on assessing the effects of special conditions on travel 
time. The authors also explored the relation of the number of 
trips (i.e., sample count) with travel time in this last phase of 
the analysis. 

Results from Phase 1 show that forecasted projections 
smooth out the deeper they go into the future. This is because, 
due to data availability, projections were based exclusively on 
the historical data of the same target variable; or, in other 
words, projections used historical information—past values—
of travel time to predict the future. This type of data 
determined the type of statistical tools the authors 
implemented and resulted in the selection of a smoothing 
type of model. Therefore, the authors recommend the use of 
only the first 12 weeks of projections. 

Phase 2 analysis found no significant relation between 
sample count and travel time. This is likely because of an 
imbalance in magnitude between the time used as a unit of 
measurement (week) and the average travel time for each link 
(hours). Analogous to the effect of road congestion in road 
travel time, to capture such effects, the magnitude of the unit 
of measurement should be in accordance with average travel 
time; more specifically, for this type of research, the unit of 
measurement should be in hours or days since travel time 
averages for a single link are between 0.41 hours (i.e., 24.6 
minutes) and 9.25 hours. Unfortunately, the data did not allow 
the necessary resolution to adequately capture said effects. 

The authors found two special conditions relevant for 
travel time: Dredging and shoaling. These effects were in the 
form of magnitude of impact and the probability of that 
impact occurring when the special condition is present. On 
average, when dredging is present, there is a probability of 
78.9 percent that travel time increases by 0.38 hours (i.e., 23 
minutes). Similarly, when shoaling is present on any link, there 
is a probability of 64.7 percent that travel time increases by 
0.35 hours (i.e., 21 minutes). These probabilities provide an 
idea of the general effects of these two special conditions; 
however, specific effects vary from link to link, as shown in 
Figure 8 and Figure 9. 

The methodology developed provides quantitative results 
that predict, describe, and validate future travel time 
behaviors  based on specific  factors. It illustrates  the need  to  
 
 
 

clean AIS data before they are used in any analysis. In the case 
of the Texas GIWW, it is also important to filter out vessels that 
have been recorded in the GIWW but are not using the GIWW. 
Users of the GIWW can use statistics such as those provided by 
this study to have a sense of estimated travel time and 
potential effects of special conditions in a link they may need 
to traverse. The methodology also enables an analysis of the 
effect of special conditions, such as those announced in the 
U.S. Coast Guard’s notice to mariners or USACE’s local notices 
to mariners. If this type of study is performed regularly, it 
would highlight significant changes in links and allow analysts 
to focus on trouble spots along the waterway. Such data will 
also aid in planning the timing and magnitude of maintenance 
activities on the GIWW. 

The limitations of this work lie in the data available for the 
analysis. Therefore, future research should focus on obtaining 
additional data that enable more robust projections by not 
relying on a single time series. Also, a higher resolution should 
be considered to balance the time unit of measurement with 
average travel time, and to be able to assess traffic effects on 
travel time. In addition, expanding the analysis to include 
additional years (e.g., 2020) could provide more data to 
increase the sample size and make more accurate predictions 
and assessments that could be tested comparing forecasted 
projections with actual data; for instance, obtaining data for 
years 2018–2020, a researcher could forecast 1 year of 
behavior using 2018 and 2019 data and then compare it with 
2020. This could be informative for the special conditions 
considered in this analysis, but also useful to investigate the 
effects of additional conditions such as pandemic impacts. 
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