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Abstract: The increase in electric vehicles has surpassed expectations leading to the eventual 
replacement of traditional IC (internal combustion) engine vehicles. However, to achieve this, it is crucial 
to research and develop more efficient and reliable electric batteries to create a sustainable 
transportation system. The performance of the battery directly impacts the power and range of the 
vehicle making battery management research imperative. Accurate estimation of battery state of charge 
(SoC) and temperature is vital for the overall performance, drivability and safety of the vehicle. This paper 
proposes a comprehensive approach to create an AI-based model to estimate the battery SoC and 
temperature that matches the performance of conventional vehicles. Various regression models are used 
as prediction models and the results are presented. These insights offer valuable understandings of 
battery thermal behavior, aiding in the design of an effective battery management system. 
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1. Introduction 
 

The popularity of electric vehicles (EVs) is increasing due to 
their efficiency and cost-effectiveness compared to traditional 
internal combustion engines that contribute significantly to 
carbon emissions and environmental degradation. The use of 
batteries in EVs offers an opportunity to eliminate vehicular 
CO2 and NO2 emissions, which is crucial in a world dealing 
with climate change (Tian et al., 2022). EVs present both 
economic development challenges and opportunities. The 
battery capacity plays a significant role in the performance of 
EVs, and its temperature is a crucial factor. To improve the 
efficiency and reliability of batteries, it is essential to optimize 
their utilization and protection. The internal and external 
variables affecting the electric drivetrain, such as state of 
charge (SOC), internal resistance, battery voltage, current, and 
temperature, must be detected and analyzed (Liu et al., 2023). 
Battery temperature has a significant impact on the charging 
and discharging rate, and understanding the SOC is crucial for 
developing a control strategy. This paper presents the results 
of various data analysis and regression models used to predict 
the SoC and battery temperature of the BMW i3, which can 
help understand the battery's thermal behavior and design an 
effective battery management system (BMS) (Hannan et al., 
2017). The estimation of state of charge (SoC) and battery 
temperature in electric vehicles (EVs) is a crucial task for 
battery management systems. In recent years, various 
research studies have been conducted to develop accurate 
and efficient methods for SoC and temperature estimation. 
This literature review will highlight some of the significant 
works in this field (Ghosh, 2020). In a study by Yang et al. (2022) 
a neural network-based approach was proposed for the 
estimation of SoC and temperature in lithium-ion batteries. 
The proposed approach uses a combination of long short-
term memory (LSTM) and fully connected neural networks to 
estimate the SoC and temperature of a battery. The results 
showed that the proposed approach achieved high accuracy 
in both SoC and temperature estimation. Another study by 
Zhou et al. (2023) proposed a model-based approach for the 
estimation of SoC and temperature in a lithium-ion battery 
used in an EV. The proposed approach used a coupled electro-
thermal model to estimate the battery's SoC and temperature. 
The results showed that the proposed approach achieved a 
high accuracy in SoC and temperature estimation, even under 
varying driving conditions. In a study by Song et al. (2022) a 
multi-model adaptive estimation approach was proposed for 
the estimation of SoC and temperature in EV batteries. The 
proposed approach used a combination of a Kalman filter and 
a particle filter to estimate the SoC and temperature of the 
battery. The results showed that the proposed approach 
achieved a high accuracy in SoC and temperature estimation, 
even under varying operating conditions. A study by Cai et al. 

(2022) proposed a dual-estimation approach for the 
estimation of SoC and temperature in EV batteries. The 
proposed approach used a combination of a Kalman filter and 
an unscented Kalman filter to estimate the SoC and 
temperature of the battery. The results showed that the 
proposed approach achieved high accuracy in SoC and 
temperature estimation, even under varying driving 
conditions. In conclusion, the estimation of SoC and 
temperature in EV batteries is a crucial task for BMSs. Various 
approaches, including neural network-based approaches, 
model-based approaches, and dual-estimation approaches, 
have been proposed for SoC and temperature estimation. 
These approaches have shown promising results in achieving 
high accuracy in SoC and temperature estimation, even under 
varying operating and driving conditions. 

As batteries become increasingly crucial for energy 
transition and electric vehicles, buyers consider various factors 
when making their decisions, including pricing and battery 
infrastructure. One important factor is understanding the 
reliability, robustness, and performance of the electric vehicle, 
based on how long and how well its battery can perform before 
requiring charging or replacement (Tang et al., 2019).  

Another critical factor is the EV's range, which can be 
affected by factors such as terrain, passenger load, driver 
behavior, and outdoor temperature. Therefore, 
understanding battery capacity, life, and internal resistance is 
essential in devising a control strategy that includes important 
indicators such as battery temperature and state of charge 
(SoC). Battery temperature significantly affects battery 
modeling because it can significantly impact the rate at which 
the battery charges and discharges, reducing battery life and 
the drivability of the vehicle. Accurate SoC estimation is critical 
for preventing battery overcharging and discharging and 
accurately forecasting the remaining range during a trip. 

 
2. AI based SoC and temperature estimation  

 
The proposed work aims to identify a supervised machine 
learning technique which utilizes the input data from the 
vehicle and predict accurate SoC and temperature. Regression 
analysis can be used to establish the relationship between 
dependent and independent variables and predict 
continuously changing values of the vehicle's battery state of 
charge and battery temperature.  

The schematic of the proposed work is shown in Figure 1. 
The dataset is sourced from IEEE Dataport and undergoes a 
process of data cleaning to remove corrupt or inaccurate 
records from the database. This involves replacing, altering, or 
deleting incomplete, inaccurate, or irrelevant portions of the 
data. Various algorithms are then applied to the data, ranging 
from linear models to tree-based models, to determine if any 
improvements can be made. The ultimate objective is to 
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measure the accuracy of the model using different metrics 
such as mean absolute error (MAE), root mean squared error 
(RMSE), mean absolute percentage error (MAPE), and R-
Squared Score, which provide additional insights. The data 
used for this study was obtained from IEEE Dataport and was 
used to validate a model for the BMW i3 (60 Ah), including 
readings from the powertrain and heating circuit. The dataset 
includes 72 recorded driving trips with the BMW i3 (60 Ah) and 
is divided into two categories: Category A, recorded in 
summer, which contains incomplete data due to 
measurement system issues, and Category B, recorded in 
winter, which contains consistent data. Therefore, this 
analysis focuses on Category B data and the overview dataset 
of Category A and Category B. Each trip in the dataset includes 
environmental data (e.g., temperature, elevation), vehicle data 
(e.g., speed, throttle), battery data (e.g., voltage, current, 
temperature, SoC), and heating circuit data (Dai et al., 2018). 

 
3. Data processing 

 
Raw data from the real world can be complex, containing 
errors and inconsistencies, and may not be uniformly 
structured. Therefore, data obtained from IEEE Dataport 
requires processing prior to modeling, which is a crucial first 
step in machine learning (Tom & Febin, 2023). This involves 
applying various data cleaning techniques, such as handling 
NaN values and duplicates. The process typically includes the 
following steps: 

• Analyzing missing values 
• Identifying and handling duplicate values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Analyzing outliers 
• Scaling the data 

Incomplete or missing data can weaken the statistical 
power of analysis, affecting the validity of results by omitting 
crucial insights. To ensure data is reliable and relatable, it's 
essential to handle missing data using imputation methods or 
domain knowledge. For this dataset, SimpleImputer from 
scikit-learn was used to impute missing values, replacing NaN 
with a specified placeholder such as mean or median for 
numeric variables and mode for categorical variables. 
Duplicate values are repeated values in the same dataset, 
which can lead to overfitting and affect model efficiency. To 
identify and remove duplicate values, the duplicated method 
returns a set of true and false values indicating which rows are 
duplicated. This dataset had zero duplicate values. Outliers 
are extreme values that deviate significantly from other 
observations, affecting the model's efficiency. 

It's important to perform outlier analysis to identify 
unusual observations and treat them appropriately. There are 
three types of outliers: global, contextual, and collective. 
Differences in scale between input variables can make 
modeling challenging. Scaling input variables depends on the 
problem and variable specifics. Normalizing and 
standardizing are the most common techniques used to scale 
numerical data before modeling. Normalization rescales data 
to range between 0 and 1, and Standardization rescales the 
distribution of values to have a mean of 0 and a standard 
deviation of 1, assuming a normal distribution. MinMaxScaler 
from scikit-learn is used for normalization, and 
StandardScaler is used for standardization, which subtracts 
the mean value of the data (Jawahar et al., 2022). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Schematic representation of the proposed model.  
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4. AI models for prediction 
 

Linear regression analysis involves using one variable to make 
predictions about another variable. The dependent variable is 
the one being predicted, while the independent variable is the 
one used to make the prediction. In the linear regression model, 
the outcome (y) is influenced by a weight (W) assigned to the 
independent variable (x), as well as a bias (b). Figure 2 illustrates 
the linear regression model (Godbin & Jasmine, 2023).  

Random forest is a popular supervised machine learning 
algorithm used for classification and prediction of data. It 
builds decision trees using various samples, and in cases of 
regression, as depicted in Figure 3, it sorts and averages the 
data based on the majority vote outcome. One of its 
distinguishing features is its ability to handle datasets with 
both categorical and continuous variables. When it comes to 
classification problems, the random forest algorithm typically 
yields superior results (Deepthi & Febin, 2016). 

Decision tree regression is used for both classification and 
regression problems. In regression problems, it is a non-
parametric method that is useful in building a model that maps 
an input to an  output using a  tree-like  structure. The  decision  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tree model starts with a single node called the root node that 
represents the entire dataset. The decisión tree regression 
model is depicted in Figure 4. The tree structure is built by 
recursively splitting the dataset into smaller subsets based on 
the value of a chosen feature, with the aim of minimizing the 
variance of the response variable. Each internal node in the tree 
represents a feature, and the branches emanating from that 
node represent the possible values of that feature. The leaves of 
the tree represent the predicted value of the response variable 
for a given set of input values. The decision tree regression 
model is shown in Figure 5.   

One of the advantages of the decision tree regression 
model is its interpretability. It provides a clear understanding 
of the decision-making process and the underlying features 
that contribute to the prediction. It can also handle non-linear 
relationships between the input and output variables. 

One of the regression methods in machine learning is ridge 
regression, often utilized when there is strong correlation among 
independent variables. This technique is effective in dealing with 
multicollinear data since it leverages least square estimates, 
producing unbiased values. However, in situations where 
collinearity is exceptionally high, bias values may still arise.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 2. Linear regression model for SoC prediction. 
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Figure 3. Random forest decision tree for temperature difference prediction. 

 

 
 

Figure 4. Structure of the decision tree model. 
 

 
 

Figure 5. Contours of error and constrain functions using ridge regression model.  
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To address this, a bias matrix is incorporated into the ridge 
regression equation. This approach is highly robust and 
reduces the risk of overfitting in the model. The ridge 
regression contour is represented in Figure 5.  

Lasso regression, also known as L1 regularization, is a type 
of linear regression model that helps to estimate the 
relationship between a dependent variable and a set of 
independent variables. The goal of lasso regression is to select 
a subset of independent variables that are most important in 
predicting the dependent variable, while shrinking the 
coefficients of the remaining variables to zero. The lasso 
regression model adds a penalty term to the standard linear 
regression equation, which penalizes the sum of the absolute 
values of the coefficients of the independent variables. This 
penalty term encourages the model to eliminate the 
coefficients of irrelevant variables and reduces the influence of 
noisy or redundant variables. Lasso regression selects only a 
subset of variables and avoids overfitting, leading to improved 
prediction accuracy and interpretability. The contours of error 
and constraint functions are shown in Figure 6. 

The elastic net regression model is created by augmenting 
the traditional linear regression equation with both lasso and 
ridge regularization terms. The lasso penalty minimizes the 
coefficients of irrelevant features to zero, resulting in sparsity, 
while the ridge penalty reduces the coefficient magnitudes to 
prevent overfitting. An advantage of the elastic net regression 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

model is its capability to handle datasets with high 
multicollinearity, where predictor variables are highly 
correlated. Lasso regression may choose only one of the 
correlated features, while ridge regression tends to give similar 
weights to all correlated features. The elastic net regression 
achieves a balance between these approaches and is more 
effective at handling correlated features (Febin et al. 2016). 

 
5. Results and discussion 

 
The dataset retrieved from IEEE Dataport was partitioned into 
three sets: training, validation, and testing. The training set 
was comprised of a total of 64,486 data values and was split in 
an 85:15 ratio between the training and validation sets, 
respectively. After processing and scaling the dataset, various 
analyses were conducted to assess the target variable and its 
correlation with other independent variables (Daya et al., 
2016). Through the exploration of existing features and the 
creation of novel ones, the predictive capabilities of the model 
were notably enhanced. The simulations were carried out 
under diverse test cases, and the EV parameters, including SoC 
and temperature, were graphed. The experiments were 
performed at different load conditions by altering the load 
connected to the 60Ah rated battery. It is worth noting that 
fluctuations in temperature can impact the battery's 
performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Contours of error and constrain functions using lasso regression model.  
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Figure 7 through Figure 12 exhibit a comparison between 
the predicted and actual state of charge (SoC) percentages 
using distinct models, namely linear regression, decision tree, 
random forest, elastic net, lasso regression, and ridge 
regression. Correspondingly, Table 1 shows the performance 
metrics considering R2 score, mean absolute error (MAE), 
mean squared error (MSE), and root mean squared error 
(RMSE). It can be observed that the SoC estimation models 
were able to estimate the values correctly. The advantage of 
lasso regression is that it can help to reduce dimensionality 
within a dataset by shrinking the weight parameters to zero, 
eliminating less important features from the model. The lasso 
regression model stands out for its superior predictive 
capabilities. This is substantiated by its highest R2 score, 
signifying its ability to account for 99.4% of the data's 
variability. Moreover, it records the lowest MAE, MSE, and 
RMSE values, attesting to its remarkable accuracy. Notably, 
the lasso regression model leverages L1 regularization, which  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

curtails the influence of less significant features and mitigates 
overfitting issues. The ridge regression model also performed 
well in the SoC estimation. The advantage of this model is that 
the datasets that have many correlated features can be 
modeled accurately.  

The analysis also extends to the estimation of battery 
temperature using diverse AI models. The comparison 
between predicted and actual temperatures is depicted in 
Figures 13 to 20, encompassing linear regression, decision 
tree, random forest, elastic net, lasso regression, and ridge 
regression models. Performance metrics, including R2 score, 
MAE, MSE, and RMSE, are compiled in Table 2 for each model. 
Notably, the lasso regression model emerges as the most 
adept at predicting battery temperature, boasting the highest 
R2 score and the lowest values for MAE, MSE, and RMSE. While 
ridge regression exhibits a higher R2 score, it lags lasso 
regression in predicting battery temperature due to its 
comparatively elevated average prediction errors 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Estimated SoC vs actual SoC using linear regression model. 
 
 
 
 

 

 
 

Figure 8. Estimated SoC vs actual SoC using decision tree model. 
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Figure 9. Estimated SoC vs actual Soc using 
 random forest model. 

 
 

 
 

Figure 10. Estimated SoC vs actual SoC using elastic  
net regression model. 

 
 

 
 

Figure 11. Estimated SoC vs actual SoC 
 using lasso regression model. 

 

 
 

Figure 12. Estimated SoC vs actual SoC  
using ridge regression model. 

 
 

 
 

Figure 13. Estimated temperature vs actual temperature 
using linear regression model. 

 
 

 
 

Figure 14. Estimated temperature vs actual temperature 
using decision tree model. 
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Figure 15. Estimated temperature vs actual temperature using 
random forest model. 

 
 

 
 

Figure 16. Estimated temperature vs actual temperature using 
elastic net regression model. 

 
 

 
 

Figure 17. Estimated temperature vs actual temperature lasso 
regression model. 

 
 

 
 

Figure 18. Estimated temperature vs actual  
temperature using ridge regression model. 

 
 

 
 

Figure 19. Violin plot of estimated SoC for various AI models. 
 
 

 
 

Figure 20. Violin plot of estimated battery  
temperature for various AI models. 
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The violin plot displayed the predicted values for each AI 
model. The plot for predicting state of charge (SoC) was shown 
in Figure 19, while the plot for estimating battery temperature 
was shown in Figure 20. The lasso regression model had the 
narrowest part in the violin plot, indicating the least variability 
in predicted values, which was consistent with its low values 
for MAE, MSE, and RMSE in the results table. On the other hand, 
the random forest regression and decision tree regression 
models had wider parts in their violin plots, suggesting more 
variability in predicted values. However, they still had 
relatively high probability densities near their median 
predicted values, indicating good predictive performance. 

 
6. Conclusion 

 
Predicting the SoC in lithium-ion batteries stands as a pivotal 
element within electric vehicle battery management systems, 
exerting a direct influence on vehicle performance. This 
investigation utilizes three AI-driven algorithms: linear 
regression, random forest, decision tree, as well as lasso, ridge, 
and elastic net regression models to anticipate both battery 
SoC and temperature. The comparison of results with respect 
to various performance indices is presented in Table 1 and 
Table 2. It can be observed that all the models investigated in 
the paper were able to estimate the SoC and battery 
temperature of the vehicle. However, the lasso regression 
model stands superior compared to the other models 
investigated in this work.  The proposed machine learning 
models enable the analysis of non-linear mapping of input 
features, such as voltage and current, for SoC estimation. AI 
algorithms are preferred for SoC estimation due to their 
effective handling of non-linear data. In the future, a robust 
neural network could be trained on this dataset for improved  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

performance, as neural networks can capture non-linearities 
and accurately fit the underlying function. Additionally, 
exploring and implementing real-time scaling for this project 
is a potential avenue for future research. 
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Table 1. Performance comparison of various models for SoC temperature estimation. 
 

Model R2 Score MAE MSE RMSE 
Linear regression 0.94323 0.53495 0.49056 0.63457 

Decision tree 0.930485 0.43456 0.41064 0.5234 
Random forest 0.930384 0.45658 0.38956 0.58790 

Elastic net 0.956272 0.49056 0.42967 0.61345 
Lasso regression 0.976745 0.43497 0.31245 0.49345 
Ridge regression 0.963738 0.47048 0.32343 0.5238 

 
Table 2. Performance comparison of various models for battery temperature estimation. 

 
Model R2 Score MAE MSE RMSE 

Linear regression 0.96034 0.54453 0.50354 0.70960 
Decision tree 0.971724 0.46390 0.35990 0.59920 

Random forest 0.971747 0.46333 0.35875 0.59895 
Elastic net 0.961645 0.52537 0.48701 0.69786 

Lasso regression 0.980952 0.44154 0.24186 0.49180 
Ridge regression 0.975033 0.47048 0.31701 0.56304 
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