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Abstract: The main objective of this project is to build a mobile terrestrial robot that allows the sowing 
of seeds of several types of plants that are cultivated in an artisanal way. A structure based on tracked 
locomotion has been designed that involves the use of several sensors, DC motors, and control 
systems based on two Arduino boards, which together allow the mobile robot to interact with the 
irregular environment through which it moves. The locomotion process carried out by the seeding 
robot is configured through an HMI interface implemented on a touch screen, where the user chooses 
the type and quantity of seeds to be sown so that the robot then follows an autonomous rectilinear 
trajectory which is supervised and corrected utilizing a neuro-diffuse control such as ANFIS. In addition, 
the mobile robot has a battery feeding and charging system through solar panels, which gives it 
complete autonomy to conduct the work entrusted to it.  
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1. Introduction 
 
Sowing seeds is an activity related to agriculture, which 
consists of placing, burying, and/or scattering seeds in a field 
prepared for that purpose. Farmers in general have empirical 
knowledge of such planting and the process of sowing the 
land is carried out following an irregular pattern, therefore, the 
final production of the crop is not as efficient compared to that 
of cultivated land with technical specifications where the 
distance between the plants, the depth of the hole, etc. 
number of seeds, among other factors. Sowing in a large 
plantation is a repetitive process that produces long-term 
tiredness and fatigue to the farmer and under this perspective, 
the development of a mobile terrestrial robot with an 
automatic control system that helps and facilitates the sowing 
activity has been considered. 

There are several robots available on the market and 
research has been conducted on many more, which perform 
the functions indicated above, and of which some were taken 
as a reference to develop the final design of the proposed 
prototype. In the work developed by Agetano et al. (2018), the 
researchers built an automated seed-sowing robot with an 
android mobile application using a rechargeable battery to 
energize the different electromechanical components of the 
robot. The app allows you to connect with the robot via 
Bluetooth connection, display the battery level and the number 
of seeds, set the length and width of the hole, as well as control 
the start, stop and maneuvers that the robot must execute. In 
Javidan's research (Javidan & Mohamadzamani, 2018), to solve 
the process of automatic sowing of legumes in the field, a solar-
powered seed sowing robot was designed and built with row 
detection technology and can automatically perform circular 
operations at the end of each crop row. 

In the article published by Dutta et al. (2019), an autonomous 
seed-sowing robot is designed, which divides the field into a 
grid with intersection points and where the depth of the hole, as 
well as the distance between the sowing points, are calculated 
according to the data configured to the robot; The robot also 
uses sensors to detect obstacles and possible trajectorial 
changes. Very similarly, Godse's project (Godse et al., 2021) was 
designed for a 4x4 robot that does the work of sowing seeds on 
plowed agricultural land, tracing the path, and sowing seeds. 
This robot consists of an Arduino Uno board that performs the 
controller actions and an ultrasonic sensor on the front that 
allows it to detect and evade obstacles. 

Taking this background as a reference, this project seeks to 
implement an autonomous terrestrial mobile robot that 
meets the hardware and software requirements that allow the 
seed deposition process to be conducted under standardized 
standards and timesaving, to reduce the physical effort of 
farmers and subsequently obtain quality crops that improve 
production. An intelligent neuro-fuzzy control known as 

adaptive networks based on fuzzy inference systems (ANFIS) 
has been developed to regulate and correct the trajectory that 
the mobile robot must follow in the seeding process. 

This project, unlike the bibliography consulted, 
incorporates an ANFIS-type intelligent controller to correct the 
deviation of the robot's orientation angle, which highlights the 
applicability and advantages of deep learning through 
adaptive neural networks with fuzzy inference in planting 
activities in the agricultural sector. 

 
2. Materials and methods  

 
2.1. Adaptive networks based on fuzzy inference 
systems: ANFIS 
The adaptive network-based fuzzy inference system (ANFIS) or 
systematically equivalent adaptive neuro-fuzzy inference 
system, are systems based on adaptive neural networks with 
fuzzy inference. In these systems, the principle is the use of 
different methods for the adjustment of the parameters, among 
them is the method of backpropagation of the error employing 
the descending gradient and the Recursive Least Squares (Jang 
& Sun, 1995). The working principle of this type of topology was 
proposed by Jang in his thesis work "ANFIS: Adaptive network-
based fuzzy inference system" (Jang et al., 1997). 

The architecture of the ANFIS network that is presented in 
the development of this work is a type of adaptive network, 
which is functionally equivalent to a fuzzy inference system. 
This architecture can represent both fuzzy models such as 
first-order Sugeno and zero-order Sugeno (Du & Swamy, 2006). 
Due to the faster training and the better characteristics of first-
order systems over zero-order systems, these are the ones that 
are developed in the present work. 

The neuro-fuzzy ANFIS model consists of five layers as 
shown in Figure 1, which is a graphical representation of the 
TSK model (or Sugeno model) and where each layer has some 
elements distributed in (nK, M, M, M, 1) respectively. 

 

 
 

Figure 1. The architecture of the ANFIS model  
 (Siddique & Adeli, 2013). 
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To explain how the architecture shown in Figure 1 works, 
the fuzzy inference system is considered to consist of 𝑛𝑛 inputs 
𝒙𝒙 =  [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]𝑇𝑇 and an output 𝑦𝑦. For the fuzzy model of 
the Takagi and Sugeno type, we have a set of fuzzy rules if-
then, where the 𝑗𝑗-𝑡𝑡ℎ rule for the ANFIS model can be defined 
as:  

𝒊𝒊𝒊𝒊  𝑥𝑥1 𝑒𝑒𝑒𝑒 𝐴𝐴𝑗𝑗1   y  𝑥𝑥2 𝑒𝑒𝑒𝑒 𝐴𝐴𝑗𝑗2   y …  𝑥𝑥𝑛𝑛 𝑒𝑒𝑒𝑒 𝐴𝐴𝑗𝑗𝑛𝑛   𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  𝑦𝑦

= 𝑓𝑓𝑗𝑗(𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛) = �𝑎𝑎𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝑎𝑎𝑗𝑗0 (1) 

 
Or expressed in matrix form:  

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑅𝑅 𝑗𝑗-𝑡𝑡ℎ: 𝒊𝒊𝒊𝒊   𝒙𝒙 𝑒𝑒𝑒𝑒 𝑨𝑨𝑗𝑗   𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  𝑦𝑦 = 𝑓𝑓𝑗𝑗(𝒙𝒙) = 

                                       ∑ 𝑎𝑎𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1 + 𝑎𝑎𝑗𝑗0              (2) 

 
For 𝑗𝑗 = 1, 2, … ,𝐾𝐾 and where 𝑨𝑨𝑗𝑗 = �𝐴𝐴𝑗𝑗1, 𝐴𝐴𝑗𝑗2, … ,𝐴𝐴𝑗𝑗𝑛𝑛 �  is the 

fuzzy set or set of linguistic tags (long, short, etc.) associated 
with the node function and 𝑎𝑎𝑗𝑗𝑗𝑗  with 𝑖𝑖 = 1, 2, … , 𝑛𝑛 are the 
parameters of the consequent. The following lines describe 
the operation and formulas associated with each layer. 

Layer 1 (fuzzification layer): In this layer, fuzzification takes 
place. This means that each non-fuzzy input is assigned a 
membership value for each fuzzy subset comprising the 
discourse universe of this input. This layer consists of 𝑛𝑛𝐾𝐾 
nodes, and each node in this layer is an adaptive node whose 
output is defined by the following function:  

 
𝑂𝑂𝑗𝑗𝑗𝑗

(1) = 𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖 (𝑥𝑥𝑗𝑗)            (3) 

 
Which corresponds to 𝑗𝑗- 𝑡𝑡ℎ linguistic term of the 𝑖𝑖- 𝑡𝑡ℎ input 

variable 𝑥𝑥𝑗𝑗, para 𝑖𝑖 = 1, 2, … , 𝑛𝑛 and 𝑗𝑗 = 1, 2, … ,𝐾𝐾. In this 
context, 𝐴𝐴𝑗𝑗𝑗𝑗  defines a partition of an input space 𝑥𝑥𝑗𝑗 by a 
linguistic label (such as "small" or "tall") associated with node 
𝑖𝑖, 𝑗𝑗 (Fuller, 2000). In other words, 𝑂𝑂𝑗𝑗𝑗𝑗

(1) is the degree of 
belonging of a fuzzy set 𝐴𝐴𝑗𝑗𝑗𝑗  and specifies the degree to which 
the input 𝑥𝑥𝑗𝑗 satisfies the quantifier 𝐴𝐴𝑗𝑗𝑗𝑗 . The membership 
function MF used for 𝐴𝐴𝑗𝑗𝑗𝑗 , expressed as 𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖 (𝑥𝑥𝑗𝑗), is the 

generalized bell function whose mathematical expression is 
given by:    

 
𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖 (𝑥𝑥𝑗𝑗) = 𝜇𝜇�𝑥𝑥𝑗𝑗 ; 𝑎𝑎𝑗𝑗𝑗𝑗 ,  𝑏𝑏𝑗𝑗𝑗𝑗 ,𝑐𝑐𝑗𝑗𝑗𝑗� = 1

1+��
𝑥𝑥𝑖𝑖−𝑐𝑐𝑗𝑗

𝑖𝑖

𝑎𝑎𝑗𝑗
𝑖𝑖 �

2

�

 

 𝑏𝑏𝑗𝑗
𝑖𝑖               (4) 

 
Where �𝑎𝑎𝑗𝑗𝑗𝑗 ,  𝑏𝑏𝑗𝑗𝑗𝑗 , 𝑐𝑐𝑗𝑗𝑗𝑗� is the set of parameters that define the 

position and shape of the bell: 𝑎𝑎𝑗𝑗𝑗𝑗  specifies half the width of the 
bell,  𝑏𝑏𝑗𝑗𝑗𝑗  (along with 𝑎𝑎𝑗𝑗𝑗𝑗) control the slopes at the crossing points 
(where the MF value is 0.5), and 𝑐𝑐𝑗𝑗𝑗𝑗 represents the center of the FM. 

The parameters �𝑎𝑎𝑗𝑗𝑗𝑗,  𝑏𝑏𝑗𝑗𝑗𝑗 , 𝑐𝑐𝑗𝑗𝑗𝑗� in this layer are referred to as 
premise parameters or nonlinear parameters and are adjusted  
 

during the training process by the error backpropagation 
algorithm (Zeghlache et al., 2014). When the values of these 
parameters change, the shape of the bell will therefore vary, as 
will the diversity of forms that the membership functions can 
present in the linguistic tags 𝐴𝐴𝑗𝑗𝑗𝑗 . If the bell function is taken as 
a function of membership, then the total number of nonlinear 
parameters in this layer is given by the following expression: 

 
#𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅 𝑛𝑛𝑡𝑡𝑛𝑛𝑅𝑅𝑖𝑖𝑛𝑛𝑒𝑒𝑎𝑎𝑅𝑅 𝑝𝑝𝑎𝑎𝑅𝑅𝑎𝑎𝑝𝑝𝑒𝑒𝑡𝑡𝑒𝑒𝑅𝑅𝑒𝑒

= 3 ∗ #𝑖𝑖𝑛𝑛𝑝𝑝𝑅𝑅𝑡𝑡 𝑣𝑣𝑎𝑎𝑅𝑅𝑖𝑖𝑎𝑎𝑏𝑏𝑅𝑅𝑒𝑒𝑒𝑒 ∗ #𝑓𝑓𝑅𝑅𝑢𝑢𝑢𝑢𝑦𝑦 𝑒𝑒𝑅𝑅𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 
#𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅 𝑛𝑛𝑡𝑡𝑛𝑛𝑅𝑅𝑖𝑖𝑛𝑛𝑒𝑒𝑎𝑎𝑅𝑅 𝑝𝑝𝑎𝑎𝑅𝑅𝑎𝑎𝑝𝑝𝑒𝑒𝑡𝑡𝑒𝑒𝑅𝑅𝑒𝑒 = 3 ∗ 𝑛𝑛 ∗ 𝐾𝐾                         (5) 
 
Layer 2 (rule antecedent layer): This layer has 𝑀𝑀 fuzzy nodes, 

where the value 𝑀𝑀 depends on the type of partition of the 
input space, for example for a grid partition you would have to: 

 
𝑀𝑀 = #𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 = #𝑓𝑓𝑅𝑅𝑢𝑢𝑢𝑢𝑦𝑦 𝑒𝑒𝑅𝑅𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒#𝑗𝑗𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐾𝐾𝑛𝑛           (6) 
 

and each node performs an AND fuzzy operation, so a node in 
this layer represents the antecedent part of a rule. The nodes 
in this layer are fixed nodes and are labeled with the symbol Π; 
the output of each node is the T-standard operation of all the 
signals entering it, this results in the output of the node being 
the product of all its inputs: 
 

𝑂𝑂𝑚𝑚
(2) = 𝑤𝑤𝑚𝑚 = ∏ 𝑂𝑂𝑗𝑗𝑗𝑗

(1)𝑛𝑛
𝑗𝑗=1 = ∏ 𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖 (𝑥𝑥𝑗𝑗)

𝑛𝑛
𝑗𝑗=1      (7) 

 
For 𝑝𝑝 = 1, 2, … ,𝑀𝑀 and 𝑗𝑗 = 1, 2, … ,𝐾𝐾. The output of each 

node in this layer represents the trigger intensity (or trigger 
value) of the corresponding fuzzy rule. In general, any T-
standard operator (which performs the AND fuzzy operation) 
can be used as a node function in this layer (Bravo Narváez & 
Gracía Vélez, 2002). 

Layer 3 (ruler normalization layer): This layer consists only of 
fixed nodes labeled with the symbol N. The  𝑝𝑝-𝑡𝑡ℎ node 
calculates the ratio of the 𝑝𝑝-𝑡𝑡ℎ ruler with respect to the sum 
of the trip intensities of all fuzzy rulers. This results in the 
normalization of the trigger value for each fuzzy rule. This 
operation can be written as: 

 
𝑂𝑂𝑚𝑚

(3) = 𝑤𝑤𝑚𝑚���� = 𝑂𝑂𝑚𝑚
(2)

∑ 𝑂𝑂𝑘𝑘
(2)𝑀𝑀

𝑘𝑘=1
       (8) 

 
For 𝑝𝑝 = 1, 2, … ,𝑀𝑀. Each output in this layer is called 

normalized trigger intensity.  
Layer 4 (rule consequent layer):  Each node in this layer is an 

adaptive node with a function defined by Abraham (2005): 
 
𝑂𝑂𝑚𝑚

(4) = 𝑂𝑂𝑚𝑚
(3).𝑓𝑓𝑚𝑚(𝒙𝒙) = 𝑤𝑤𝑚𝑚����.𝑓𝑓𝑚𝑚(𝒙𝒙) = 𝑤𝑤𝑚𝑚����.𝑓𝑓𝑚𝑚(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)

= 𝑤𝑤𝑚𝑚����. ��(𝑎𝑎𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑗𝑗=1

+ 𝑎𝑎𝑚𝑚0� 
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For 𝑝𝑝 = 1, 2, … ,𝑀𝑀 and 𝑖𝑖 =  1, 2, … , 𝑛𝑛; where 𝑓𝑓𝑚𝑚(∙) is given 
for the 𝑝𝑝- 𝑡𝑡ℎ node in layer 4. Expanding the sum term, the 
output of the node 𝑝𝑝 can also be expressed as the following 
linear function: 

 
𝑂𝑂𝑚𝑚

(4) = 𝑤𝑤𝑚𝑚����. (𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑚𝑚0) (9) 
 
Where 𝑤𝑤𝑚𝑚����  is the normalized activation value of the 𝑝𝑝- 𝑡𝑡ℎ 

rule, calculated with the help of Equation 8, and {𝑎𝑎𝑚𝑚1,
𝑎𝑎𝑚𝑚2, … , 𝑎𝑎𝑚𝑚𝑛𝑛 ,𝑎𝑎𝑚𝑚0} is the set of adjustable parameters at this 
node. The parameters in this layer are referred to as 
parameters of the consequent or linear parameters of the 
ANFIS system and are adjusted by the Recursive Least Squares 
(RLS) algorithm explained in Jang and Sun (1995), Neuro-fuzzy 
modeling and control. The total number of linear parameters 
in this layer is given by the following expression:   

 
#𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅 𝑅𝑅𝑖𝑖𝑛𝑛𝑒𝑒𝑎𝑎𝑅𝑅 𝑝𝑝𝑎𝑎𝑅𝑅𝑎𝑎𝑝𝑝𝑒𝑒𝑡𝑡𝑒𝑒𝑅𝑅𝑒𝑒 = (#𝑖𝑖𝑛𝑛𝑝𝑝𝑅𝑅𝑡𝑡 𝑣𝑣𝑎𝑎𝑅𝑅𝑖𝑖𝑎𝑎𝑏𝑏𝑅𝑅𝑒𝑒𝑒𝑒 + 1) ∗ #𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 

#𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅 𝑅𝑅𝑖𝑖𝑛𝑛𝑒𝑒𝑎𝑎𝑅𝑅 𝑝𝑝𝑎𝑎𝑅𝑅𝑎𝑎𝑝𝑝𝑒𝑒𝑡𝑡𝑒𝑒𝑅𝑅𝑒𝑒 = (𝑛𝑛 + 1) ∗ #𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 
 

If a grid-like input space partition is taken into 
consideration, then #𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒 =
#𝑓𝑓𝑅𝑅𝑢𝑢𝑢𝑢𝑦𝑦 𝑒𝑒𝑅𝑅𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒#𝑗𝑗𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐾𝐾𝑛𝑛 and the above 
equation would look like: 

 
#𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑅𝑅 𝑅𝑅𝑖𝑖𝑛𝑛𝑒𝑒𝑎𝑎𝑅𝑅 𝑝𝑝𝑎𝑎𝑅𝑅𝑎𝑎𝑝𝑝𝑒𝑒𝑡𝑡𝑒𝑒𝑅𝑅𝑒𝑒 = (𝑛𝑛 + 1) ∗ 𝐾𝐾𝑛𝑛       (10) 

 
Layer 5 (rule inference layer): The only node present in this 

layer is a fixed node denoted by the symbol Σ, which calculates 
the overall output as the sum of all the signals entering it 
(Caicedo Bravo & López Sotelo, 2009): 

 

𝑂𝑂(5) = 𝑔𝑔𝑅𝑅𝑡𝑡𝑏𝑏𝑎𝑎𝑅𝑅 𝑡𝑡𝑅𝑅𝑡𝑡𝑝𝑝𝑅𝑅𝑡𝑡 = 𝑦𝑦 = � 𝑂𝑂𝑚𝑚
(4)

𝑀𝑀

𝑚𝑚=1

= �𝑤𝑤𝑚𝑚����.𝑓𝑓𝑚𝑚(𝒙𝒙)
𝑀𝑀

𝑚𝑚=1

=
∑ 𝑤𝑤𝑚𝑚 .𝑓𝑓𝑚𝑚(𝒙𝒙)𝑀𝑀
𝑚𝑚=1

∑ 𝑤𝑤𝑚𝑚𝑀𝑀
𝑚𝑚=1

 

 

𝑦𝑦 =
∑ ��∏ 𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖 (𝑥𝑥𝑗𝑗)𝑛𝑛

𝑗𝑗=1 � (∑ (𝑎𝑎𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗)𝑛𝑛
𝑗𝑗=1 + 𝑎𝑎𝑚𝑚0)�𝑀𝑀

𝑚𝑚=1

∑ �∏ 𝜇𝜇𝐴𝐴𝑗𝑗𝑖𝑖 (𝑥𝑥𝑗𝑗)𝑛𝑛
𝑗𝑗=1 �𝑀𝑀

𝑚𝑚=1

   (11) 

 
In this way, what is obtained is an adaptive network that is 

functionally equivalent to a Sugeno-type fuzzy inference 
system. This is the control method that will be programmed 
onto the mobile crawler robot so that it can follow the 
rectilinear trajectories configured in the seed-sowing process. 

 
2.2. Description of the mobile crawler robot 
The mechanical system of the mobile robot is characterized by 
solid elements or parts, to make movements in various parts 
of the mobile robot by the action or effect of a force. These 
elements are associated with the electromechanical system to 
move from various DC motors and servo motors driven by 

electrical energy. The mechanical system can be divided into 
three subsystems 1) the locomotion system of the track-based 
robot structure, 2) the drilling system to generate the hole 
where the seeds will be deposited, and 3) distribution and 
selection system of the type of seeds. 

The electronic design of the mobile robot involves two 
fundamental aspects: The hardware that refers to everything that 
has to do with the connections of the controller boards, printed 
circuits, electronic components, and accessories; and the software 
that is related to the programs developed on the computer and 
that are later loaded into the memories of the Arduino cards. 

The mobile robot has been designed and programmed to 
execute straight trajectories on not very sloping terrain, 
considering that the seeds of the selected plants are grown in 
rows within the plantation. From this reference, a gyroscopic 
sensor was incorporated into the robot that, together with the 
ANFIS neuro-diffuse controller, allows it to correct any 
deviation that could be generated by the conditions of the 
terrain. This device can measure the acceleration of gravity 
concerning each axis (from this principle the angle of rotation 
is obtained) and the angular velocity; in this case, it will be 
used purely as a gyroscope to calculate the rotation change. 
When starting the program, the rotation angle of the gyro 
sensor should be reset to 0 degrees, and then the number of 
degrees that the robot has rotated is added or subtracted so 
that the ANFIS controller can subsequently make the 
respective correction and maintain the established straight 
trajectory. In addition, to control the distance between holes 
that the robot must travel, two incremental optical encoders 
have been incorporated that work in conjunction with the 
control algorithm. 

From the electromechanical elements explored so far, a 
pre-designed rectangular box, the base structure, and the 
mechanical subsystems, all the components of the seed sower 
robot were assembled, obtaining as a result the terrestrial 
mobile robot shown in Figure 2. 

 

      

Figure 2. Final exterior view of the mobile  
crawler robot for seed sowing. 

 
The HMI interface was designed in such a way that the 

operator can manually control all the DC motors and servo 
motors that make up the mobile robot to verify its correct 
operation before starting the work. In addition, this HMI 
interface allows you to configure the type of seeds to be sown, 
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and the number of holes to be drilled per row and allows you to 
manually empty and store in a tank those seeds that were left 
over from a previous sowing process. Figure 3 shows some of 
the configuration windows implemented in the HMI interface. 

 

 
 

Figure 3. Screens that make up the HMI interface are 
implemented on the Nextion touchscreen. 

 
2.3. Implementation of the control algorithm 
Once the farmers were consulted and in other technical 
documents about the quantity, depth, and distance at which 
each type of seed should be placed (Cherfas, 2009; Sari, 2001; 
Landis, 2000; Baskin & Baskin, 2014), it was possible to 
standardize each parameter by programming the mobile 
robot with the values shown in Table 1.  

 
Table 1. Optimal values for the seed sowing process. 

 

 
To comply with the different actions that the mobile robot 

must perform in the seed-sowing process depending on the 
operating specifications entered through the HMI interface of 
the touch screen, the programming codes were implemented 
on the two Arduino cards. 

As already mentioned, the control of the robot's rectilinear 
trajectory is conducted through the implementation of an 
ANFIS neuro-fuzzy controller by the theoretical basis 
discussed in Section 2.1. The ANFIS hybrid network uses five 
consecutive layers and takes advantage of 2 training 
algorithms: error backpropagation and RLS. All the experience 
gained during the training is stored in 2 families of parameters, 
these are the parameters of Layer 1 (non-linear or premise 
parameters) and the parameters of Layer 4 (linear or 
consequential parameters). The premise parameters are 
tuned through the standard error backpropagation algorithm, 

while the parameters of the consequent through the classical 
RLS algorithm. 

A grid ANFIS algorithm has been implemented for trajectory 
control, initially using MATLAB and Simulink tools to verify 
through simulation the correct configuration of the parameters of 
the ANFIS network and later the programming code developed in 
this environment was programmed on the controller board. The 
programming logic of the algorithm has been developed using 
MATLAB code syntax, while the verification phase of its operation 
has been implemented in the Simulink graphical environment; 
both environments communicate with each other using a special 
block known as an S-function.  

 

2.4. Results and discussion 
To corroborate the performance of the mobile robot in the 
process of sowing seeds in a previously tilled field, several 
tests were conducted considering the diverse types of seeds, 
as shown in Figure 4. In this verification process, the same 
number of holes was considered for all seed types, which in 
this case was set to 10. Then, for each type of seed, the 
distance between the holes, the depth of the hole, and the 
number of seeds deposited were verified. 
 

 
 

Figure 4. Tests were conducted with the mobile  
robot on tilled ground. 

 
Based on Table 1 and to conduct functional tests in the sowing 
process, the following parameters were established 
programmatically for the types of seeds shown in Table 2. 

 
Table 2. Fixed values of seeding parameters for functional tests. 
 

 
The mobile robot planted all the seeds indicated in Table 2 

in separate rows, but in the same field to ensure comparable 
conditions. The data on distance, depth and seed quantity 
were recorded manually. Once the sowing process of all the 
seeds in the previously tilled rows was completed and 10 holes 
(identified as M1 to M10) were constructed on each of them 
(which were configured through the HMI interface), the values 
shown in the following tables were obtained. The units of 
distance and depth are given in centimeters. 
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The results obtained in Table 3 to Table 6 show that the 
mobile robot is satisfactorily performing the seed sowing 
activity in the tilled field. The data collected was analyzed by 
comparing the recorded values with the programmed values 
to evaluate the robot's accuracy. The average efficiencies were 
calculated for the parameters of distance between holes, hole 
depth and quantity of seeds deposited. The results are 
presented graphically (Figures 5 to Figure 8) to facilitate the 
visual and numerical comparison of the data obtained. 

 
Table 3. Determination of sowing parameters for maize seeds. 
 

 
 
Table 4. Determination of sowing parameters for bean seeds. 

 

 
 

Table 5. Determination of sowing parameters for pea seeds. 
 

 
 

Table 6. Determination of sowing parameters for soybean seeds. 
 

 
 

 
 

Figure 5. Determination of sowing parameters for maize seeds, 
according to Table 3. 

 
 
 

 
 

Figure 6. Determination of sowing parameters for bean seeds, 
according to Table 4. 

 

 
Figure 7. Determination of sowing parameters for pea seeds, 

according to Table 5. 
 

 
 

Figure 8. Determination of planting parameters for soybeans, 
according to Table 6. 

 
For the control of the rectilinear trajectory in the seeding 

process of the different rows, simulated tests were conducted in 
the MATLAB and Simulink environment, to determine the 
appropriate values of the parameters of the ANFIS network and 
that were later used in the programming of the controller  
 
 

Parámetro M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Prom Eficienc. 
Distancia 22 23 23 21 22 22 23 21 20 22 21.90 99.55% 
Profundidad 5 5 5 5 4 5 4 5 4 5 4.70 94.00% 
Cantidad 2 3 2 2 3 2 3 2 2 3 2.40 80.00% 

 

Parámetro M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Prom Eficienc. 
Distancia 23 23 23 23 21 23 22 22 23 21 22.40 97.39% 
Profundidad 3 4 4 4 3 3 4 3 4 4 3.60 90.00% 
Cantidad 3 3 2 2 2 3 3 3 2 2 2.50 75.00% 

 

Parámetro M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Prom Eficienc. 
Distancia 14 15 15 15 16 15 15 16 16 15 15.20 98.67% 
Profundidad 6 6 6 5 5 6 5 6 6 6 5.70 95.00% 
Cantidad 3 3 2 2 2 2 2 2 3 2 2.30 85.00% 

 

Parámetro M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Prom Eficienc. 
Distancia 17 18 19 18 16 17 18 18 18 17 17.6 97.78% 
Profundidad 3 3 3 3 3 3 4 2 2 3 2.9 96.67% 
Cantidad 2 3 3 3 2 2 2 2 3 3 2.5 83.33% 
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boards. Based on a generic mathematical model given in the 
Simulink environment, the ANFIS network was used to learn 
and replicate the behavior of the mobile robot when it moves 
executing different trajectories, taking as inputs random values 
of the supply voltages of the two DC motors, and as output the 
angle of rotation measured by a gyroscope. For this 
identification process, direct reverse identification was used, 
which is often used in the identification processes of systems 
based on neural networks. 

The model obtained in the identification process through the 
ANFIS network was later used to implement an inverse forward 
controller, in this case, that same model goes from being an 
ANFIS identifier to becoming an ANFIS controller. Figure 9 shows 
the configuration and elements necessary for the previously 
trained ANFIS network to be part of the control system for the 
generation of rectilinear trajectories in the seeding process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keep in mind that now the step signal that enters the LE 
input of the ANFIS controller must always be 0 since the ANFIS 
network is no longer being trained, but the linear parameters 
(Layer 1) and the nonlinear parameters (Layer 4) obtained in 
the direct reverse identification process are being used. Once 
all the configurations were made and the simulation process 
was completed, the signals shown in Figure 10.a were 
obtained, where the error obtained between the reference 
signal and the output signal (rotation angle) was −2.674𝑥𝑥10−6. 

To verify that the training process carried out with random 
input signals is valid for any type of reference input, another 
sinusoidal type of signal formed by different frequencies was 
entered and the results shown in Figure 10.b were obtained, 
where the error obtained between the reference signal and the 
output signal (rotation angle) was 7.33𝑥𝑥10−4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 9. Reverse direct control system of the mobile robot using an ANFIS network. 
 
 

 
 

(a) 
 

 
 

(b) 
 

Figure 10. Signals obtained in the reverse direct control process with a) damped sinusoidal signal,  
and b) undamped sinusoidal signal. 
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3. Conclusions  
 

It was possible to develop a mobile robot with tracks that can 
be used in the sowing of diverse types of seeds such as corn, 
beans, peas, and soybeans in previously tilled land, obtaining 
satisfactory results according to the tests conducted. As for the 
distance that the robot must travel to deposit the seeds 
between each hole, an average efficiency of 98.35% was 
obtained, which reveals that the use of encoders coupled to 
DC motors in the tracks and the gyroscope is fulfilling their 
purpose. As for the depth parameter of the hole, good results 
were also obtained, having an average efficiency of 93.92% 
which will help the good growth of the plants, this is because 
the depth of the hole was pre-established through a timing 
process in the programming of each type of seed, which 
resulted in an easy and efficient option to implement. The 
parameter of the number of seeds deposited in a hole turned 
out to have an average efficiency of 80.83%, this is because the 
seed distribution and dispersal system does not have sensors 
to be able to count them, but rather it was possible to 
standardize through the mechanical system and 
programming codes to be able to deposit between 2 and 3 
seeds in a hole; although the value of this parameter is not low, 
it can be improved by making modifications to the seed 
distribution system. 
     The mechanical structure of the mobile seed sower robot 
complies with all the technical specifications to be able to 
move in diverse types of terrain using the tracked locomotion 
system, which for this case was the most convenient. It was 
possible to reduce the weight of the structure by using a pre-
designed rectangular plastic box as the body of the robot so 
that the DC motors coupled to the locomotion system had 
enough power to be able to move the entire weight of the 
chassis and the electronic and electromechanical 
components. It should be emphasized that the mobile robot 
was not designed to move on terrain with very steep slopes 
and according to the tests conducted, the angle of inclination 
should not exceed 30 degrees. 
     The electronic system of the mobile robot is designed in 
such a way that it is robust and with all the measures of 
electrical protection against stresses that merit greater energy 
consumption, thus guaranteeing the constant operation of 
the robot. Thanks to the battery power and recharging system 
through the solar panel, it was possible to provide autonomy 
to the mobile robot, if there was sufficient solar radiation in the 
sowing fields. 
     The performance of the ANFIS neuro-diffuse controller was 
simulated by applying it to the rectilinear trajectory control of 
the mobile robot, under different operating conditions 
corresponding to the variation of the reference signals of the 
control system. It was found that the error between the 
desired input signal (reference tilt angle) and the actual output 

signal (tilt angle given by the gyroscopic sensor) oscillated 
with small variations within the range of 3.18𝑥𝑥10−4 to 
3.65𝑥𝑥10−4, which in terms of control engineering can be 
considered as a negligible error and therefore it can be 
assumed that the output signal is a faithful copy of the input 
signal the system has stabilized. 
     Although in the physical testing process, there was no 
external instrument to verify the validity of the generation of 
rectilinear trajectories, it was possible to visually corroborate 
that, in the event of a change in the orientation of the chassis, 
particularly due to the uneven terrain and the track system, 
the electromechanical system together with the programming 
of the ANFIS neuro-diffuse controller corrected this deviation. 
The findings of this study represent a significant advancement 
in precision agriculture and agricultural automation. By 
demonstrating the effectiveness of a mobile seeding robot 
using advanced control and simulation technologies, this 
research not only contributes to the optimization of current 
agricultural practices, but also lays the foundation for future 
innovations and developments in the field. The 
implementation of such technologies can transform 
agricultural practices, making them more efficient, 
sustainable, and adaptable to the changing needs of the 
global agricultural sector. 
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