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Abstract: Manual road crack detection is time-consuming. However, deep learning-based solutions 
are quick and accurate. Various deep learning-based convolutional neural networks (CNN) have been 
recently proposed. This study implies a comprehensive assessment of the performance of inception 
V2, VGG16, and Xception CNN utilizing the surface cracks dataset. The research approach comprises 
four distinct steps. Training and validating these pre-trained models are necessary by immobilizing 
certain foundational layers. The previously frozen layers are thawed during the second stage, and the 
training and validation process is repeated. Subsequently, the performance of the model is evaluated. 
To enhance the performance of the models in detecting surface cracks in dataset images, after 
completion of the model training and validation process for both frozen and unfrozen layers, the 
models are combined using the ensemble technique to increase the overall performance for surface 
crack detection. The performance of the models, including inception V2, VGG16, Xception, and the 
ensemble model, is evaluated using evaluation metrics including accuracy, precision, recall, and F1 
score. The ensemble has the highest precision 99.97% and the highest recall 99.92%. along with the 
highest accuracy 99.93% and F1 score 99.92%, compared to the other CNN models. 
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1. Introduction 
 

Roadways are an essential public resource that brings audible 
and durable benefits to the community. They do this because 
ensuring the free flow of goods and people throughout the 
market contributes to the growth of the market's economy. 
The timely maintenance of roads is critical in fostering 
sustainable development and competitiveness within 
national, local, and regional economies. Road infrastructure 
preservation and upkeep are vital in maximizing its 
advantages and ensuring long-term sustainability. To 
accomplish this objective, road maintenance authorities 
necessitate sufficient support and efficient tools to attend to 
matters about road conditions expeditiously (Feng et al., 
2019). Insufficient road conditions lead to many problems, 
including hindering road navigation and increasing the 
probability of accidents for drivers, escalating the costs 
associated with vehicle maintenance for road users, and 
raising the expenses of repairing roads because of the road 
surfaces and substructures' irreversible deterioration. 
Numerous endeavors have been undertaken to effectively 
assess the condition of asphalt roads, especially road damage 
inspection tasks, to address the need for robust tools. In many 
developing countries, as well as in the past, transportation 
authorities have manually conducted the evaluation of 
pavement conditions. According to (Koch et al., 2013) and 
(Radopoulou & Brilakis, 2017), the method is characterized by 
a significant lack of efficiency, primarily due to the labor-
intensive nature of conducting measurements, recording 
data, and processing information during field inspections. 
This is further compounded by the need for manual labor to 
conduct these tasks. Moreover, this methodology is 
susceptible to the potential subjectivity and biases of the 
technicians tasked with conducting these inspections (Guan 
et al., 2014). Automated techniques for identifying and 
categorizing road damage have garnered heightened 
attention from transportation agencies. 

In recent years, substantial advancements have been 
made in automatic pavement crack identification models 
(Zakeri et al., 2017), largely due to image processing 
techniques (ITPs) advancements. The models utilized in this 
study perform efficient and accurate evaluations of two-
dimensional (2D) road pavement images to identify and 
evaluate relevant features for binary crack detection. 
Additionally, these models appropriately label images for 
subsequent analyses. Although there have been 
advancements, the efficacy of crack detection through image 
processing is still limited by factors such as inadequate 
background lighting and the heterogeneous texture of 
pavement aggregate (Li et al., 2017). The challenges 
mentioned above have the potential to negatively affect the 
effectiveness of intensity-thresholding techniques, resulting in 

a notable rise in the occurrence of both type I and type II errors. 
Improving damage detection accuracy has gained much 
attention by utilizing local edge detection methods and 
general global transformation. The detection of damage 
contours has been a prominent area of research, with the 
application of various techniques such as Sobel and Canny 
edge detectors, Haar transform (FHT), and Fast Fourier 
Transform (FFT). However, edge detection techniques-based 
models demonstrate high efficiency and speed; their 
capability is restricted to a single type of damage detection 
and contains substantial error rates when facing distortion, 
lighting, and data noise challenge (Koziarski & Cyganek, 2017; 
Zhang et al., 2017). 

Artificial neural networks (ANN), support vector machines 
(SVM), and classification and regression trees (CART) are some 
of the machine learning (ML) techniques and have been 
extensively employed in the field of damage recognition 
applications (Butcher et al., 2014; Hoang, 2018; Karmel et al., 
2018; Kyriakou et al., 2019; Song et al., 2018). Image processing 
techniques (IPTs) are used to extract features from images; 
however, machine learning-based algorithms are used to 
determine whether they indicate a certain sort of impairment. 
Most research directly choosing features for extraction in 
information processing tasks is a bad idea that hurts the 
performance of machine learning models (Chow et al., 2020; 
Fang et al., 2020). Using models based on deep learning for 
road crack detection has recently been identified as an 
effective approach (Cha et al., 2017). Recently, much research 
has focused on deep learning (DL) algorithms. The algorithms 
can automatically and hierarchically extract representative 
and discriminative properties from the lowest-level feature, 
such as edge or texture, all the way up to the underlying 
feature. This aspect has been a main area of investigation in 
numerous studies (Fang et al., 2018; Zhang et al., 2016; Zhong 
et al., 2019). Subsequent systems, including faster R-CNN, R-
FCN, and SSD, have significantly improved object detection 
accuracy. These systems are built upon single short multi-box 
detectors and region-based convolutional neural networks. 
Over time, numerous systems have been developed and 
enhanced. Additionally, it has been claimed that several 
feature extractors, including inception (Ioffe & Szegedy, 2015), 
residual network (Resnet) (He et al., 2016), and MobileNet 
(Sandler et al., 2018), work in tandem with these systems to 
improve detection efficiency and speed. 

Artificial Intelligence, especially machine learning and 
deep learning, has been employed in various domains 
including disease prediction (Hussain & Aslam, 2024a), 
intrusion detection (Hussain, Khatoon, et al., 2024), fraud 
detection (Hussain & Hussain 2024b), facial assimilation 
(Hussain et al., 2023) and cracks detection (Hussain, Qureshi 
et al., 2024). To automate road crack detection, much research 
works implement deep learning-based CNN models to detect 
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the road cracks. The main objective of this research work is as 
follows: 

• To implement the inception V2, VGG 16, and Xception 
CNN models for road crack detection using a public dataset, 
the models are trained using the training set. The base layers 
of these models are frozen during the first training process 
using training and validation sets. Then, the layers are 
unfrozen to perform the training and validation again.  

• Furthermore, after completing the training and 
validation process, the three models are combined using the 
ensemble technique to enhance their performance.  

• The performance evaluation of the ensemble-based 
and three-based models uses several performance metrics, 
including accuracy, precision, recall, and F1 score. 

This paper is organized as follows: Section II overviews 
well-known CNN models. Section III contains the 
methodology and dataset, while Section IV contains 
experimentation of three models, training and validation 
results on freeze and unfreeze layers, and the ensemble 
process along with the cracks detection. Section V contains 
the evaluation metrics and the model’s performance, 
including the confusion matrix of the models and the 
performance comparison. Section VI provides the conclusion 
of this study. 
 
2. Related work 

 
Several studies have proposed using automated crack 
detection techniques as a substitute for manual inspections. A 
substantial body of literature has emerged in recent decades 
concerning detecting cracks in structural surfaces, like roads, 
bridges, pavements, and tunnel walls. Research studies 
evaluating the works can be accessed (Attard et al., 2018; Koch 
et al., 2015; Wang & Huang, 2010). Many image processing 
techniques have been used. Previous work relied on various 
approaches, including mathematical morphology, 
thresholding, and edge detection. Various new techniques 
have been utilized to explore the identification of cracks in 
challenging environments. The methodologies involve 
applying different alternative techniques, including machine 
learning, wavelet transform, texture analysis, saliency 
detection, and minimal pathfinding. Although these 
techniques have demonstrated their utility in various 
scenarios, they are constrained by the drawbacks inherent in 
rule-based methodologies and superficial abstractions when 
confronted with images of cracks. The elements include 
cracks' inhomogeneity, surface texture variability, background 
complexity, crack noise identification (such as joints), and 
crack topology's inherent difficulty. The challenges mentioned 
above make it impractical to use a rule-based approach, as it 
may not efficiently extract general features when confronted 
with changing circumstances. Researchers have proposed a 

new deep learning method to overcome these challenges, 
specifically employing convolutional neural networks (CNNs). 
This approach provides a higher level of abstraction and 
generalization, eliminating the need for manually engineered 
feature extraction. 

Alex (2012) proposed 2012 an AlexNet network structure 
consisting of three fully connected layers and five convolution 
layers (convolution + nonlinear activation + maximum pooling 
layer). The Rectified Linear Unit (ReLU) was employed to 
address gradient divergence within the network. At the same 
time, the dropout technique was implemented in the fully 
connected layer to mitigate the overfitting of the network. In 
2014, VGGNet (Simonyan & Zisserman, 2014), which had 
models of networks with depths of 11 to 19 layers, came out. 
The most popular types were the VGG16 and VGG19, 
containing five convolution layers, including three SoftMax 
output layers and three full link layers. The results of the model 
showed that raising the depth of detection made the accuracy 
better. Also, GoogleNet (Szegedy et al., 2015) introduced the 
"network in network" based inception architecture (Liu et al., 
2021), which replaced the optimal local coefficient structure 
with dense components. The training time and generalization 
capacity improved by replacing more parameters with a high 
number of 11 convolution kernels within the inception 
structure. Two classifiers were added to the model to help with 
the gradient propagation and alleviate the problem of 
vanishing gradients. A pair of 33 convolution kernels was used 
instead of the original 55 convolution kernel in the inception-
v2 model (Ioffe & Szegedy, 2015). It used a convolution integral 
approach to get the same result with fewer parameters and 
faster computation. The inception-v3 (Szegedy et al., 2016) 
model introduced the concept of decomposition, which 
involves breaking down the n x n convolution kernel into 
separate n x 1 and 1 x n convolution kernels. This technique 
aims to enhance the depth and nonlinearity of the network.  

In 2015, ResNet (He et al., 2014) came up with the idea of 
skipping the raw data to go straight to the output. Also, the 
difference between the input and the output, the residual 
value, was added as a change to the direct learning goal value. 
Installing the skip connection design has made the learning 
goal less complicated and helped solve some knowledge loss 
and degradation problems. In 2016, Szegedy et al. (2017), 
proposed inception-Resnet-v2 and inception-v4. The 
inception-Resnet-v2 was built around the inception-v4 
framework but with increased precision. Residual connections 
were used instead of filter concatenation in the inception-
Resnet-v2 model, which improved training and performance. 
DenseNet (Huang et al., 2017) achieved inter-layer 
connectivity in the year of its launch, efficiently utilizing 
features and addressing the problem of disappearing 
gradients. The training effectiveness showed a considerable 
improvement over Resnet. Chollet F unveiled the Xception 
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convolutional neural network architecture in 2017 (Chollet, 
2017). This design uses a residual connection method that 
speeds up convergence and increases accuracy. It is based on 
the profoundly separable convolution layer. 

 
2.1. Discussion 
Several researchers have performed surface crack detection. 
However, most of the existing work implements these CNNs 
individually. Also, most researchers do not implement layer 
freezing while training the models, whereas freezing the layers 
of the CNN models using training can enhance the model 
performance for detection, i.e., road crack detection. 
Meanwhile, the model's training and validation can be 
performed again by unfreezing the base layers. Furthermore, 
combining these models together using an ensemble 
technique can enhance the model's overall performance. This 
research compares the models' performances during training 
and validation using the freezing and unfreezing layers. The 
crack detection is performed for the pre-trained models, along 
with the ensemble-based model, after the training and 
validation process, which consists of two phases, where the 
base layers are frozen during the first training and validation 
process, and the layers are then unfrozen to perform the 
training process again. 

 
3. Methodology 
 
We are using three well-known pre-trained CNN, inception V2, 
VGG16, and Xception CNN model for crack detection using a 
public dataset surface cracks dataset, available publicly on 
Kaggle, containing 40000 images of cracks(positive) and non-
cracks(negative). Each CNN model is used for training and 
validation in two phases. In the first phase, the base layers are 
frozen during training and validation, with the phase output 
shown in graphical form. For the second phase, the layers are 
unfrozen, and training and validation are performed again, 
where the output results are also shown in graphical form. The 
accuracy score for each CNN model is generated later. During 
the test phase, the input images contain cracks and non-
cracks, whereas the output images highlight the image 
features like cracks, etc., using a heat map. The confusion 
matrix for each CNN model is generated for the performance 
evaluation. An ensemble is performed to increase the test 
output, where all three CNN models are combined for crack 
detection; the ensemble's output shows improvement as all 
three models are now combined for detecting cracks. The 
methodology of this study is shown in Figure 1. 
 
3.1. Dataset 
The Surface crack dataset contains two groups for image 
classification: Without cracks (negative) and with cracks 
(positive). This dataset includes 40,000 images of 227 x 227 

pixels with RGB channels. There are 20,000 photos in each class. 
Zhang et al. (2016) applied the method to 458 high-resolution 
images with a 4032x3024 pixel dimension to create this dataset. 
Significant variations in surface quality and illumination were 
visible in the high-resolution photographs. No random flipping, 
tilting, rotating, or other types of data augmentation were used. 
Figures 2 and 3 below show examples of positive (cracks) and 
negative (no cracks) situations. 

 

 
 

Figure 1. Research methodology. 
 

 
 

Figure 2. Positive images – with cracks. 
 

 

 
 

Figure 3. Negative images – without cracks. 
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4. Implementation 
 

The CNN models are implemented using the surface cracks 
dataset having 40000 images of cracks(positive) and non-
cracks(negative) with the data split for training, validation, and 
testing using 60%, 20%, and 20%, respectively. The training of 
each CNN is done by freezing and unfreezing some of the 
layers of the CNN model for better training; the layers are 
frozen for the inception V2, VGG 16, and Xception CNN models 
in the first phase. In the second phase, the layers are unfrozen. 
Training and validation are performed again, and in the end, 
the accuracy score of each model is generated, along with the 
output of the images using a heat map with the GridCam. The 
heat map highlights the image features, especially the cracks. 
The performance of CNN models during testing and validation 
in freeze and unfreeze layers are shown in graphical form to 
compare the results at each phase. The confusion matrix for 
the testing outputs is generated to compare the performance 
of the CNN models for the dataset used. 

 
4.1. Inception V2 
The inception-ResNet-v2 CNN has undergone training using a 
dataset of over one million images from the ImageNet 
database. The neural network architecture consists of 164 
layers, enabling it to accurately classify images into a wide 
range of object categories. These categories include a wide 
variety of things, such as keyboards, mice, pencils, and many 
different animals, but they are not restricted to just those 
things. That is why the neural network has obtained extensive 
feature representations for many images. The image input size 
of the network is 299 x 299 pixels. Inception v2 is the next 
version of inception convolutional neural network 
architectures. It is distinguished by the inclusion of batch 
normalization as a prominent feature. Additional modifications 
encompass eliminating dropout and excluding local response 
normalization, owing to the advantageous effects of batch 
normalization. 

 
4.1.1. Freezing layers 
Firstly, the layers are frozen, and training and validation are 
performed. The validation results for accuracy and loss are 
better than the training results; Figures 4 and 5 show the 
training and validation accuracy and loss. 

 
4.1.2. Unfreezing layers 
The layers are unfrozen after training and validation on freeze 
layers, and training and validation are performed again. This 
time, the validation accuracy and loss are better than the 
training accuracy and loss. Figure 6 and Figure 7 show training 
and validation accuracy and training and validation loss. 

 

 
 

Figure 4. Inception V2 – training and validation  
accuracy on freeze layers. 

 

 
 

Figure 5. Inception V2 – training and validation loss on freeze layers. 
 

 
 

Figure 6. Inception V2 – training and validation  
accuracy on unfreeze layers. 
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Figure 7. Inception V2 – training and validation 
loss on unfreeze layers. 

 
The accuracy score for inception V2 has also generated 

images using testing, where the output of the crack and non-
crack images is generated by using a heat map to highlight the 
image features, as shown in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Inception V2 – input images and output  
images with heat map. 

 
4.2. VGG16 
The VGG-16 CNN model has 16 layers with an image input size of 
224 x 224 pixels. It is feasible to use a neural network that has 
already been trained using data from the ImageNet database, 
which contains more than a million photos. The existing neural 
network can effectively classify images into a wide range of 1000 
object categories, including keyboards, mice, pencils, and 
numerous animal species. So, the model has successfully obtained 
extensive feature representations for a wide range of images. 
 
 
 
 

4.2.1. Freezing layers 
To enhance the VGG16's performance for crack detection, we 
utilize the VGG16 base model and freeze part of the layers 
during the first phase of training and validation; the results 
reveal that the validation accuracy and loss are marginally 
better than the training accuracy and loss. Figures 9 and 10 
display the outcomes of the training and validation processes 
for the freeze layers. 

 

 
 

Figure 9. VGG16 – training and validation accuracy on freeze layers. 
 

 
 

Figure 10. VGG16 – training and validation loss on freeze layers. 
 

4.2.2. Unfreezing layers 
After training and validation on freeze layers, the layers of the 
base model are unfrozen. The training and validation are 
performed again to improve the model performance. The 
Training and the validation results for unfreezing layers in 
Figure 11 and Figure 12 indicate that the validation accuracy 
surpasses the training accuracy. Additionally, the validation 
loss is lower than the training loss. 
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Figure 11. VGG16 – training accuracy and validation  
accuracy on unfreeze layers. 

 

 
 

Figure 12. VGG16 – training accuracy and validation 
 loss on unfreeze layers. 

 
After performing training and validation in the first two 

phases, the accuracy score of VGG16 is generated along with 
the output of the crack and non-crack images using testing. A 
heat map is used to highlight the image features, as shown in 
Figure 13. 

 
Figure 13. VGG16 – input images and output images with heat map. 

4.3. Xception 
The Xception CNN architecture is known for its significant depth, 
comprising 71 layers with an image input size of 299 x 299 pixels. 
The neural network has been trained using more than one 
million images from the ImageNet database. A pre-trained 
neural network model can accurately classify images into a 
wide range of 1000 different object categories, including 
keyboards, mice, pencils, and a diverse range of animal species. 
As a result, the neural network has successfully obtained 
extensive feature representations for a wide range of images. 

 
4.3.1. Freezing layers 
In the first phase, the Xception CNN model is used for training 
and validation, and some of the base layers are frozen, which 
will help improve the model's performance. The validation 
accuracy shows better results than the training accuracy. 
Additionally, the validation loss demonstrates a lower value 
than the training loss, as depicted in Figures 14 and 15. 

 

 
 

Figure 14. Xception – training accuracy and validation  
accuracy on freeze layers. 

 

 
 

Figure 15. Xception – training accuracy and validation 
 loss on freeze layers. 
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4.3.2. Unfreezing layers 
The base layers of the Xception CNN model are unfrozen in the 
second phase of training and validation. Figures 16 and 17 
demonstrate that the validation performance, as indicated by 
the validation accuracy and validation loss, surpasses that of 
the training accuracy and loss. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Xception – training accuracy and validation  
accuracy on unfreeze layers. 

 

 
 

Figure 17. Xception – training accuracy and validation  
loss on unfreeze layers. 

 
The accuracy score of the Xception CNN model is 

generated, the testing is performed, and the output images 
show the image features highlighted because of the use of a 
heat map, especially the image cracks, as shown in Figure 18. 
 
4.4. Ensemble model 
Ensemble learning, called "ensemble-based model," is a widely 
recognized collection of machine learning and statistical 
techniques that enhance prediction performance through 
diverse learning algorithms. The ensemble's predictions 
demonstrate  higher  accuracy  when  compared to the  predic- 
 

predictions made by any individual model within the 
ensemble. Ensemble methods consist of a wide array of 
approaches that exhibit varying levels of complexity. Our 
current focus is on aggregating forecasts produced by multiple 
pre-trained deep-learning networks. Different networks 
demonstrate unique errors, and the ensemble method can be 
utilized to harness the collective impact of these errors. 
Applying ensemble-based models in deep learning has shown 
impressive results, although it is not as extensively covered in 
the deep learning literature as traditional machine learning 
methods. The approach utilized in this investigation involved 
the integration of three models for training and validation 
purposes. The ensemble model is executed without utilizing 
the heat map to generate output images. The output sample of 
the ensemble is shown in Figure 19. 

 

 
 

Figure 18. Xception – input images and output images with heat map. 
 

 
 

Figure 19. Ensemble process output images. 
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5. Results and discussions 
 

5.1. Evaluation metrics 
Various evaluation criteria, such as accuracy, precision, recall, 
and the F1 score, were used to compare the experimental 
outcomes fairly. Accuracy is a quantitative metric that can be 
computed by evaluating the ratio of correctly identified crack 
and non-crack patches to the total number of input patches. 
This calculation is represented by Equation 1. 

 
Accuracy = TP + TN

TP + FN + TN + FP
               (1) 

 
True positive (TP) and true negative (TN) refer to correctly 

identifying crack and non-crack patches. In contrast, FP (false 
positive) and FN (false negative) refer to erroneously identifying 
crack and non-crack patches. According to Equation 2, precision 
is the fraction of correctly detected crack patches relative to the 
total number of crack patches identified by the classifier. 

 
Precision = TP

TP + FP
                (2) 

 
As indicated in Equation 3, recall can be defined as the ratio 

of correctly detected crack patches to the total number of crack 
patches. 

 
Recall = TP

TP + FN
                 (3) 

 
The F1 score is computed by taking the average of the 

model's recall and precision using the same calculation 
method. The F1 score is mathematically represented by 
Equation 4. 

 
F1 score = 2 x Precision x  Recall

Precision + Recall
               (4) 

 
5.2. Confusion matrix 
The confusion matrix is generated to evaluate the inception V3, 
VGG16, and Xception CNN. This matrix provides an overview of 
each model's overall performance. The dataset comprises 
40,000 images, consisting of both crack and non-crack images. 
However, only 8,000 images are utilized for testing purposes 
across the three models. The confusion matrix for the inception 
V2, VGG16, and Xception CNN is shown in Figures 20, 21, and 22. 

The output of the ensemble process is shown in the 
confusion matrix, which highlights the performance of the 
ensemble of three models and shows a slight improvement. The 
performance of the ensemble process is shown in Figure 23. 

 

 
 

Figure 20. Confusion matrix of inception V2 model. 
 

 
 

Figure 21. Confusion matrix of VGG16 model. 
 

 
 

Figure 22. Confusion matrix of Xception model. 
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Figure 23. Confusion matrix of ensemble-based model. 
 

5.3. Performance evaluation 
The comparison table highlights the efficacy of an ensemble 
approach in machine learning, notably for detecting surface 
cracks. When we compare specific models such as inception 
V2, VGG-16, and Xception, we see satisfactory performance 
across all metrics—precision, recall, accuracy, and F1 score—
with Xception outperforming the others. However, the 
ensemble method, which combines the capabilities of these 
separate models, outperforms them, achieving the highest 
precision of 99.97%, the highest recall of 99.87%, and the 
highest accuracy of 99.93%. The ensemble also has the 
greatest F1 score, which balances precision and recall, at 
99.92%. This demonstrates the ensemble's superior capacity to 
locate cracks while correctly retaining a low false positive rate, 
highlighting the ensemble model's robustness and reliability in 
real applications. The comparison of the model’s performance 
is shown in Table 1. 

 
Table 1. Performance comparison. 

 
Models Precision Recall Accuracy F1 score 

Inception 
V2 

99.70% 99.85% 99.78% 99.77% 

VGG 16 99.80% 99.67% 99.74% 99.74% 

Xception 99.87% 99.92% 99.90% 99.90% 

Ensemble 
model 

99.97% 99.87% 99.93% 99.92% 

 
 
 
 
 
 
 

The test performance of the models is also shown in Figure 
24 below. 

 

 
 

Figure 24. Test performance comparison. 
 

6. Conclusions 
 
Road maintenance organizations can efficiently repair road 
surfaces, maintain optimal road conditions, optimize 
transportation safety, and save transportation costs by 
identifying road problems quickly and accurately. Multiple 
convolutional neural networks (CNN) have recently been 
suggested. The performance of inception V2, VGG16, and 
Xception CNN was evaluated using the surface cracks dataset. 
The research methodology comprises four sequential steps. 
The first phase involves freezing some base layers and training 
and validating these pre-trained models. In the second step, the 
layers are unfrozen, and the process of training and validation is 
repeated; then, the models are evaluated using the ensemble 
technique, and these three models are merged to enhance their 
performance for surface crack detection dataset images. All four 
models perform well, including inception V2, VGG16, Xception, 
and the ensemble model. Xception has the highest recall 
(99.92%), while ensemble has the most precision (99.97%). 
However, the ensemble model has the best overall balance, 
with the highest accuracy (99.93%) and F1 score (99.92%). This 
proves that integrating multiple models to improve predictive 
performance is highly effective. 
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