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ABSTRACT  
In this paper we deal with the experimental synchronization of the Colpitts oscillator in a real-time implementation. Our 
approach is based on observer design theory in a master-slave configuration thus, a chaos synchronization problem 
can be posed as an observer design procedure, where the coupling signal is viewed as a measurable output and a 
slave system is regarded as an observer. A polynomial observer is used for synchronizing the Colpitts oscillator 
employing linear matrix inequalities. Finally, a comparison with a reduced order observer and a high gain observer is 
given to assess the performance of the proposed observer. 
 
Keywords: experimental synchronization, polynomial observer, reduced order observer, high gain observer, algebraic 
observability condition. 
 
RESUMEN 
En este artículo se aborda la sincronización experimental del oscilador de Colpitts en tiempo real. Nuestra 
aproximación se realiza mediante la teoría de diseño de observadores en una configuración maestro-esclavo, por lo 
que el problema de sincronización caótica puede plantearse como el diseño de un observador. Se utiliza un 
observador polinomial para la sincronización del oscilador de Colpitts empleando desigualdades matriciales lineales. 
Se realiza una comparación con el observador de orden reducido y con el observador de alta ganancia con la 
finalidad de verificar el desempeño del observador propuesto. 
 

 
1. Introduction 
 
Synchronization in chaotic systems has been 
investigated since its introduction paper of Pecora 
and Carrol [1]. This research area has received a 
great deal of attention among scientist in many fields 
due to its potential applications mainly in secure 
communications [2]-[7].  
 
During the last years (almost two decades), many 
different approaches related to chaos synchronization 
have been proposed. See for instance,  [8]-[10] in 
which the authors propose the employment of 
state observers, where the main applications 
pertain to the synchronization of nonlinear 
oscillators; in references [11]-[13] use feedback 
controllers, which allow to achieve the 
synchronization between nonlinear oscillators, with 
different structure and order; in [14], [15] use 
nonlinear backstepping control; in papers [16], [17] 

 
 
consider synchronization time delayed systems; in 
works [18], [19] consider directional and bidirectional 
linear coupling; papers [20], [21] use nonlinear 
control; in [12] use active control; in [13], [22] use 
adaptive control; in [23]-[24] employ adaptive 
observers and so on. 
 
Now, we will mention a brief note about observer 
theory. The design of observers for nonlinear 
systems is a challenging problem that has received a 
considerable amount of attention. Since the 
observers developed by Kalman [25] and Luenberger 
[26], several years ago for linear systems, different 
state observation techniques have been propose to 
handle the systems nonlinearities. A first category of 
techniques consists in applying linear algorithms to 
the system linearized around the estimated trajectory. 
These are known as the extended Kalman and  
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Luenberger observers. Alternatively, the nonlinear 
dynamics are split into a linear part and a nonlinear 
one. The observer gains then are chosen large 
enough so that the linear part dominates over the 
nonlinear one. Such observers are known as, high 
gain observers [27]. And many other approaches 
such as [28]-[30]. 
 
In this work the synchronization method is based on 
a master-salve configuration [1]. The main 
characteristic is that the coupling signal is 
unidirectional, that is, the signal is transmitted from 
the master systems (transmitter) to the slave system 
(receiver), the receiver is requested to recover the 
unknown (or full) state trajectories of the transmitter. 
Therefore, the terminology transmitter-receiver is 
also used. Thus, a chaos synchronization problem 
can be regarded as observer design procedure, 
where the coupling signal is viewed as the output 
and the slave system is the observer [31]-[33]. 
 
As we can notice, there are several methods to solve 
the synchronization problem from the control theory 
perspective, in this work, we study the 
synchronization in master-salve configuration [1] by 
means of state observers based on differential 
algebraic approach. These proposals are applied in 
this paper to a Colpitts oscillator [34]. The Colpitts 
oscillator has been widely considered for the 
synchronization problem, see for instance [24], [35]. 
 
In this paper an exponential observer of polynomial 
type for the synchronization problem is proposed.  
We also have designed an asymptotic observer of 
reduced order. Finally, for comparison purposes, we 
construct a high-gain observer. 
 
2. Receiver operating principle 
 
Let us consider the following nonlinear system, 
 = ( , )                  =      , = ( )                                           (1) 
 

where ∈ ℝ , is the state vector; ∈ ℝ , is the 
input vector, ≤ ; (∙): ℝ × ℝ → ℝ  is locally 
Lipschitz on  and uniformly bounded on ; ∈ ℝ 
is the output of the system. To show the relation 
between observers for nonlinear systems and 
synchronization we give the following definition. 
 
Definition 1 (Exponential synchronization) The 
dynamical system with state vector  x ∈ ℝ   

= ( , , )                  =        , = ( )                                         (2) 
 
is in state of exponential synchronization with 
system (1) if there exist positive constants   and  
such that 
 − ≤  exp (− ) 
 
In the master-slave synchronization scheme,  is 
viewed as the state variable of the master system 
and  is considered as the state variable of the 
slave system. Hence, the master-slave system 
synchronization problem between systems (1) and 
(2) can be solved by designing and observer for 
(1). In order to solve the synchronization problem 
as an observation problem we introduce the 
following observability property. 
 
Definition 2 [40] (Algebraic observability 
condition-AOC) A state variable ∈ ℝ  is said to 
be algebraically observable if it is algebraic over ℝ , 1, that is,  satisfies a differential algebraic 
polynomial in terms of { , } and some of their time 
derivatives, i.e., 
 ( , , , … , , , … ) = 0              (3) 
 
with coefficients in ℝ , . 
 
The system (1) can be expressed in the following 
form, = + Ψ( , ) =          = ( )      (4) 
 
Where Ψ( , ) is a nonlinear vector that satisfies 
the Lipschitz condition with constant  that is: 
 Ψ( , ) − Ψ( , ) ≤ −           (5) 
 
The observer for system (4) has the next form 
 = + Ψ( , ) + ∑ ( − )       (6) 
 
Where  ∈ ℝ , and ∈ ℝ  for 1 ≤ ≤ . 
 
Let us consider the following assumptions: 

                                                      
1 ℝ ,  denotes the differential field generated by the 
field ℝ, the input , the measurable output , and the 
time derivatives of  and . 
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Assumption 1. For  ∶= − , there is a 
unique symmetric positive definite matrix ∈ ℝ ×  
which satisfies the following linear matrix inequality 
(LMI): − − − > 0 

 
where  is the Lipschitz constant. 
 
Assumption 2. Let us define ≔ , then: 
 ( + ) ≥ 0,    2 ≤ ≤ . 
 
Remark 1. By using the Schur complement (see 
Chapter 11 in [38]) the LMI in Assumption 1 can be 
represented as an algebraic Riccati equation:  
 + + + < 0, 
 
or for some > 0 
 + + + + = 0 
 
Remark 2. Assumption 2 is used to improve the 
rate of convergence of the estimation error by 
injecting additional terms (from 2 to ) which 
depend upon odd powers of the output error. 
 
In order to prove the observer convergence, we 
analyze the observer error which is defined as  = − . From Equations 4 and 6, the dynamics 
of the observer error is given by: 
 = + − ( )  

 
where ≔ − ,  and ≔ Ψ( , ) − Ψ( , ). 
 

Now, we present a lemma which will be 
useful in the convergence analysis. 

 
Lemma 1 [39]: Given the system (4) and its 
observer (6) with the error given by = − . If = > 0 then: 
 2 Ψ( , ) − Ψ( , ) ≤ +  

 
The following proposition proves the observer 
convergence. 
 

Proposition 1. Let the system (4) be algebraically 
observable and Assumption 1 and Assumption 2 
hold. The nonlinear system (6) is an exponential 
polynomial observer of the system (4); that is to 
say, there are constants > 0 and > 0 such that: 
 ( ) ≤ (0) exp (− ) 
 

where = , = , = ( ), and =( ). 
 
Proof. We use the following Lyapunov function 
candidate  =  
 = + = + + 2− 2 ( )  

 
using Lemma 1 we obtain: 
 ≤ + + +− 2 ( )  

 
Making some algebraic manipulations on the last 
term of the above inequality, and taking into 
account that ∈ ℝ, we obtain: 
 ≤ + + +− 2 ( )  

 
For simplicity, we define ≔ ,  2 ≤ ≤

, then we have: 
 

 
 
The above expression can be rewritten in a 
simplified form: 
 ≤ + + +− ( ) +  
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From Assumption 2, the second term in the right 
hand side of above the inequality always will be 
positive or zero, therefore: 
 ≤ + + +                            (7) 
 
by Assumption 1 (and remark 1), we have: 
 ≤ −                            (8) 
 
We write the Lyapunov function as = , then 
by the Rayleigh-Ritz inequality we have that: 
 ≤ ≤                    (9) 
 
where ≔ ( ), and ≔ ( ) ∈ ℝ  
(because  is positive definite). 
 By using (9) we obtain the following upper 
bound of (8): 
 ≤ −                                                       (10) 

 
Taking the time derivative of =  and 
replacing in inequality (10), we obtain: 
 ≤ − 2  

 
Finally, the result follows with: 
 ( ) ≤ (0) exp(− )                                (11) 
 

where =   
, and = . 

 
3. Asymptotic reduced order observer 
 
Now, let us consider the nonlinear system described 
by (1). The unknown states of the system can be 
included in a new variable ( ) and the following 
new augmented system is considered: 
 ( ) = ( , , )  ( ) = Δ( , )                                  (12) ( ) = ℎ( ) 
 
where Δ( , ) is a bonded uncertain function. The 
problem is to reconstruct the variable ( ). This 
problem is overcome by using a reduced order 
observer. Before proposing the corresponding 
observer we introduce some hypotheses: 

Assumption 3 ( ) satisfies the AOC (Definition 2). 
 
Assumption 4  is a  real-valued function. 
 
Assumption 5 Δ is bounded, i.e., |Δ| ≤ < ∞. 
 
Assumption 6. For  sufficiently large, there is > 0, such that, lim sup → = 0. 

 
The following lemma describes the design of a 
proportional reduced order observer for system (1). 
 
Lemma 2. If Assumptions 3 to 6 are satisfied, then 
the system: 
 ̂ = ( − ̂)                                                      (13) 
  
Is an asymptotic reduced order observer of free-
model type for system (12), where ̂  denotes the 
estimate of  and ∈ ℝ  determines the desired 
convergence rate of the observer. 
 
Remark 3. To reconstruct ( ) by using an 
auxiliary state ̂ ( ) sometimes we need to use the 
output time derivatives, but these may be 
unavailable. To overcome this fact, an auxiliary 
function completely artificial  is defined in such a 
way that it cancels out all nonmeasurable terms. 
This action defines a differential equation for . 
This equation is solved, then,  is substituted in the 
differential equation of the estimated state and 
finally the estimate of   is obtained.  
 
We give the following immediate corollary. 
 
Corollary 1. The dynamic system (13) along with 
 = Ψ( , , ),       = (0),     ∈  
 
constitute a proportional asymptotic reduced order 
observer for system (12), where  is a change of 
variable which depends on the estimated state ̂ , 
and the state variables. 
 
4. High gain-observer 
 
We present a well-known estimation structure (high 
gain observer) as a comparison with our proposed 
schemes. Consider the class of nonlinear systems 
given by (1). In this case, to estimate the state vector 

, we suggested a nonlinear high gain-observer with 
the following structure: 
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= ( , ) + ( − )                                        (14) 
 
Where ∈ ℝ , = ( ) and the observer high-
gain matrix is given by: 
 = ,     = 1 , ,…,  

 
and the positive parameter  determines the desired 
convergence velocity. Moreover, = > 0, should 
be a positive solution of the algebraic equation: 
 + 2 + + 2 =  

 = 0 ,0 0                                                    (15) 

 
5. Experimental results 
 
As was previously mentioned, the integrated These 
proposals are applied to a Colpitts oscillator [34]. 
The Colpitts oscillator has been widely considered 
for the synchronization problem, see [24, 35]. 
 
In this work we considered the classical 
configuration of the Colpitts oscillator [36]. The 
circuit contains a bipolar junction transistor 
2N2222A as the gain element (Figure1(b)), and a 
resonant network consisting of an inductor and two 
capacitors (Figure 1(a)). 
 
The Colpitts circuit is described by a system of 
three nonlinear differential equations, as follows: 
 = − − − +  = −                                                    (16) = − ( ) +   
 
where  (∙) is the driving-point characteristic of the 
nonlinear resistor, this can be expressed in the 
form = ( ) = (− ). In particular, we 

have ( ) = exp (− ). 

 
We introduce the dimensionless state 
variables ( , , ), and choose the operating 
point of (16) to be the origin of the new coordinate 
system. In particular, we normalize voltages, 
currents and time with respect to = , =  and = 1/ , respectively, where =1/ /( + ), is the resonant frequency of 

the unloaded L-C tank circuit. Then, the state 
equations for Colpitts oscillator can be rewritten in 
the following form: 
 = − − −  =                                                              (17) = −  (− ) + +  
 
where, = , = , = , = . 

 

 
 

Figure 1. Colpitts oscillator (a) Circuit configuration (b) 
Model of the Bipolar Junction Transistor (BJT) 

 
According to Definition 2, it is evident that system 
(17) is algebraically observable with respect to the 
output = , because the unknown states can be 
rewritten as: 
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= =                                                          (18) 

 = − + +                                      (19) 

 
hence, Colpitts oscillator is algebraically 
observable with respect to the selected output = .  
  
5.1 Synchronization of the Colpitts oscillator 
employing the exponential polynomial observer 
 
For the implementation of the observer we first 
rewrite (17) in the form (4), 
 

 = − − −0 00 0 + 00− exp(− ) +        (20) 

 

 
 

Figure 2. Implementation of the 
Colpitts circuit (master system) 

 = 0 1 0   
 
Applying Proposition 1, we have 
 = − − −0 00 0 + 00− exp(− ) ++  ,,, ( 0 1 0  )  

 
hence, the state observer is rewritten as. 
 = − − − + , , + , ( , ) + ⋯+ , ( , )  
 = + , , + , ( , ) + ⋯                                                    + , ,           (21) 

=  − exp(− ) + + , , +  , ( , )+ ⋯ + , ( , )  
 
we verified the real time performance of the 
exponential observer by using the WINCON 
platform. To achieve the synchronization in real 
time, in WINCON the scheme (21) in the master-
slave configuration was implemented. 
 
Figure 2 shows the real implementation of the 
Colpitts circuit. The circuit parameters are: 
 = 100 ; = = 47 , = 45 Ω, = 5 . 
Using the circuit parameter we obtain = =6.2723 , = 0.0797, and = 0.6898. 
 
The nonlinear term Ψ(x) in (20), satisfies the 
Lipschitz condition and is considered as follows 
 Ψ(x) = 00− exp(− ) +  

 
It is necessary to calculate the Lipschitz constant  
introduced in (5) over the bounded set 
 Ω = {  ∈  ℝ |  | | < , | | < , | | <  } (22) 
 
considering the Jacobian of Ψ(x) as 
 ( ) = 0 0 00 0 00 exp(−x ) 0                                 (23) 

 
it can be concluded that2 
 ( ) ≤ 3 max{0, exp(− )} , ℝ              (24) 

 
From (22), it is obvious that the following 
conditions hold for all the points in the bounded 
set Ω. 
 exp(− ) < exp( )= max{ exp(− )},  ∈  ℝ   

(25) 
hence: 
 ( ) ≤ 3 exp( )                                     (26) 

                                                      
2 Let us consider the matrix = ,  , then (see 

chapter 5 in [38] )   ∞ ≔ max ,  | |. 
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With (22)-(26) a Lipschitz constant that satisfies 
the Lipschitz condition (5) is defined as follows 
 = 3 exp( ) 
 
In this case = 3,  = 0.1, = 6, and = 6.2723, ⇒  = 20.7959 
 
Following the observer (21), for = 2, and 
solving the LMI given by assumption 1, the 
observer gains  and , and positive definite 
matrix P are as follows 
 =  10.213016.121110.1500 , = 323 ,  
 = 38.8560 −36.7794 19.4606−36.7794 37.9331 −20.789819.4606 −20.7898 16.4869 > 0 

 
With eigenvalues ( ) = 1.3151, ( ) = 5.2514, 
and ( ) = 86.7095. 
 
The performance index (quadratic synchronization 
error) of the corresponding synchronization 
process is calculated as 
 ( ) = 1+ 0.001 | ( )| , =  

 
Figures. 3(a) and (c) show the obtained results by 
using the exponential polynomial observer (21), it 
is clear that the synchronization is achieved fairly 
acceptable even with the noisy measurements. 
The Colpitts circuit starts in (0) = 0 0 0  and 
the arbitrary initial conditions for the observer 
are (0) = 2.1 −0.1 1,506 . Figure 3(d) shows 
the performance index of the synchronization, 
which depicts an exponential behavior. 
 
5.2 Synchronization of the Colpitts oscillator by 
means of the asymptotic reduced order observer 
 
Let us consider the normalized system of the 
Colpitts oscillator. We assume that the output 
system is  = , therefore, the slave system 
consists in two estimation structures to achieve 
synchronization with the master system. Such 
structures are obtained as follows: Firstly, verify 
that the master system (Colpitts oscillator) is 
algebraically observable, and second, by using 

(13), we construct the observer for the unknown 
states. Previously, we have verified that master 
system (Colpitts oscillator) is algebraically observable 
(see Equations (18) and (19). Then, both unknown 
states of the master system are algebraically 
observable, and therefore, we can construct the 
observers based on Lemma 2 and Corollary 1. 
 
For  the observer is given by: 
 =  − −  

(27) =  +  

 
and for , we have 
 =  − +    = −  +  − −            (28) =  − + +   
 
Therefore, (27) and (28) constitute the slave 
system. Now, we present some experimental 
results for the synchronization of the Colpitts 
oscillator by using the asymptotic reduced order 
observer (27) and (28). Figures 4(a) and (b) show 
the obtained results for the initial conditions = −2.498 and = 1.506 in the schemes (27) 
and (28), respectively. As we can notice, the 
synchronization results achieved with the reduced 
order observer are good. Figure 4(c) presents the 
phase portrait, where the chaotic behavior of the 
Colpitts oscillator can be clearly observed. Finally, 
Figure 4(d) illustrates the performance index, which 
tends to decrease. 
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Figure 3. Real-time synchronization of Colpitts oscillator employing observer (21): (a) 
variables  and , (b) synchronization of variables  and , (c) synchronization of 

variables and , and (d) performance index
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6. Synchronization with the high gain observer 
 

The matrix > 0, = , that satisfies the 
algebraic Riccati equation (15) for a third order 
system ( = 3), is given by: 
 

= −− −−                                    (29) 

 

and its corresponding inverse matrix is,  
 = 3 33 5 22                                     (30) 

 

Then the high gain-observer for Colpitts system 
(17) is as follows: 
  = − − − + 5 ( − ) = + 3 ( − )                                      (31) =  − exp(− ) ++ −3 − 5 − 2 ( − ) 

 

Figure 5 depicts the synchronization between 
Colpitts oscillator (17) and its high gain observer 
(31). In order to obtain exponential convergence 
we have used = 100. As we can notice, the 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
performance on the high-gain observer is not good 
in comparison with the exponential polynomial 
observer and with the proportional reduced-order 
observer. An important advantage of the proposed 
methodologies is that the magnitudes of the 
observer gains are smaller than the ones used in 
the high-gain observer. 
 

7. Conclusion 
 
In this paper we tackled the synchronization problem 
based upon observer’s theory. As well as, its main 
contributions, we show the real-time synchronization 
in the Colpitts oscillator by using two observer 
structures: An exponential polynomial observer and 
an asymptotic reduced order observer. For  
comparison purposes we implemented a high-gain 
observer. Finally, some experimental results show 
the effectiveness of the proposed methodologies. 
 

 

 
 

Figure 4. Real-time synchronization of Colpitts oscillator using reduced-order observer (28) and (27):  
(a) synchronization of coordinates  and  , (b) synchronization between  and  , (c)  

Phase portrait of the master system (  (horizontal) versus   (vertical)) 
 and the slave system (  and ), and (d) performance index 
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Figure 5. Synchronization between Colpitts oscillator and 
its high-gain observer: (a) synchronization of coordinates 

 and , (b) synchronization between  and ,(c) 
Phase portrait of the master system (  (horizontal) 

versus  (vertical)) and the slave system (  versus  ), 
and (d) performance index 
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