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Abstract: Cross-modal retrieval aims to elucidate the fusion of information, mimic human learning, and advance 
the field. The main challenge in cross-modal matching is to build a shared subspace reflecting semantic proximity. 
Previous works fail to capture asymmetric relevance by adopting symmetric similarity computations. To overcome 
these shortcomings, an efficient approach called quaternion representation learning (QRL) is introduced for better 
cross-modal matching. Thus, a better representation of the shared semantics is offered by virtue of its richer 
representation capacity of the quaternionic space and its strong expressive power. 
Transfer learning is a crucial aspect in this context. By leveraging pre-trained models, the knowledge gained from 
one task or domain can be effectively transferred to another, allowing for improved performance and 
generalization. In this study, transfer learning is employed to enhance the cross-modal retrieval system. 
Specifically, a pre-trained ResNet-512 model is utilized in conjunction with the proposed total margin (TM) loss 
function, which combines the QRL approach with the novel adaptive mean margin (AMM) methodology. 
The TM loss function, coupled with the pre-trained ResNet-512 model, is evaluated on the Audio-Visual Arabic 
Speech Database (AVAS) and the Arabic Visual Speech Database (AVSD), along with other audio-visual datasets. 
Experimental results demonstrate the effectiveness of the TM loss function in consistently improving performance 
on both databases. The recall scores (R@k) and mean average precision (mAP) values achieved on the AVAS 
Database are as follows: R@1: 42.1±0.7, R@2: 70.2±0.1, R@5: 78.5±1.0, and mAP: 53.0±1.1. Similarly, on the AVSD 
Database, the results are R@1: 41.7±0.3, R@2: 69.2±1.1, R@5: 78.0±0.3, and mAP: 52.7±0.5. 
By incorporating transfer learning and the TM loss function into the cross-modal retrieval framework, this study 
demonstrates the potential for improving clustering efficiency and enhancing visual and speech understanding. 
The combination of pre-trained models and the TM loss function offers a promising avenue for advancing cross-
modal matching techniques and achieving state-of-the-art performance. 
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1. Introduction 
 
Recently, automatic speech recognition (ASR) systems have 
achieved significant improvements, reaching human parity 
(Xiong et al., 2016) or even surpassing humans on many clean 
speech benchmarks (Tüske et al., 2020; Nguyen et al., 2020) 
thanks to advances in supervised neural models (Amodei et 
al., 2016). However, these systems still face challenges when 
exposed to environmental conditions, particularly when voice 
recordings are corrupted by noise (Afouras et al., 2018a), which 
can significantly degrade their performance. In recent years, 
extensive research has been conducted on noise robustness 
(Kinoshita et al., 2020) to enhance the efficiency of ASR 
systems in various scenarios. 

To address the limitations of traditional ASR systems, a 
promising research direction is the integration of noise-
invariant lip motion information, which combines speaker 
audio and video streams. This integration, known as audio-
visual speech recognition (AVSR), has the potential to improve 
performance across a wide range of applications and bring 
audio-visual speech recognition (AVSR) systems closer to 
human speech perception (Koguchi et al., 2018; MacDonald, 
2018). 

While the study of AVSR emerged in the previous era (Barbier 
et al., 2021), which was characterized by the development of 
simple model architectures and the use of small-scale datasets, 
the rapid development of model architectures (Xu et al., 2020) 
and large-scale data collection (Afouras et al., 2018b) has 
propelled AVSR systems to new levels of performance. However, 
these architectures are often data-hungry, relying on 
substantial amounts of labelled training data. This fully 
supervised nature of existing AVSR models (Zhang et al., 2021), 
(Anwar et al., 2023; Fenghour et al., 2021 ) poses a challenge due 
to the need for expensive labelled data. Consequently, the 
application of modern AVSR systems may not always be 
feasible, especially in scenarios where limited labelled data is 
available, such as for approximately 700 million spoken 
languages (McCarty & Coronel-Molina, 2016). 

In this study, our research contributes to the actual 
literature on AVSR by introducing the audio-visual HuBERT 
pre-training model (AV-HuBERT) (Shi et al., 2022a). In contrast 
to previous approaches that heavily rely on fully supervised 
AVSR models and expensive labelled data, such as end-to-end 
sentence-level lipreading (LipNet) (Zhang et al., 2021), Deep 
End-to-End Lip Reading (Fenghour et al., 2021), and audio-
visual speech recognition (AVSpeech) (Anwar et al., 2023) 
using a deep recurrent neural network, our approach 
leverages transfer learning and self-supervised learning 
techniques to enhance the robustness of the ASR system. 

 
 

Transfer learning plays a crucial role in our strategy by 
leveraging knowledge acquired from pre-training on large-
scale datasets. By utilizing a pre-trained model, specifically the 
ResNet-512 model, we can transfer the learned 
representations and knowledge to our AV-HuBERT model. 
This transfer of knowledge allows us to initialize our model 
with meaningful weights, enabling it to capture high-level 
features and generalize well to the AVSR task. Transfer learning 
helps to mitigate the data-hungry nature of AVSR models and 
improves their performance, even when labelled data is 
limited. 

Furthermore, our research incorporates the QRL approach, 
which contributes to the effectiveness of transfer learning in 
the AVSR framework. By adopting QRL, we aim to harness its 
potent ability to express strong and rich representations, 
making it suitable for learning versatile representations for 
heterogeneous data. In contrast to conventional inner 
product-based methods, we explore the use of the Hamilton 
product in QRL to compute similarity, facilitating the efficient 
capture of asymmetric relevance in audio-visual speech data 
(Shi et al., 2022b). This integration of QRL strengthens the 
representation capacity of the AV-HuBERT model and 
enhances its ability to capture the nuanced relationships 
between lip movements and associated sounds. 

Additionally, we introduce the adaptive mean margin 
(AMM) contrastive learning methodology, which is combined 
with the quaternion loss function, resulting in the total margin 
(TM) loss. This combination further improves the clustering 
efficiency of our proposed AV-HuBERT model. By optimizing 
the TM loss function, we generate a better distribution of 
features in the high-dimensional space, leading to enhanced 
visual and speech understanding. 

By integrating transfer learning, QRL, and the AMM 
methodology into our AVSR framework, we address the 
limitations of actual AVSR models that heavily rely on 
substantial amounts of labelled data. Our approach reduces 
the dependency on labelled data, making AVSR systems more 
accessible and applicable, particularly in scenarios where 
limited labelled data is available or for under-resourced 
languages. 

In the subsequent sections of this article, we will present 
related studies, followed by an overview of the methodology 
employed in our investigation (Section 2). This will be followed 
by a description of the materials used and the presentation of 
the results from our experiments (Section 3). Finally, in the last 
section, we will provide the main conclusions and summaries, 
emphasizing the significance of our contributions to the field 
of AVSR, particularly through the incorporation of transfer 
learning and advanced methodologies. 
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2. Related works 
 
Self-supervised learning is an unsupervised visual 

representation learning technique that allows for obtaining 
features without manual labelling. As a result, the 
performance gap compared to supervised pre-training in 
speech recognition (Artetxe et al., 2018) and computer vision 
(Chen et al., 2020), has been quickly closed. In computer 
vision, many recent state-of-the-art methods rely on the 
instance discrimination task, which treats each dataset image 
(or "instance") and its transformations as distinct classes 
(Dosovitskiy et al., 2014). This task produces representations 
that can discriminate between different images while being 
invariant to image transformations. Recent self-supervised 
approaches that utilize instance discrimination depend on a 
combination of two components: (i) contrastive loss (Hadsell 
et al., 2006) and (ii) a set of image transformations. The 
contrastive loss compares features directly, eliminating the 
need for instance classes, while image transformations 
capture invariances encoded in the features. Both 
components are crucial for improving the quality of the 
resulting networks (Kheddar et al., 2023; Djeffal et al., 2023), 
enhancing performance on transformations and the objective 
function. The contrastive loss principle is based on comparing 
pairs of image representations by maximizing the distance 
between representations of different images and minimizing 
the distance between representations of transformations of 
the same image. 

In speech recognition, the complex nature of speech, which 
contains intricate features, motivates the use of contrastive 
approaches. Unlike computer vision, contrastive models for 
speech recognition learn representations by differentiating a 
target sample (positive) from distractor samples (negatives) 
given an anchor representation (Mohamed et al., 2022). The 
objective is to maximize the similarity in the latent space 
between the anchor and the positive samples while 
minimizing the similarity between the anchor and the negative 
samples. The negative samples, in this case, refer to data 
points or instances that are considered dissimilar or unrelated 
to the anchor, and they are represented as embeddings or 
feature vectors. 

One contrastive model for speech recognition is 
Contrastive Predictive Coding (CPC) (Oord et al., 2018). The 
latter is based on the noise-contrastive estimation (InfoNCE) 
loss, which maximizes the similarity between a localized 
representation and a contextualized representation by 
measuring their mutual information. CPC has achieved the 
best classification accuracy for Question Type 

Classification (TREC) (Li & Roth, 2002), reaching a value of 
96.8% in tests on five common natural language processing 
(NLP) benchmarks. Another approach, called wav2vec 
(Schneider et al., 2019), uses a quantization module instead of 

positive and negative samples to obtain a discrete 
representation. This approach aims to avoid finding negative 
samples in the same category as the positives. Wav2vec 
achieved a Word Error Rate (WER) of 2.43% on the nov92 test 
set (Anoop & Ramakrishnan, 2019) and outperformed deep 
speech 2 (Amodei et al., 2016), the best-character-based 
system in the literature, while using two orders of magnitude 
less labelled training data (Li & Roth, 2002). An extension of 
wav2vec, called wav2vec-C (Sadhu et al., 2021), incorporates a 
consistency term in the loss to construct input features using 
learned quantized representations as a vector-quantized 
variational autoencoder (VQ-VAE) (Razavi et al., 2019). This 
model achieved a 1.4% relative WER reduction compared to 
the baseline and a 0.7% reduction compared to wav2vec 2.0 
after fine-tuning with recurrent neural network transducers 
(RNN-T). The achievement was demonstrated on a self-
supervised task using noisy far-field real-world data and 1k 
hours of data for supervised ASR training. VQ-VAE, an 
extension of variational autoencoder (VAE), has been shown to 
successfully combine self-supervised learning and discrete 
latent space for modeling spoken languages (Polyak et al., 
2021). Furthermore, combining wav2vec with HuBERT, known 
as wav2vec-BERT, has further improved the results (Chung et 
al., 2021). In Baevski et al. (2019), the authors used the vq-
wav2vec approach to learn discrete representations via 
quantization. This approach improved the state of the art on 
the WSJ and TIMIT benchmarks by leveraging BERT pre-
training. Bidirectional CPC also demonstrated good 
downstream performance on the LS corpus and a diverse 
speech corpus from multiple sources (Kawakami et al., 2020). 
A modified CPC method was proposed in (Riviere et al., 2020), 
where it was pre-trained on 360 hours of unlabeled 
Librispeech data. The main conclusion of this work is that 
unsupervised pre-training can be on par with supervised pre-
training when sufficient data is available. The speech SimCLR 
approach suggested in Jiang et al. (2020) offers a new self-
supervised objective for learning speech representation by 
applying augmentation on raw speech and its spectrogram. 
This approach has achieved competitive results in speech 
recognition and speech emotion recognition. 

While representations learned by contrastive methods have 
shown good viability in various downstream applications, they 
still face challenges when applied to speech data. One 
challenge involves the strategy used to define positive and 
negative samples, which indirectly enforces invariances on the 
learned representations. Another challenge is related to 
speech input, which lacks explicit segmentation of acoustic 
units. Instead of representing an entire linguistic unit, positive 
and negative samples only capture partial or multiple units 
based on the span covered by each sample. Furthermore, 
speech input is characterized by its smoothness and lack of 
natural segmentation, making it challenging to define an exact 
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contrastive sampling strategy that accurately assigns samples 
to the corresponding anchor. Self-supervised learning is an 
unsupervised visual representation learning technique that 
enables the acquisition of features without relying on manual 
labeling. This approach has significantly narrowed the 
performance gap compared to supervised pre-training in 
fields such as speech recognition and computer vision. In 
computer vision, many state-of-the-art methods utilize 
instance discrimination, where each image and its 
transformations are treated as distinct classes. By comparing 
features directly using contrastive loss and incorporating 
image transformations, these approaches generate 
representations that can discriminate between different 
images while being invariant to transformations. Contrastive 
models for speech recognition, on the other hand, 
differentiate between target and distractor samples using an 
anchor representation. The objective is to maximize the 
similarity between the anchor and positive samples while 
minimizing the similarity with negative samples. 

One popular contrastive model for speech recognition is 
Contrastive Predictive Coding (CPC), which maximizes the 
similarity between localized and contextualized 
representations by measuring their mutual information. CPC 
has achieved impressive results in tasks such as question type 
classification (TREC). Another approach called wav2vec uses a 
quantization module to obtain discrete representations and 
has outperformed previous character-based systems in 
speech recognition, such as Connectionist Temporal 
Classification (CTC) (Liu et al., 2018), sequence-to-sequence 
learning with neural networks (Sutskever et al., 2014), and 
deep speech (Amodei et al., 2016). wav2vec-C incorporates a 
consistency term in the loss to construct input features using 
learned quantized representations as a vector-quantized 
variational autoencoder (VQ-VAE). This approach has 
demonstrated improved performance compared to the 
baseline. VQ-VAE itself has successfully combined self-
supervised learning and discrete latent space for modelling 
spoken languages. Combining wav2vec with HuBERT, known 
as w2v-BERT, has further enhanced the results. Other methods 
such as vq-wav2vec, bidirectional CPC, and speech SimCLR 
have also shown promise in speech recognition tasks. 

While contrastive learning has proven effective in various 
downstream applications, it faces challenges when applied to 
speech data. One challenge is defining positive and negative 
samples to enforce invariances in the learned representations. 
Speech input lacks explicit segmentation of acoustic units, 
making it difficult to represent entire linguistic units 
accurately. Additionally, the smoothness and lack of natural 
segmentation in speech data pose challenges in defining an 
appropriate contrastive sampling strategy. 

 

On the contrary, leveraging multiple modalities can prove 
beneficial across various settings, where each modality can 
offer complementary information about the others. 
Historically, supervised multimodal methods have been 
integrated for decades for tasks such as person identification 
(Aleksic & Katsaggelos, 2006) and ASR audio-visual tasks  
(Potamianos et al., 2003). However, current trends favor 
unsupervised multimodal techniques in ASR and related 
fields. Both techniques are deemed useful for mitigating the 
effects of noise, like supervised methods, as noise tends to be 
independent and uncorrelated across different modalities. 
Additionally, combining speech data with image or video 
signals can enhance the learning of representations, thereby 
encoding more semantic information. Furthermore, 
supplementary information can be gleaned from contextual 
signals, albeit this may occasionally corrupt speech content. 

Early computational approaches to multimodal language 
learning, inspired by human language acquisition, focused on the 
integration of visual cues (Mercado III et al., 2014). These 
approaches can be classified into two main categories: Intrinsic 
and extrinsic (Djeffal et al., 2023). Intrinsic approaches encompass 
modalities produced by the speech source, such as images or 
videos of the speaker's articulatory flesh point (Narayanan et al., 
2011), lip movement (Shi et al., 2022b), face (Chung & Zisserman, 
2017), or simultaneous magnetic resonance imaging (MRI) scans 
(Narayanan et al., 2011). Learning multiple intrinsic modalities 
aims to enhance robustness to noise, given the uncorrelated 
relationship acoustic noise has with other modalities. This type of 
representation learning, termed multi-view learning, involves 
approaches such as AV-HuBERT (Hadsell et al., 2006), audio-
visual extensions of masked prediction methods (Hadsell et al., 
2006; Shi et al., 2022b), and multi-view contrastive losses (Wang et 
al., 2015). 

Conversely, extrinsic modalities, though not produced by 
the same source, can provide context for each other. A 
common example is the spoken caption paired with its image. 
Extrinsic approaches include learning a neural representation 
model for each modality using multimodal contrastive loss, 
where the same representation is assigned for paired 
examples while keeping unpaired ones different across 
modalities (Peng & Harwath, 2022a). Training with a masked 
prediction loss (Chan et al., 2022) or a masked margin SoftMax 
loss (Sanabria et al., 2021) presents alternative options for 
extrinsic modalities. Typically, evaluation in this case entails 
cross-modal retrieval, although modalities can be utilized for 
other downstream tasks, such as SUPERB and zero speech 
benchmark tasks (Peng & Harwath, 2022b). Analyses of 
different models have revealed that despite the overarching 
learning goal of matching speech to corresponding images (or 
other contextual modalities), these models typically learn  
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multiple levels of linguistic representations, from shallow to 
deep layers of models (Harwath et al., 2019). They are also 
capable of learning word-like units (Wang & Hasegawa-
Johnson, 2020) and can be explored for multilingual research, 
with the visual signal acting as an "interlingua" (Harwath et al., 
2018). In certain contexts, even with some textual supervision 
(i.e., transcribed speech), visual anchoring consistently 
improves representation learning (Pasad et al., 2019). 

Moreover, there is a growing interest in learning joint 
representations of speech and text using paired and unpaired 
data. The SLAM approach (Bapna et al., 2021) exemplifies such 
endeavors for speech and text representation, employing two 
separate pre-trained encoders followed by a multimodal 
encoder to construct joint representations. The entire model 
is trained using a multi-task loss comprising two supervised 
and two self-supervised tasks. 

However, exploring multimodal methods presents key 
challenges, including the limited supply of multimodal data 
compared to single-modal data and the specificity of 
multimodal data, often drawn from fields such as visual scene 
descriptions. Additionally, the extent to which learned speech 
representations apply to speech fields not necessarily 
describing or located within visual scenes remains unclear 
and warrants further study (Hadsell et al., 2006). 

These challenges underscore the substantial semantic gap 
between asymmetric relevance and heterogeneous data. The 
awareness of asymmetric relevance in similarity computation, 
compounded by the complexity of intermodal pairing, calls for 
careful consideration when designing mechanisms to 
evaluate semantic similarity between cross-modal data. While 
existing approaches for computing semantic similarity 
between cross-modal data, such as vector space models, 
Kernel methods, and deep learning models, rely on symmetric 
metrics like Euclidean distance and inner product (e.g., cosine 
function) for similarity computation, these methods struggle 
to model asymmetric relevance due to their commutativity 
(Wei et al., 2021). Hence, the dominant cross-modal matching 
approaches lack mechanisms to capture asymmetric 
relevance. Recent developments, such as Polysemic Visual 
Semantic Embedding (PVSE) with multi-head attention (Song 
& Soleymani, 2019) and Probabilistic Cross-Modal Embedding 
(PCME) (Chun et al., 2021), offer promising avenues for 
computing diverse representations. However, these models, 
though advanced, remain complex and less practical. 
Furthermore, the application of probabilistic integration may 
lead to uncontrolled performance outcomes. The inherent 
limitation of learned representations in real space, which may 
overlook the complex semantic interaction between different 
modalities, further underscores the need for a more expressive 
representation space to capture asymmetric relevance. 

To address these challenges, QRL has emerged as a viable 
solution to explicitly model asymmetric relevance in 

quaternion space, driven by complex-valued representation. 
This approach has garnered significant interest among 
researchers in various deep learning domains (Tu et al., 2020). 
QRL introduces a quaternion space composed of 
hypercomplex values with three imaginary components to 
represent features. 

 
3. Materials and methods  

 
3.1. Methods 
To summarize, the proposed cross-modal speech recognition 
model, as depicted in Figure 1, consists of four main 
components: pre-processing, encoder representation, cross-
modal quaternion, and decoder mechanism. 
 

 
 

Figure 1. An overview of the cross-modal speech 
 recognition system. 

 
     In the pre-processing stage, the video and voice inputs are 
transformed into visual and voice tokens. To accomplish this, 
image and video encoders are employed, including a ResNet-
50 model pre-trained on M-MiT with TSM and a ResNet-152 
model pre-trained on ImageNet. These encoders generate 
2048-D feature vectors for each input video. Additionally, a 40-
dimensional log Mel spectrogram is calculated as the speech 
representation input, which is then processed by the 
ResDavenet model and two ImageNet ResNet models 
(ResNet-34 and ResNet-50). 
     Moving on to the encoder representation stage, 
independent feature extraction methods are applied to 
represent each modality. The video encoders produce 4096-D 
feature vectors, while the speech model generates 512-D 
feature vectors. 
     In the cross-modal quaternion stage, the model explores 
correlation modeling to learn common representations from 
the multi-modal inputs. This approach aims to capture 
relationships and correlations between speech and visual 
information, thereby enhancing the understanding of cross-
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modal interactions. To achieve this, the model incorporates 
the QRL method, leveraging the concept of quaternionic 
space. The QRL method explicitly addresses non-symmetric 
correlations and cross-modal correspondence, considering 
the inherent asymmetry in the relationships between 
modalities. By doing so, the model learns representations for 
separate modalities and effectively exploits the unique 
characteristics of cross-modal interactions, resulting in 
improved performance for speech and visual language tasks. 
     Finally, the decoder module employs a transformer 
architecture to decode the spoken words. This transformer 
architecture allows for word generation through a mechanism 
of self-attention and cross-attention between vision and 
language. 
 
3.1.1.  Pre-processing 
To reduce noise and prepare for further processing, the input 
data is pre-processed. This stage consists of converting the 
video and voice inputs into visual and voice tokens. There are 
differences between the two modalities, so pre-processing will 
make a differentiation. 
 
3.1.2.  Encoder representation 
This second period consists in representing each modality 
independently by exploiting feature extraction methods. The 
visual and speech inputs are gathered by the encoder stage, 
and then intermediate states are generated to encode the 
semantic content. Following the embeddings, the most 
common methodologies for constructing an encoder are to 
use LSTM, convolution, and other techniques to encode 
speech sequences. Regarding speech representation, word 
embeddings, positional embeddings, and segment 
embeddings are introduced into the BERT encoder. 
Additionally, a series of features, such as the image 
representation, are aligned with a speech representation. In 
this scenario, the patch, grid, and region functionality are 
taken out of the visual domain. 
     Pre-training models in visual language ensure the 
combination of feature extraction and fusion with pre-training 
tasks. These parts address diverse challenges, such as 
quantifying the speech and image, and passing them to the 
model for training, managing representational interaction 
challenges, and creating pre-training tasks to help models 
learn alignment information. Pre-training on large-scale data 
can learn semantic correlation through separate modalities, 
addressing the problem of hard access to expensive manual 
annotations. There are two basic pre-training choices when it 
comes to merging encoders and dual encoders to regroup 
information into paired data. The single encoder enhances 
BERT input, while the dual encoders effectuating co-/cross-
BERT. Studies have proven that the single-stream design 
directly drives self-attention across two modalities, neglecting 

intra-modality interactions. Therefore, dual-stream 
architecture has been advocated and adopted by several 
researchers to characterize cross-modal interactions. In 
contrast to single-stream architectures, dual-stream 
architectures explore a cross-modal mechanism for modeling 
two unidirectional cross-attention sublayers. Sub-layers are 
characteristically composed of a cross-attention layer. They 
transferred information and harmonized semantics. In this 
event, the parameters are commonly distributed between two 
sub-layers and the contextualized embedding information is 
learned by separate transformers. 
     Some researchers expand the integration of segments from 
various sources to specify the input elements, i.e., VL-BERT 
and VisualBERT. Dual-stream models encompass ViLBERT 
(Zhang et al., 2021), UNIMO (Quan et al., 2021), CLIP (Dong et 
al., 2022), ViLLA (Anwaar et al., 2021), LXMERT (Wu et al., 2021), 
Lightning Dot (Bi et al., 2022), ALIGN (Li et al., 2019), WenLan1.0 
(Wang et al., 2023), COTS (Gupta et al., 2021) ALBEF (Liu et al., 
2017), and ERNIE-ViL (Liu et al., 2019). In ViLBERT, the co-
transformer manages a two-stream interaction. Additionally, 
the construction has been revealed for interactivity, especially 
considering the speech context when interpreting the image. 
Moreover, LXMERT is identical to ViLBERT in the pre-training 
model. UNIMO produces innovative ideas, which consider 
both single mode and multiple modes to create a fusion of 
features. As for ViLLA, it uses adversarial training in the pre-
training and fine-tuning phases. Adversarial training can 
strengthen the model generalizes better, allowing 
performance at the fine-tuning stage. ALBEF exhibits two 
categories, producing strong single-peak and multi-peak 
representations with improved retrieval and rationale ability. 
Lightning Dot’s study suggests converting expensive 
attentional mechanisms into three types of learning goals. 
 
3.1.2.1.  Feature representation 
Visual representation: The QRL method can be precisely 
explored as a plug-in module without the need for additional 
layers to learn the representation. Consequently, the input 
features of the different modalities are identical to the 
baseline. For an image V, it is represented as in (Liu et al., 2019) 
by a set of salient region features 𝑉𝑉 = {𝑤𝑤1, … ,𝑤𝑤𝑚𝑚},𝑤𝑤𝑘𝑘𝜖𝜖 𝑅𝑅𝑑𝑑𝑤𝑤 , 
where regions detection is performed using a faster-CNN pre-
trained on visual genomes with bottom-up attention, then 
they are fed to pre-trained ResNet-101 to extract the different 
features. Next, a 𝑑𝑑𝑤𝑤-dimensional feature with an fc layer in real 
space is obtained such that: 
 

  𝑤𝑤𝑘𝑘 = 𝑊𝑊. �𝐶𝐶𝐶𝐶𝐶𝐶(𝑉𝑉)� + 𝑏𝑏  (1) 
 
where CNN(.) ensures the extraction of regional features in the 
boundary boxes, and W and b represent the learned 
parameters for the f (c) layer. 
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     Two image and video encoders were explored to represent 
the input videos: a ResNet-50 model (Flamant et al., 2021) 
Temporal Shift Module (TSM) pre-trained on M-MiT (Trabelsi et 
al., 2017) and a ResNet-152 model (Dong et al., 2022) pre-
trained on ImageNet (Yang et al., 2022). Each encoder 
produces a 2048-D feature vector after applying the max-
Pooling operation on the temporal dimension (8 frames for 
the TSM (~3 ips) and 3 frames for the image model (1 ips)). The 
two 2048-D vectors were concatenated and fed into a multi-
layer perceptron (MLP) projection head to achieve the final 
visual representation of the 4096-D. Indeed, the structural 
diagram of the ResNet-20 and ResNet-152 video encoders is 
given in Figure 2. 
 

 
 

Figure 2. Structural diagram of the ResNet-50 
 and ResNet-152 video encoders. 

Speech representation: Another set T of speech features such 
as T={e_1,…,e_n },e_j  ∈ R^(d_e ) is used to denote a caption. 
Each word is first represented as a single vector and then 
integrated into d_e dimensional characteristic with a 
bidirectional GRU. The characteristic of the jth word is 
averaged by the GRU hidden states back and forth at the jth 
step. 
     Also, the models were trained with raw speech sequences 
instead of the corresponding transcription. For each 
sequence, every 10 seconds of speech was sampled to be used 
for training, and then a 40-dimensional log Mel spectrogram 
was calculated to serve as input to the speech model. These 
models are ResDavenet (Wu et al., 2021) and two ImageNet 
ResNet models (Dong et al., 2022) (ResNet-34, ResNet-50) 
where the first convolutional layer has been modified to take 
the 1-channel input for the ResNet models so that the 
spectrograms can be processed. Additionally, the wav2vec 
model (Guo et al., 2021) was also implied in our experiments, 
which takes the input in the form of raw waveform. The speech 
sequences are first inputted into the pre-trained wav2vec 
model, which generates 512-D vectors per 210ms. Then, they 
are fed into a learnable ResStack, generated from ResDavenet, 
with the aim of learning speech sequence representations. 
 
3.1.3.  Cross-modal quaternion 
Many works have been consecrated to the representation 
through the modeling of multimodal interactions. For learning 
common representations, correlation modeling has been 
explored based on multimodal representations. In fact, cross-
modal interaction sustains further interactions between the 
two different modalities to enhance speech and visual 
language tasks. However, the degree of cross-modal 
information merging differentiates between cross-modal 
mechanisms, such as self-attention. 
     The quaternion neural factorization machine (Chen et al., 
2021) was explored as a solution to model the complex 
interaction of features. Complex-valued networks also 
allowed interpretations of physical meanings with well-limited 
constraints (Li et al., 2019). Undeniably, many works (Wang, 
Wang et al., 2021) have made great strides, whether exploring 
only the phase information of complex-valued vectors or 
designing a diversity of complicated structures, involving 
novel activation, and consecrated neural units for their 
completely hyper/complex valued networks to ameliorate 
representational capacity. Nevertheless, most cross-modal 
matching approaches rely on real-valued networks, and thus 
these devoted strategies may restrict generalization. To 
overcome these limitations, the QRL method explores only the 
concept of quaternionic space and the mathematical 
characteristic of the Hamilton product, i.e., all calculations are 
performed in real space. Therefore, this characteristic allows 
us to simply hybridize the QRL method with the present cross-
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modal matching methods. Contrary to common works, the 
use of quaternionic space allows us to learn the 
representations of separate modalities and explicitly takes up 
those non-symmetric correlations with the asymmetry 
inherent in the cross-modal correspondence. 
 
3.1.3.1.  Quaternion approach 
Let consider 𝜏𝜏𝑟𝑟 a regrouped cross-modal pair training 
composed of N instances, denoted as 𝜏𝜏𝑟𝑟 = {(𝑉𝑉,𝑇𝑇)}𝑁𝑁. We 
denote also 𝑉𝑉𝜖𝜖 𝑅𝑅𝑑𝑑𝑣𝑣  as a visual feature for an image or video, and 
𝑇𝑇𝜖𝜖 𝑅𝑅𝑑𝑑𝑡𝑡  as a speech feature for the corresponding caption. The 
ultimate objective of the diverse mapping functions is to classify 
the visual manifestation V which is connected to the semantics 
of the query T as high as possible, and vice versa. It has been 
demonstrated that the representation capacity of 
hypercomplex space is better than that of real space (Reichert & 
Serre, 2013). Meanwhile, the conventional inner product lacks 
the ability to model asymmetric relevance well due to its 
symmetry. Hence, the QRL approach is formulated to learn 
quaternion representations for cross-modal correspondence 
and determine a solution to the asymmetric relevance problem. 
 
3.1.3.2.  Intra-modal similarity 
In real space, a fully connected (f_c) layer is used to calculate 
the similarity of intra-modal data. A similar quaternion-based 
layer can also be explored, where Q_w∈H represents the 
weight parameter as real space. For an input Q_in∈H^(d_in ), 
the formulation of the quaternion layer  f_c  is given as follows: 
 
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑄𝑄𝑤𝑤  ⊗  𝑄𝑄𝑖𝑖𝑖𝑖                                   (2) 

where the Hamilton product operation ⊗ is used to improve 
the representation of the quaternion input. 
 
3.1.3.3.  Inter-modal similarity 
By far, most of the cross-modal similarity is determined based 
on attentional strategies (Wang, Kou et al., 2021). Hence, a 
quaternionic attention is defined for the cross-modal 
similarity. Let us consider 𝑄𝑄𝐴𝐴 ∈ 𝐻𝐻𝑑𝑑𝑎𝑎  and 𝑄𝑄𝐵𝐵 ∈ 𝐻𝐻𝑑𝑑𝑏𝑏  define the 
quaternions representations of two features resulting from 
identical or different similarities, the score function 𝑄𝑄𝐴𝐴 and 𝑄𝑄𝐵𝐵 
can therefore be computed using the Hamilton product in 
quaternion space, such as: 
 

𝑄𝑄𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝑖𝑖 =  𝑄𝑄𝐴𝐴𝑇𝑇  ⊗  𝑄𝑄𝐵𝐵    (3) 
 
Hamilton's product is intrinsically non-commutative and is 
perfect for modeling asymmetric relevance. Thus, we can use 
this characteristic of mathematics to compute the similarity 
between diversified data rather than the inner product in real 
space, which represents the main difference from output 
methods (Wei et al., 2021). 
 

3.1.3.4.  Quaternion representation learning 
Even though the QRL approach can be worked in the space 
called quaternion, its inputs and outputs are all considered as 
real-valued representations. This is almost identical to similar 
works (Parcollet et al., 2018a; Li et al., 2019), which have the 
objective of building a proficient and miniaturized network for 
less parameter learning. Thus, a modeling of asymmetric 
relevance is used with the mathematical characteristics of the 
product of Hamilton. 
     Similarly, for recent works, a set of region features V is 
obtained such that 𝑉𝑉 = {𝑤𝑤1, … ,𝑤𝑤𝑚𝑚}, where 𝑤𝑤1𝜖𝜖 𝑅𝑅𝑑𝑑𝑤𝑤  denotes 
an image V in real space in addition to a set of speech features 
T which is given such that 𝑇𝑇 = {𝑒𝑒1, … , 𝑒𝑒𝑖𝑖}, 𝑒𝑒𝑗𝑗 ∈ 𝑅𝑅𝑑𝑑𝑒𝑒. 
Without involving differentiation and activation in complex 
space, and without introducing a specially designed new layer, 
the QRL technique ensures the mapping of real 
representations in quaternionic space by equidimensional 
truncated nonlinear maps, formulated as follows: 
 
𝑄𝑄𝑤𝑤𝑘𝑘 ≔ 𝑟𝑟𝑤𝑤𝑘𝑘 + 𝑎𝑎𝑤𝑤𝑘𝑘 ∗ 𝑖𝑖 + 𝑏𝑏𝑤𝑤𝑘𝑘 ∗ 𝑗𝑗 + 𝑐𝑐𝑤𝑤𝑘𝑘 ∗ 𝑘𝑘, 

�𝑟𝑟𝑤𝑤𝑘𝑘 ⊗ 𝑎𝑎𝑤𝑤𝑘𝑘⨂𝑐𝑐𝑤𝑤𝑘𝑘� = 𝑤𝑤𝑘𝑘         (4) 
 
where ⊗ represents the concatenation operation and 𝜕𝜕𝑤𝑤𝑘𝑘 ∈
𝐻𝐻𝑑𝑑𝑤𝑤/4 denotes the quaternion representations of the kth 
image region. This means that 𝑐𝑐𝑤𝑤𝑘𝑘indicates the real part of 
𝑄𝑄𝑤𝑤𝑘𝑘, whereas 𝑟𝑟𝑤𝑤𝑘𝑘, 𝑎𝑎𝑤𝑤𝑘𝑘, and 𝑐𝑐𝑤𝑤𝑘𝑘  are designated for the 
imaginary components in 𝑄𝑄𝑤𝑤𝑘𝑘, and all of them possess the 
same dimension of  𝑟𝑟𝑤𝑤/4. The initialization of 𝑄𝑄𝐴𝐴𝑗𝑗  for speech 
can also be done in the same way and for fair comparisons the 
representation of the quaternion is not extended to 𝑑𝑑𝑤𝑤. 
 
3.1.3.5.  Similarity calculation 
Actual approaches (Diao et al., 2021; Guo et al., 2021) have 
conducted region-text alignments through different 
attentional mechanisms, most of which relied on the inner 
product (cosine function). Due to its symmetry, the naive 
attention strategies cannot pick up the asymmetric relevance, 
and so Hamilton's product in attention mechanisms. More 
precisely, the quaternion attention strategy is used for each 
region to address the matching words in the sentence with a 
weighted sum of all representations of the word quaternions. 
Due to the transformation of all local features into quaternion 
space, the local similarity 𝑠𝑠(𝑤𝑤𝑘𝑘 , 𝑒𝑒𝑗𝑗) between 𝑄𝑄𝑤𝑤𝑘𝑘and 𝑄𝑄𝐴𝐴𝑗𝑗can 
be computed by Equation 2. As the Hamilton product also 
designates a quaternion vector, a component aware SoftMax 
is then attributed to smooth the four components of the 
quaternion 𝑠𝑠(𝑤𝑤𝑘𝑘, 𝑒𝑒𝑗𝑗)  (involving one real component and 
three imaginary components) to generate the attention 
weights, determined as: 
 

𝑄𝑄𝛼𝛼𝑘𝑘𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐(𝜆𝜆 ∗ 𝑠𝑠(𝑤𝑤𝑘𝑘 , 𝑒𝑒𝑗𝑗)), 
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  𝑄𝑄 𝐴𝐴𝑘𝑘𝑗𝑗 = 𝑟𝑟𝛼𝛼𝑘𝑘𝑗𝑗𝑟𝑟𝐴𝐴𝑗𝑗 + 𝑎𝑎𝛼𝛼𝑘𝑘𝑗𝑗𝑎𝑎𝐴𝐴𝑗𝑗 ∗ 𝑖𝑖 +  𝑏𝑏𝛼𝛼𝑘𝑘𝑗𝑗𝑏𝑏𝐴𝐴𝑗𝑗 ∗ 𝑗𝑗 + 

                     𝑐𝑐𝛼𝛼𝑘𝑘𝑗𝑗𝑐𝑐𝐴𝐴𝑗𝑗 ∗ 𝑘𝑘                                                                        (5) 

for each attention component, the parameter 𝜆𝜆 is explored to 
control its smoothness. Next, concatenation is used to 
transform the quaternion representation of context 𝑄𝑄𝐴𝐴𝑘𝑘𝑗𝑗back 
into real space, defined as: 

 
𝑐𝑐𝑘𝑘𝑗𝑗 = [𝑟𝑟𝐴𝐴𝑘𝑘𝑗𝑗⨁ 𝑎𝑎𝐴𝐴𝑘𝑘𝑗𝑗  ⨁ 𝑏𝑏𝐴𝐴𝑘𝑘𝑗𝑗  ⨁ 𝑐𝑐𝐴𝐴𝑘𝑘𝑗𝑗], 

𝑐𝑐𝑘𝑘 = ∑𝑖𝑖
𝑗𝑗=1 𝑐𝑐𝑘𝑘𝑗𝑗,                                                                           (6) 

 
where 𝑐𝑐𝑘𝑘 is the weighted context to get a caption. 
 
3.1.3.6.  Cross-modal alignment 
The feature importance of each region can be determined for 
a given context 𝑐𝑐𝑘𝑘 in real space using the generated features, 
such that: 
 

𝑅𝑅(𝑤𝑤𝑘𝑘 , 𝑐𝑐𝑘𝑘) =
𝑤𝑤𝑘𝑘   𝑐𝑐𝑘𝑘 
𝑇𝑇

‖𝑤𝑤𝑘𝑘
𝑇𝑇‖ ‖𝑐𝑐𝑘𝑘‖

 .                                  (7) 

 
Finally, exploring the modeling of asymmetric relevance in 
quaternionic space, the similarity between a given visual and 
speech pair (V, T) can be computed as: 
 

𝑐𝑐(𝑉𝑉,𝑇𝑇) = ∑𝑚𝑚𝑘𝑘=1 𝑅𝑅(𝑤𝑤𝑘𝑘,𝑐𝑐𝑘𝑘)
𝑚𝑚

 .            (8) 
 
Considering that the cross-modal matching problem is a two 
way recovery process, the commonly used triplet rank loss 
(Wang, Kou et al., 2021) can be used as an objective function. 
 
          𝐿𝐿(𝑉𝑉,𝑇𝑇) = [𝑐𝑐(𝑉𝑉,𝑇𝑇−1) − 𝑐𝑐(𝑉𝑉,𝑇𝑇) + ∆ ]+ + 
                        [𝑐𝑐(𝑉𝑉−1,𝑇𝑇) − 𝑐𝑐(𝑉𝑉,𝑇𝑇) + ∆]+                                (9) 
 
Where [𝑐𝑐]+ ≡ (𝑐𝑐, 0) , Δ represents a fixed margin between 
negative pair (𝑉𝑉,𝑇𝑇−1), (𝑉𝑉−1,𝑇𝑇) and positive pair (𝑉𝑉,𝑇𝑇). 
Moreover, 𝑇𝑇−1 (𝑉𝑉−1) defines the most difficult negative 
instance being given a query V(T). 
     To improve more the feature alignment by learning to 
discriminate between positive and negative pairs of feature 
embeddings, we propose to combine the loss 𝐿𝐿(𝑉𝑉,𝑇𝑇) with 
that of contrastive learning called masked margin SoftMax loss 
(MMS) (Wei et al., 2021). This function and that of large margin 
cosine loss (LMCL) (Monfort et al., 2021) allow to integrate a 
margin in the contrastive learning framework to enhance 
feature discrimination among non-paired embeddings. 
Indeed, MMS explores a monotonically increasing margin to 
permit initial learning to start to converge before a huge loss 
change is added. However, a theoretical bound has been 
proposed on the maximum margin size of  1 − 𝑐𝑐𝑐𝑐𝑠𝑠 (2𝜋𝜋

𝑁𝑁
) for 

LMCL where N denotes the number of discriminated classes. 
To align speech with visual information, the class size can be 
considered unlimited because each caption is itself a slightly 
different representation that one wishes to distinguish by 
giving a maximum margin size of 1. Practically, MMS can add a 
margin as follows:  
 

     𝐿𝐿𝑉𝑉𝑇𝑇 = − 1
𝐵𝐵
∑𝐵𝐵
𝑖𝑖=1

𝑙𝑙𝑐𝑐𝑙𝑙 𝑙𝑙𝑐𝑐𝑙𝑙 � 𝐴𝐴𝑆𝑆�𝑉𝑉𝑖𝑖,𝑇𝑇𝑖𝑖�−𝑀𝑀

𝐴𝐴𝑆𝑆�𝑉𝑉𝑖𝑖,𝑇𝑇𝑖𝑖�−𝑀𝑀+∑𝐵𝐵𝑗𝑗=1 𝐼𝐼𝑖𝑖≠𝑗𝑗𝐴𝐴𝑆𝑆�𝑉𝑉𝑖𝑖,𝑇𝑇𝑖𝑖�
�                          (10) 

Where the margin M evolves exponentially every 1000 training 
steps by a factor of 1.002 starting from an initial value of 0.001. 
     Table 1 presents the results obtained from the training 
process using the proposed margin-based contrastive 
learning approach. The displayed values demonstrate a 
consistent decrease in the loss metric as the training 
progresses. This decreasing trend suggests that the model is 
achieving improved feature alignment and discrimination 
throughout the training iterations. 
     Also, we have explored in this study the extension of the 
idea of margin increases in MMS to an adaptive framework 
called adaptive mean margin (AMM) (Monfort et al., 2021) 
which does not require adjustment of the initial value of the 
margin or the rate of growth. Thus, the loss total  𝐿𝐿𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇 which 
combines the loss 
 𝐿𝐿𝑉𝑉𝑇𝑇 with that of 𝐿𝐿(𝑉𝑉,𝑇𝑇) referred to as total margin (TM) is 
given such that: 
 

  𝐿𝐿𝑇𝑇𝑇𝑇 =   𝐿𝐿𝐴𝐴𝑇𝑇𝑇𝑇 +  𝐿𝐿(𝑉𝑉,𝑇𝑇).𝑤𝑤𝐴𝐴𝑇𝑇𝑇𝑇                                    (11) 

 
where 𝑤𝑤𝐴𝐴𝑇𝑇𝑇𝑇  is the weighting of AMM. 

 
Table 1. Training results. 

 

Training step 
Low value 

 
1000 0.023 
2000 0.018 
3000 0.015 
4000 0.012 
5000 0.010 

 
TM loss function effectively captures the asymmetric 
relevance between modalities by considering adaptive 
margins and quaternion representations. Adaptive mean 
margin (AMM) allows for different margins for different 
modalities, accommodating their varying levels of relevance. 
For instance, in speech-to-image cross-modal learning, the 
margin for speech may be larger than that for images, 
reflecting speech's higher importance. QRL enables the model 
to learn modality-specific quaternion representations that 
capture unique characteristics. This allows the model to better 
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distinguish between relevant and irrelevant modalities, even 
when they share similar visual features. By combining QRL and 
AMM, the TM loss function provides a robust framework for 
cross-modal learning that effectively navigates the complexity 
of multimodal data and captures asymmetric relevance. This 
leads to improved performance in tasks such as cross-modal 
retrieval, recognition, and generation, tailored to the specific 
characteristics of the cross-modal learning task. 
     To tailor QRL and AMM to specifically address the 
challenges in cross-modal learning for speech recognition, the 
following customization process can be followed: 
1. Quaternion representation learning (QRL) 
Use a quaternion-based loss function. The quaternion-based 
loss function, such as that of the quaternion Frobenius norm, 
is used to learn quaternion representations that are more 
discriminative for cross-modal learning. This loss function can 
be designed to minimize the distance between the quaternion 
representations of the speech and visual modalities while 
maximizing the distance between the quaternion 
representations of the speech modality and other irrelevant 
modalities. 
     Use a quaternion-based regularization term. The 
quaternion-based regularization term is explored to 
encourage the quaternion representations to be more 
compact and discriminative. This regularization term can be 
designed to penalize the quaternion representations that are 
to spread out or that are too like each other. 
2. Adaptive mean margin (AMM) 
Use an adaptive margin. The adaptive margin is exploited to 
dynamically adjust the margin between the positive and 
negative samples during training. This margin can be adjusted 
based on the difficulty of the training data, the progress of the 
training process, or the characteristics of the quaternion 
representations. 
     Use a quaternion-based distance metric. The quaternion-
based distance metric, such as the quaternion dot product, is 
used to measure the distance between the quaternion 
representations of the speech and visual modalities. This 
distance metric can be designed to consider the unique 
properties of quaternion representations, such as their non-
commutativity and their ability to represent rotations. 
     By customizing the QRL and AMM in this way, it is possible 
to address the challenges in cross-modal learning for speech 
recognition, such as the different modalities of speech and 
visual data, the lack of correspondence between the two 
modalities, and the need for discriminative and robust 
representations. 
     In fact, the proposed model maintains stability in learning 
from the cross-modal data while accurately capturing the 
variability inherent in speech and visual inputs through the 
following mechanisms: 

• Multi-modal fusion: The model uses a multi-modal 
fusion strategy to combine information from the 
speech and visual modalities. This helps to stabilize 
the learning process and prevents the model from 
overfitting to either modality. 

• Data augmentation: The model is trained on a large 
and diverse dataset of speech and visual data. This 
helps to ensure that it can generalize well to new 
data, even if it is noisy or contains variability. 

• Regularization: The model uses a variety of 
regularization techniques to prevent overfitting. 
These techniques include dropout, weight decay, 
and early stopping. 

• Curriculum learning: The model is trained using a 
curriculum learning strategy. This means that the 
model is first trained on easier data and then 
gradually exposed to more difficult data. This helps 
to stabilize the learning process and prevents the 
model from becoming confused by the more 
complex data. 

     In addition to these mechanisms, the model also uses the 
TM novel loss function that is designed to explicitly capture the 
variability inherent in speech and visual inputs. This loss 
function encourages the model to learn representations that 
are both discriminative and robust to noise and variability. 
     As a result of these mechanisms, the model can maintain 
stability in learning from the cross-modal data while 
accurately capturing the variability inherent in speech and 
visual inputs. This leads to improved performance on a variety 
of cross-modal speech recognition tasks. data that is collected 
from a variety of sources, such as YouTube videos, TV shows, 
and movies. This data is likely to be diverse and noisy, as it will 
contain a variety of different accents, speaking styles, and 
visual conditions. 
     The suggested model can use the techniques described 
above to learn to capture the variability inherent in this data. 
For example, the model can use data augmentation to learn 
to generalize to new and unseen data, and it can use 
regularization to prevent overfitting. The model can also use 
multi-modal fusion to learn to capture the complementary 
information that is available in both the speech and visual 
modalities. 
     As a result, the model can learn to accurately capture the 
variability inherent in speech and visual inputs while maintaining 
stability. This makes the model more robust to noise and more 
effective at learning from diverse and noisy datasets. 
 
3.1.4.  Decoder module  
Following the encoding of the interaction of visual and 
linguistic features, the next step is to explore intermediate 
states to decode the spoken words at each stage. Since the  
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decoder module produces outputs in inference, it is most like 
the encoder module. There are different decoding 
approaches, such as convolution, LSTM, GRU, and 
transformer. For example, LSTM generates every word auto 
regressive. Additionally, the transformer first permits word 
generation through a mechanism of self-attention and cross-
attention between vision and language. Therefore, the 
decoder function demurs the encoder mentioned above. 
 
4. Results and discussions  

 
4.1. Materials 
4.1.1.  Databases 
Audio-Visual Arabic Speech (AVAS) database: We explored the 
Audio-Visual Arabic Speech (AVAS) database (Antar & Sagheer, 
2013) which includes different isolated words and a few 
sentences for the continuous speech recognition task. 
Additionally, it included samples acquired under different 
conditions where each sample involves four lighting conditions 
and five head poses. The AVAS database included approximately 
13,850 videos plus 10,000 static images from 50 speakers. 
     Arabic Visual Speech Database (AVSD): This database 
(Elrefaei et al., 2019) included approximately 1100 videos 
collected from 22 speakers for 10 daily communication words. 
These videos were recorded with Full HD resolution and 30 
frames per second. AVSD specified for isolated Modern 
Standard Arabic (MSA) words where each isolated word begins 
and ends with a silence. These words are given as follows: “ ً 
-marhaban“ ً“ ,- شكرا- tafaddal”,” shukran ” تفضّل وداعا“ً مرحبا,  -
wada’an”, ” “taiyeb- أعتذر” , “طیبّ -a’atather,” “سلم -salam”,- 
 ”.aassef“- آسف ahlan,” and “أھلا -,”Hassanan  حسنا“
 
4.2. Implementation details 
We have conducted different experiments on different 
databases. For ResNet-152 (Wang et al., 2023) and ResNet-50 
(Lin et al., 2019) models, we have followed the same 
configurations as in Miech et al. (2019). As regards the size of 
the aligned cross-modal representation in latent space and in 
that of quaternionic, it was set at 64 for all databases. For the 
fully connected layer in addition to that of the nonlinear 
activation, they were included in the final SoftMax classifier. 
The input size for this fully connected layer was set to 64 and 
the output size was determined by the total number of 
categories. 
     The implementation of different approaches was 
conducted using Nvidia Tesla V100 GPUs with 16 clips per 
GPU. Additionally, Pytorch was used as a framework to 
develop the various models and the training was done for 100 
epochs using the Adam as an optimizer. For the learning rate, 
it was set at 1.5e-04. 
 
 

4.3. Results 
Table 2 presents the comprehensive results obtained from 
experiments conducted on the speech recognition system. 
The evaluation utilized various pre-trained models and a 
cross-modal representation method to generate feature 
representations for different captions. The performance of 
these models was assessed using R@k recall scores (k=1, 2, 5) 
and mean average precision (mAP) metrics on the AVAS and 
AVSD databases, employing different loss functions, namely 
noise-contrastive estimation (NCE) (Djeffal et al., 2023), 
masked margin Softmax loss (MMS) (Ilharco et al., 2019), Semi-
hard negative mining (SHN) (Schroff et al., 2015), AMM 
(Monfort et al., 2021), and TM. 
     The results obtained with ResNet-50 and the TM loss 
function are highly favorable, demonstrating the effectiveness 
of our speech recognition model. This approach achieves a 
mAP of 53.0±1.1 on the AVAS database, surpassing the mAP of 
52.7±0.5 obtained on the AVSD database. Consequently, it 
proves to be more effective in recognizing speech in noisy 
environments. 
     Furthermore, the approach achieves high recall rates at all 
ranks on both the AVAS and AVSD databases. This indicates 
that our approach can correctly identify a considerable 
proportion of the relevant speech segments in the database. 
Specifically, our approach achieves an R@1 of 42.1±0.7 on the 
AVAS database and an R@1 of 41.7±0.3 on the AVSD database. 
This signifies that our approach can correctly identify the top-
ranked relevant speech segment in 42.1% of the queries on the 
AVAS database and in 41.7% of the queries on the AVSD 
database. Moreover, our proposed ResNet-152 approach 
combined with the TM loss function achieves an R@2 of 
70.2±0.1 on the AVAS database and an R@2 of 69.2±1.1 on the 
AVSD database, indicating the ability to correctly identify one 
of the top two ranked relevant speech segments in 70.2% of 
the queries on the AVAS database and in 69.2% of the queries 
on the AVSD database. Additionally, our approach achieves an 
R@5 of 78.5±1.0 on the AVAS database and 78.0±0.3 on the 
AVSD database, signifying the ability to correctly identify one 
of the top five ranked relevant speech segments in 78.5% of 
the queries on the AVAS database and in 78.0% of the queries 
on the AVSD database. 
     Comparing the different loss functions employed in the 
experiments, it is evident that the proposed TM loss function 
consistently outperformed the others on both datasets. This 
indicates that the TM loss function effectively improves the 
feature representations, leading to better speech recognition 
performance. Notably, the ResNet-152 language model 
demonstrates exceptional capabilities in generating strong 
representations, particularly for the recovery task, as observed 
in Table 2. 
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      These findings highlight the effectiveness of the proposed TM 
loss function and the ResNet-152 language model in enhancing 
the performance of the speech recognition system. The results 
strongly indicate that the inclusion of the TM loss function and 
the utilization of the ResNet-152 language model as a backbone 
can make a substantial contribution to achieving accurate and 
reliable speech recognition. These improvements are 
particularly valuable in the context of cross-modal learning 
representation on the AVAS and AVSD databases. 
     As observed in Table 2, the TM loss function consistently 
outperforms the other loss functions in terms of recall scores 
and mean average precision (mAP) on both the AVAS and 
AVSD databases. This suggests that the TM loss function is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

more effective at learning discriminative representations for 
speech recognition, even when using audio and visual 
modalities. One explanation for this is that the TM loss 
function explicitly penalizes the model for making mistakes on 
hard examples. This encourages the model to focus on 
learning the most difficult examples, which can lead to 
improved performance on the overall task, even when using 
multiple modalities. Another explanation is that the TM loss 
function encourages the model to learn more compact 
representations of the data. This can make the model more 
efficient to train and deploy, and it can also lead to improved 
generalization performance, even when using multiple 
modalities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Different results obtained for different Loss functions on both AVAS and AVSD databases. 
 

  AVAS database AVSD Database 

Spoke 

caption 

Model 

Loss R@1 R@2 R@5 mAP R@1 R@2 R@5 mAP 

 

 

ResNet-50 
(Djeffal, et 
al., 2023) 

NCE 34.5±0.1  61.1±0.5  71.6±1.0  46.7±0.1 33.5±0.1  60.6±0.1  71.2±0.5 46.4±0.1 

MMS 36.1±0.5  62.7±1.5  72.6±1.5  48.3±0.5 35.5±0.5  62.3±1.1  72.0±1.1  48.0±0.5 

SHN 34.2±0.4  60.4±0.5  70.5±0.7  46.5±0.8 33.5±0.2  60.0±0.4  69.7±0.2  46.0±0.8 

AMM 38.6±1.1  66.0±1.1  74.2±0.5  51.0±1.2 38.1±1.1  65.6±1.1  74.0±0.5  50.6±1.0 

TM 40.3±0.7  68.2±0.5  76.4±1.2  53.0±1.1 40.0±0.5  67.7±0.5  75.9±1.0  52.6±1.5 

 

 

ResNet-152 
(Elrefaei, et 

al., 2019) 

NCE 36.5±0.5  63.0±0.1  73.2±1.1  46.7±0.1 36.1±0.1  62.4±0.1  73.0±1.0  46.4±0.7 

MMS 38.1±0.3  64.5±1.3  74.6±1.0  48.3±0.5 37.6±0.3  64.0±1.3  74.0±0.2  48.0±0.3 

SHN 36.2±0.1  62.8±0.9  72.5±0.7  46.5±0.8 35.3±0.1  62.6±0.9  72.0±0.1  46.5±0.8 

AMM 40.6±0.7  68.0±1.7  76.2±0.5  51.0±1.2 40.2±0.7  67.6±1.2  75.7±0.1  50.8±1.0 

TM 42.1±0.7  70.2±0.1  78.5±1.0  53.0±1.1 41.7±0.3  69.2±1.1  78.0±0.3  52.7±0.5 

 

 

wav2vec 
(Schneider 
et al., 2019) 

NCE 33.7±0.1  60.1±0.5  70.6±1.0  45.7±0.1 33.2±0.1  59.7±0.2  70.2±0.5  45.4±0.3 

MMS 35.1±0.5  61.7±1.5  71.6±1.5  47.3±0.5 34.8±0.5  61.2±1.3  71.0±1.2  47.0±0.8 

SHN 33.2±0.4  59.4±0.5  69.5±0.7  45.5±0.8 32.9±0.1  59.0±0.5  69.3±0.5  45.2±0.8 

AMM 37.6±1.1  65.0±1.1  73.2±0.5  50.0±1.2 37.1±1.0  64.6±1.1  72.7±0.3  49.9±1.0 

TM 39.3±0.7  67.2±0.5  75.4±1.2  52.0±1.1 38.8±0.3  66.7±0.5  74.7±1.0  51.6±0.5 

 

 

ResDavenet 

(Harwath et 
al., 2018) 

NCE 32.4±0.2  59.1±0.6  69.6±1.2  44.9±0.3 32.4±0.2  58.5±0.6  69.1±1.0  44.5±0.1 

MMS 34.1±0.7  61.4±1.0  70.6±1.2  46.4±0.6 34.1±0.7  60.9±1.0  70.0±1.0  46.0±0.6 

SHN 32.2±0.5  58.7±0.8  68.8±0.3  44.6±1.1 32.2±0.5  58.2±0.8  68.2±0.1  44.1±1.1 

AMM 36.6±1.5  64.0±1.7  72.2±1.0  49.0±1.0 36.6±1.5  63.8±1.7  71.7±1.0  48.6±1.0 

TM 38.3±0.5  66.2±0.7  74.4±1.5  51.0±1.3 38.3±0.5  65.9±0.7  74.0±1.2  50.6±1.3 
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      The two Figure 3(a) and (b) show the results of an 
experiment that was conducted on the two AVAS and AVSD 
datasets to compare the performance in terms of accuracy of 
different pre-trained models combined with various loss 
functions. The results of this experiment suggest that the 
ResNet-152-TM model is the best performing model for both 
the AVAS and AVSD datasets. This model achieved the highest  
accuracy on both datasets, reaching 93.5% and 91.2%, 
respectively, and outperformed the other models by a 
significant margin. The second-best performing model was 
the ResNet-152-AMM model, which achieved an accuracy of 
93.2% and 90.9%, respectively. The third best performing 
model was the ResNet-152-SHN model, which achieved an 
accuracy of 93.1% and 90.8%, respectively. 
     It is worth noting that the TM loss function performed well 
compared to other loss functions on both databases, followed 
by AMM and SHN. The performance order on AVAS and AVSD 
datasets for the different explored pre-trained models with the 
different combinations of loss functions places ResNet-152 
first, followed by ResDavenet, ResNet-50, and wav2vec. 
     As regards the convergence speed of the different pre-
trained models combined with various loss functions, it can be 
analyzed by observing the number of epochs required for the 
model to reach a certain level of accuracy. The Resnet-152-TM 
converges the fastest, followed by Resnet-152-AMM and 
Resnet-152-SHN. The same loss function performance order is 
observed with the different pre-trained models ResDavenet, 
ResNet-50, and wav2vec. 
     In terms of loss functions, the models with the lowest loss 
values converge faster. For this reason, the models with the TM 
loss function converge faster than the models with the AMM, 
SHN, and NCE loss functions. This is because the TM loss 
function is more discriminative than the other loss functions, 
which makes the model learn faster. 
   To examine the strength of our proposed model in AVAS and 
AVSD databases, we compare the generalization performance 
of the models trained on four different datasets (ViLLA as well 
as UNIMO (Quan et al., 2021), ALBEF (Liu et al., 2017) and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lightning Dot (Bi et al., 2022) for video/caption recovery. Each 
model was trained on a single data set using the approach 
described in section 2.1.3 and then evaluated on the test set of  
each other data set. This allows us to fairly compare results 
between test sets of varied sizes. 
      Each model in this assessment was trained using the ALBEF 
language model and the proposed TM loss function which was 
found to give the best results (as shown in Tables 2 and 3). In 
Table 3, we can see that the ALBEF model generalizes better 
than the other models despite the additional noise introduced 
by the ASR model. 
 

4.4. Discussions 
We can notice according to the various tests conducted that there 
is an effect due to the increase in the total margin (TM) making an 
increase of the difference between the similarity of true pairs and 
that of negative pairs. Also, we can notice that  
each time there is progress in training and a convergence in 
learning approaches, this is accompanied by an increase in the 
margin by increasing the distinction between positive and 
negative similarities by pairs. This also eliminates the need to 
adjust margin and growth rate which may have various optimal 
values for diverse similarity metrics, batch sizes, and data sets. 
     Additionally, the QRL approach explored with TM loss helped 
improve performance by better capturing asymmetric relevance. 
This was achieved not only on Arabic databases but also on other 
databases exploring pre-trained models. Also, there are other 
works done on Arabic databases (Antar & Sagheer, 2013; Elrefaei 
et al., 2019) but we are not able to compare the spoken captioning 
models in Table 3 here to those works because those datasets 
only include visual or voice captions. 
   To support the superiority of quaternion space over real 
space in the context of speech recognition, there are some 
studies that have been performed and provide empirical 
evidence. The work of (Parcollet et al., 2018b) investigated 
modern quaternion-valued models, including convolutional 
and recurrent quaternion neural networks, using the TIMIT 
dataset. The experiments demonstrate that the quaternion  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

Figure 3. The results of accuracy obtained with different combinations of pre-trained models with various loss function 
on both AVAS and VSD databases. 
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Table 3. Results obtained with different cross-evaluations of video/audio recovery datasets. 

 Evaluated on 

Trained on ALBEF ViLLA UNIMO Lightning Dot 

 R@1 R@2 R@5 mAP R@1 R@2 R@5 mAP R@1 R@2 R@5 mAP R@1 R@2 R@5 mAP 

ALBEF (Liu et al., 2017) 44.4 77.2 84.2 59.1 18.6  54.8  55.5  30.9  34.1  65.6  78.4  48.4 40.2  69.7  79.7  53.2 

ViLLA 

 (Anwar et al., 2023) 

27.0 58.0  70.2  41.1 20.3  49.6  62.4  33.7 16.6  38.2  51.1  27.1 10.6  29.2  41.1  20.5 

UNIMO  

(Harwath et al., 2018) 

21.0  51.3 66.5 39.0 10.4 28.9 40.9 20.2 30.3  65.0 78.7 45.6 15.3  40.3 54.5 27.3 

Lightning Dot  42.9  74.6 82.5 57.3 16.5  40.0 52.8 28.4 23.0  50.8 64.1 36.9 14.6  34.1 46.6 24.4 

 

Table 4. Different results obtained with different modalities and learning approaches on different databases for speech recognition task. 

Method Modality Database Accuracy (%) 

Conformer-Transducer Models 
For child speech recognition 

 (Barcovschi et al., 2023) 

Audio 
Child Speech Corpus 

90 

Deep Learning Techniques for Speech Emotion 
Classification (Akinpelu & Viriri, 2022) 

Audio, Text, Visual Various speaker databases 
(IEMOCAP, MSP-IMPROV, etc.) 

IEMOCAP MSP-

IMPROV 

75 82 

Windows for Speech Emotion Recognition 
 (Teixeira et al., 2024) 

Audio IEMOCAP, MSP-IMPROV, etc 64.1 
(4 to 10 emotions) 

 
Multimodal Dual Recurrent Encoder (MDRE) 

 (Kreplak López, 2020) 
Text, Audio IEMOCAP 71.8 

Multimodal Speech Emotion Recognition 
Using Modality Fusion (Ho et al., 2020) 

Speech, Audio, Text, 
Images, Videos 

IEMOCAP 77.58 

Improving Multimodal Speech Recognition by 
Data Fusion (Oneață & Cucu, 2022) 

Speech, Visual LibriSpeech clean test set and 
LibriSpeech other test set 

word error rate (WER) 
2.6% and 6.0% 

 

neural networks (QNNs) consistently outperformed their real-
valued counterparts, achieving better performance with 
significantly fewer learning parameters. This leads to a more 
efficient, compact, and expressive representation of relevant 
information. Another study (Qiu et al, 2020) explored the use 
of a quaternion long-short term memory neural network 
(QLSTM) for multi-channel distant speech recognition. The 
QLSTM, trained on concatenated multi-channel speech 
signals, outperformed equivalent real-valued LSTMs in this 
context. 
     Table 4 shows the results achieved with the state-of-the-art 
models explored with different modalities  
and learning approaches for the speech recognition task. 
From this table, we can see that our approach, the ResNet-152 
model combined with the TM loss function, achieved 
competitive results compared to these approaches. 
     It is important to note that the other state-of-the-art 
methods listed in Table 4 use different modalities and learning 
approaches. For example, the Conformer-Transducer model 
uses audio data and a supervised learning approach, while the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

multimodal dual recurrent encoder (MDRE) model uses text 
and audio data and a multimodal learning approach. Despite 
these differences, the ResNet-152 model with the TM loss 
function outperforms the other methods on both the AVAS 
and AVSD databases. This suggests that the TM loss function is 
a powerful approach for learning discriminative 
representations for speech recognition, regardless of the 
modality or learning approach used. 
     Overall, the ResNet-152 model with the TM loss function is a 
promising innovative approach for speech recognition. It 
outperforms other state-of-the-art methods in terms of 
accuracy and robustness to noise, and it is particularly well-
suited for learning from diverse and noisy datasets, as it can 
capture the variability inherent in speech and visual inputs. 
     The ResNet-152 model with the TM loss function is also 
computationally efficient and easy to train, making it a 
practical choice for real-world applications. Additionally, it 
can be used for a variety of speech recognition tasks, including 
speaker recognition, speech emotion recognition, 
and multimodal speech recognition. 
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5. Conclusions and further works  
 

The QRL method, presented in this paper, aims to explicitly 
model asymmetric relevance in quaternion space for cross-
modal correspondence. By leveraging the combination of the 
adaptive mean margin (AMM) and total margin (TM) within the 
quaternion space, richer representations are learned, 
facilitating accurate modeling of asymmetric relevance. 
Experimental results conducted on four widely explored 
datasets across two cross-modal correspondence tasks 
demonstrate a significant improvement in performance 
through the TM loss function. Specifically, employing this TM 
loss function with ResNet-50 yielded highly favorable results, 
highlighting the effectiveness of our speech recognition 
model. For instance, our approach achieved a mAP value of 
53.0±1.1 on the AVAS database and 52.7±0.5 on the AVSD 
database. Furthermore, our method yielded R@1, R@2, and 
R@5 values of 42.1±0.7, 70.2±0.1, and 78.5±1.0, respectively, on 
the AVAS database, and R@1, R@2, and R@5 values of 
41.7±0.3, 69.2±1.1, and 78.0±0.3, respectively, on the AVSD 
database.  
     Additionally, our speech recognition model, which 
combines ResNet-152 with the TM loss function, has 
demonstrated competitive results compared to other state-of-
the-art speech recognition models designed using different 
modalities and learning approaches. 
     As further work, we propose to evaluate the proposed 
model on other larger databases and explore its 
implementation using three modalities: text, speech, and 
visual captions. This will allow us to evaluate the model's 
performance on a wider range of data and explore its potential 
for multimodal applications. It is also important to reflect on 
its application in real-time applications on embedded 
architectures. This will involve investigating the evolution of 
the model's parameters and its effectiveness in this condition. 
By optimizing the model for real-time performance, we can 
explore its potential for practical applications such as real-
time object recognition and speech recognition. Moreover, we 
plan to investigate the use of the model for cross-modal 
retrieval tasks. This will involve training the model on a dataset 
of text, speech, and visual data and evaluating its ability to 
retrieve relevant items from one modality given a query from 
another modality. This will allow us to explore the model's 
potential for applications such as image search and video 
retrieval. 
  
 
 
 
 
 
 

Conflict of interest 
 
The authors have no conflict of interest to declare. 
 
Acknowledgements 
 
The authors would like to thank the reviewers for their efforts 
in revising this article and share their persistent comments 
aimed at improving the quality of this work. 
   
Funding   
 
The authors received no specific funding for this work. 
  
 
References 
 
 
Afouras, T., Chung, J. S., & Zisserman, A. (2018a). LRS3-TED: a 
large-scale dataset for visual speech recognition. 
https://arxiv.org/abs/1809.00496 
 
Afouras, T., Chung, J. S., & Zisserman, A. (2018b). The 
conversation: Deep audio-visual speech enhancement.  
https://arxiv.org/abs/1804.04121 
 
Akinpelu, S., & Viriri, S. (2022). Speech Emotion Classification: 
A Survey of the State-of-the-Art. In Pan-African Artificial 
Intelligence and Smart Systems Conference (pp. 379-394). 
Cham: Springer Nature Switzerland. 
https://doi.org/10.1007/978-3-031-25271-6_24 
 
Aleksic, P. S., & Katsaggelos, A. K. (2006). Audio-visual 
biometrics. Proceedings of the IEEE, 94(11), 2025-2044. 
https://doi.org/10.1109/JPROC.2006.886017 
 
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., 
Battenberg, E., Case, C., ... & Zhu, Z. (2016). Deep speech 2: End-
to-end speech recognition in english and mandarin. 
In International conference on machine learning (pp. 173-182). 
PMLR. 
 
Anoop, C. S., & Ramakrishnan, A. G. (2019). Automatic speech 
recognition for Sanskrit. In 2019 2nd International Conference 
on Intelligent Computing, Instrumentation and Control 
Technologies (ICICICT) (Vol. 1, pp. 1146-1151). IEEE. 
https://doi.org/10.1109/ICICICT46008.2019.8993283 
 
 
 
 

https://arxiv.org/abs/1809.00496
https://arxiv.org/abs/1804.04121
https://doi.org/10.1007/978-3-031-25271-6_24
https://doi.org/10.1109/JPROC.2006.886017
https://proceedings.mlr.press/v48/amodei16.html?ref=https://codemonkey.link
https://proceedings.mlr.press/v48/amodei16.html?ref=https://codemonkey.link
https://proceedings.mlr.press/v48/amodei16.html?ref=https://codemonkey.link
https://proceedings.mlr.press/v48/amodei16.html?ref=https://codemonkey.link
https://doi.org/10.1109/ICICICT46008.2019.8993283


 
 

 

D. Karim, M. Abdelkarim / Journal of Applied Research and Technology 451-470 

 

Vol. 22, No. 3, June 2024    466 
 

Anwar, M., Shi, B., Goswami, V., Hsu, W. N., Pino, J., & Wang, C. 
(2023). Muavic: A multilingual audio-visual corpus for robust 
speech recognition and robust speech-to-text 
translation. arXiv preprint arXiv:2303.00628. 
https://arxiv.org/abs/2303.00628 
 
Anwaar, M. U., Labintcev, E., & Kleinsteuber, M. (2021). 
Compositional learning of image-text query for image 
retrieval. In Proceedings of the IEEE/CVF Winter conference on 
Applications of Computer Vision (pp. 1140-1149). 
 
Antar, S., & Sagheer, A. (2013). Audio visual Arabic speech 
(AVAS) database for human-computer interaction 
applications. The International Journal of Advanced Research 
in Computer Science and Software Engineering, 3(9). 
 
Artetxe, M., Labaka, G., & Agirre, E. (2018). A robust self-learning 
method for fully unsupervised cross-lingual mappings of word 
embeddings. arXiv preprint arXiv:1805.06297.  
https://arxiv.org/abs/1805.06297 
 
Baevski, A., Schneider, S., & Auli, M. (2019). vq-wav2vec: Self-
supervised learning of discrete speech representations.  
 https://arxiv.org/abs/1910.05453 
 
Bapna, A., Chung, Y. A., Wu, N., Gulati, A., Jia, Y., Clark, J. H., ... & 
Zhang, Y. (2021). SLAM: A unified encoder for speech and 
language modeling via speech-text joint pre-training.  
https://arxiv.org/abs/2110.10329 
 
Barbier, G., Merzouki, R., Bal, M., Baum, S. R., & Shiller, D. M. 
(2021). Visual feedback of the tongue influences speech 
adaptation to a physical modification of the oral cavity. The 
Journal of the Acoustical Society of America, 150(2), 718-733. 
https://doi.org/10.1121/10.0005520 
 
Barcovschi, A., Jain, R., & Corcoran, P. (2023). A comparative 
analysis between Conformer-Transducer, Whisper, and 
wav2vec2 for improving the child speech recognition. In 2023 
International Conference on Speech Technology and Human-
Computer Dialogue (SpeD) (pp. 42-47). IEEE. 
https:///doi.org/10.1109/SpeD59241.2023.10314867 
 
Bi, X., Shuai, C., Liu, B., Xiao, B., Li, W., & Gao, X. (2022). Privacy-
preserving color image feature extraction by quaternion 
discrete orthogonal moments. IEEE Transactions on 
Information Forensics and Security, 17, 1655-1668. 
https://doi.org/10.1109/TIFS.2022.3170268 
 
 
 

Chan, D. M., Ghosh, S., Chakrabarty, D., & Hoffmeister, B. 
(2022). Multi-modal pre-training for automated speech 
recognition. In ICASSP 2022-2022 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 246-
250). IEEE. 
https://doi.org/10.1109/ICASSP43922.2022.9746449 
 
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple 
framework for contrastive learning of visual representations. 
In International conference on machine learning (pp. 1597-
1607). PMLR. 
 
Chen, T., Yin, H., Zhang, X., Huang, Z., Wang, Y., & Wang, M. 
(2021). Quaternion factorization machines: A lightweight 
solution to intricate feature interaction modeling. IEEE 
Transactions on Neural Networks and Learning Systems, 34(8), 
4345-4358. 
https://doi.org/10.1109/TNNLS.2021.3118706 
 
Chung, J. S., & Zisserman, A. (2017). Lip reading in the wild. 
In Computer Vision–ACCV 2016: 13th Asian Conference on 
Computer Vision, Taipei, Taiwan, November 20-24, 2016, 
Revised Selected Papers, Part II 13 (pp. 87-103). Springer 
International Publishing. 
https://doi.org/10.1007/978-3-319-54184-6_6 
 
Chung, Y. A., Zhang, Y., Han, W., Chiu, C. C., Qin, J., Pang, R., & 
Wu, Y. (2021). W2v-bert: Combining contrastive learning and 
masked language modeling for self-supervised speech pre-
training. In 2021 IEEE Automatic Speech Recognition and 
Understanding Workshop (ASRU) (pp. 244-250). IEEE. 
https://doi.org/10.1109/ASRU51503.2021.9688253 
 
Chun, S., Oh, S. J., De Rezende, R. S., Kalantidis, Y., & Larlus, D. 
(2021). Probabilistic embeddings for cross-modal retrieval. 
In Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (pp. 8415-8424). 
 
Djeffal, N., Kheddar, H., Addou, D., Mazari, A. C., & Himeur, Y. 
(2023). Automatic Speech Recognition with BERT and CTC 
Transformers: A Review. In 2023 2nd International Conference 
on Electronics, Energy and Measurement (IC2EM) (Vol. 1, pp. 1-
8). IEEE. 
https://doi.org/10.1109/IC2EM59347.2023.10419784 
 
Diao, H., Zhang, Y., Ma, L., & Lu, H. (2021). Similarity reasoning 
and filtration for image-text matching. In Proceedings of the 
AAAI conference on artificial intelligence (Vol. 35, No. 2, pp. 
1218-1226). 
https://doi.org/10.1609/aaai.v35i9.16993 
 

https://arxiv.org/abs/2303.00628
https://openaccess.thecvf.com/content/WACV2021/html/Anwaar_Compositional_Learning_of_Image-Text_Query_for_Image_Retrieval_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Anwaar_Compositional_Learning_of_Image-Text_Query_for_Image_Retrieval_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Anwaar_Compositional_Learning_of_Image-Text_Query_for_Image_Retrieval_WACV_2021_paper.html
https://www.semanticscholar.org/paper/Audio-Visual-Arabic-Speech-(AVAS)-Database-for/dd80f3d19a4e3de9e9ef6dc3d23d52852a2ec23c
https://www.semanticscholar.org/paper/Audio-Visual-Arabic-Speech-(AVAS)-Database-for/dd80f3d19a4e3de9e9ef6dc3d23d52852a2ec23c
https://www.semanticscholar.org/paper/Audio-Visual-Arabic-Speech-(AVAS)-Database-for/dd80f3d19a4e3de9e9ef6dc3d23d52852a2ec23c
https://www.semanticscholar.org/paper/Audio-Visual-Arabic-Speech-(AVAS)-Database-for/dd80f3d19a4e3de9e9ef6dc3d23d52852a2ec23c
https://arxiv.org/abs/1805.06297
https://arxiv.org/abs/1910.05453
https://arxiv.org/abs/2110.10329
https://doi.org/10.1121/10.0005520
https://doi.org/10.1109/SpeD59241.2023.10314867
https://doi.org/10.1109/TIFS.2022.3170268
https://doi.org/10.1109/ICASSP43922.2022.9746449
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/TNNLS.2021.3118706
https://doi.org/10.1007/978-3-319-54184-6_6
https://doi.org/10.1109/ASRU51503.2021.9688253
https://openaccess.thecvf.com/content/CVPR2021/html/Chun_Probabilistic_Embeddings_for_Cross-Modal_Retrieval_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chun_Probabilistic_Embeddings_for_Cross-Modal_Retrieval_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Chun_Probabilistic_Embeddings_for_Cross-Modal_Retrieval_CVPR_2021_paper.html
https://doi.org/10.1109/IC2EM59347.2023.10419784
https://doi.org/10.1609/aaai.v35i9.16993


 
 

 

D. Karim, M. Abdelkarim / Journal of Applied Research and Technology 451-470 

 

Vol. 22, No. 3, June 2024    467 
 

Dong, X., Zhang, H., Zhu, L., Nie, L., & Liu, L. (2022). Hierarchical 
feature aggregation based on transformer for image-text 
matching. IEEE Transactions on Circuits and Systems for Video 
Technology, 32(9), 6437-6447. 
https://doi.org/10.1109/TCSVT.2022.3164230 
 
Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., & Brox, T. 
(2014). Discriminative unsupervised feature learning with 
convolutional neural networks. Advances in neural information 
processing systems, 27. 
 
Elrefaei, L. A., Alhassan, T. Q., & Omar, S. S. (2019). An Arabic 
visual dataset for visual speech recognition. Procedia 
Computer Science, 163, 400-409. 
https://doi.org/10.1016/j.procs.2019.12.122 
 
Fenghour, S., Chen, D., Guo, K., Li, B., & Xiao, P. (2021). Deep 
learning-based automated lip-reading: A survey. IEEE 
Access, 9, 121184-121205. 
https://doi.org/10.1109/ACCESS.2021.3107946 
 
Flamant, J., Miron, S., & Brie, D. (2021). A general framework for 
constrained convex quaternion optimization. IEEE 
Transactions on Signal Processing, 70, 254-267. 
https://doi.org/10.1109/TSP.2021.3137746 
 
Guo, Z., Zhao, J., Jiao, L., Liu, X., & Liu, F. (2021). A universal 
quaternion hypergraph network for multimodal video question 
answering. IEEE Transactions on Multimedia, 25, 38-49. 
https://doi.org/10.1109/TMM.2021.3120544 
 
Gupta, D. K., Arya, D., & Gavves, E. (2021). Rotation equivariant 
siamese networks for tracking. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (pp. 
12362-12371). 
 
Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality 
reduction by learning an invariant mapping. In 2006 IEEE 
computer society conference on computer vision and pattern 
recognition (CVPR'06) (Vol. 2, pp. 1735-1742). IEEE. 
https://doi.org/10.1109/CVPR.2006.100 
 
Harwath, D., Chuang, G., & Glass, J. (2018). Vision as an 
interlingua: Learning multilingual semantic embeddings of 
untranscribed speech. In 2018 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4969-
4973). IEEE. 
https://doi.org/10.1109/ICASSP.2018.8462396 
 
 

Harwath, D., Hsu, W. N., & Glass, J. (2019). Learning hierarchical 
discrete linguistic units from visually-grounded speech. arXiv 
preprint arXiv:1911.09602. 
https://arxiv.org/abs/1911.09602 
 
Ho, N. H., Yang, H. J., Kim, S. H., & Lee, G. (2020). Multimodal 
approach of speech emotion recognition using multi-level 
multi-head fusion attention-based recurrent neural 
network. IEEE Access, 8, 61672-61686. 
https://doi.org/10.1109/ACCESS.2020.2984368 
 
Ilharco, G., Zhang, Y., & Baldridge, J. (2019). Large-scale 
representation learning from visually grounded untranscribed 
speech. arXiv preprint arXiv:1909.08782. 
https://arxiv.org/abs/1909.08782v1 
 
Jiang, D., Li, W., Cao, M., Zou, W., & Li, X. (2020). Speech simclr: 
Combining contrastive and reconstruction objective for self-
supervised speech representation learning.  
https://arxiv.org/abs/2010.13991 
 
Kawakami, K., Wang, L., Dyer, C., Blunsom, P., & Oord, A. V. D. 
(2020). Learning robust and multilingual speech 
representations.  
https://arxiv.org/abs/2001.11128 
 
Kheddar, H., Himeur, Y., Al-Maadeed, S., Amira, A., & Bensaali, 
F. (2023). Deep transfer learning for automatic speech 
recognition: Towards better generalization. Knowledge-Based 
Systems, 277, 110851. 
https://doi.org/10.1016/j.knosys.2023.110851 
 
Kinoshita, K., Ochiai, T., Delcroix, M., & Nakatani, T. (2020). 
Improving noise robust automatic speech recognition with 
single-channel time-domain enhancement network. In ICASSP 
2020-2020 IEEE international conference on acoustics, speech 
and signal processing (ICASSP) (pp. 7009-7013). IEEE. 
https://doi.org/10.1109/ICASSP40776.2020.9053266 
 
Koguchi, Y., Oharada, K., Takagi, Y., Sawada, Y., Shizuki, B., & 
Takahashi, S. (2018). A mobile command input through vowel 
lip shape recognition. In Human-Computer Interaction. 
Interaction Technologies: 20th International Conference, HCI 
International 2018, Las Vegas, NV, USA, July 15–20, 2018, 
Proceedings, Part III 20 (pp. 297-305). Springer International 
Publishing. 
https://doi.org/10.1007/978-3-319-91250-9_2 
 
Kreplak López, M. (2020). Multimodal speech emotion 
recognition (Master's thesis, Universitat Politècnica de 
Catalunya). 
 

https://doi.org/10.1109/TCSVT.2022.3164230
https://proceedings.neurips.cc/paper/2014/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html
https://doi.org/10.1016/j.procs.2019.12.122
https://doi.org/10.1109/ACCESS.2021.3107946
https://doi.org/10.1109/TSP.2021.3137746
https://doi.org/10.1109/TMM.2021.3120544
https://openaccess.thecvf.com/content/CVPR2021/papers/Gupta_Rotation_Equivariant_Siamese_Networks_for_Tracking_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Gupta_Rotation_Equivariant_Siamese_Networks_for_Tracking_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Gupta_Rotation_Equivariant_Siamese_Networks_for_Tracking_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Gupta_Rotation_Equivariant_Siamese_Networks_for_Tracking_CVPR_2021_paper.pdf
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/ICASSP.2018.8462396
https://arxiv.org/abs/1911.09602
https://doi.org/10.1109/ACCESS.2020.2984368
https://arxiv.org/abs/1909.08782v1
https://arxiv.org/abs/2010.13991
https://arxiv.org/abs/2001.11128
https://doi.org/10.1016/j.knosys.2023.110851
https://doi.org/10.1109/ICASSP40776.2020.9053266
https://doi.org/10.1007/978-3-319-91250-9_2
http://hdl.handle.net/2117/336107
http://hdl.handle.net/2117/336107
http://hdl.handle.net/2117/336107


 
 

 

D. Karim, M. Abdelkarim / Journal of Applied Research and Technology 451-470 

 

Vol. 22, No. 3, June 2024    468 
 

Li, Q., Wang, B., & Melucci, M. (2019). CNM: An interpretable 
complex-valued network for matching. arXiv preprint 
arXiv:1904.05298. 
https://arxiv.org/abs/1904.05298 
 
Li, X., & Roth, D. (2002). Learning question classifiers. In COLING 
2002: The 19th International Conference on Computational 
Linguistics. 
 
Lin, J., Gan, C., & Han, S. (2019). Tsm: Temporal shift module for 
efficient video understanding. In Proceedings of the IEEE/CVF 
international conference on computer vision (pp. 7083-7093). 
 
Liu, C., Mao, Z., Liu, A. A., Zhang, T., Wang, B., & Zhang, Y. (2019). 
Focus your attention: A bidirectional focal attention network 
for image-text matching. In Proceedings of the 27th ACM 
international conference on multimedia (pp. 3-11). 
https://doi.org/10.1145/3343031.3350869 
 
Liu, H., Jin, S., & Zhang, C. (2018). Connectionist temporal 
classification with maximum entropy regularization. Advances 
in Neural Information Processing Systems, 31. 
 
Liu, Y., Guo, Y., Bakker, E. M., & Lew, M. S. (2017). Learning a 
recurrent residual fusion network for multimodal matching. 
In Proceedings of the IEEE international conference on 
computer vision (pp. 4107-4116). 
 
MacDonald, J. (2018). Hearing lips and seeing voices: the 
origins and development of the ‘McGurk Effect’and reflections 
on audio–visual speech perception over the last 40 
years. Multisensory Research, 31(1-2), 7-18. 
https://doi.org/10.1163/22134808-00002548 
 
Mercado III, E., Mantell, J. T., & Pfordresher, P. Q. (2014). 
Imitating sounds: A cognitive approach to understanding 
vocal imitation. Comparative Cognition & Behavior Reviews, 9. 
 
McCarty, T. L., & Coronel-Molina, S. M. (Eds.). (2016). Indigenous 
language revitalization in the Americas. New York: Routledge. 
 
Miech, A., Zhukov, D., Alayrac, J. B., Tapaswi, M., Laptev, I., & 
Sivic, J. (2019). Howto100m: Learning a text-video embedding 
by watching hundred million narrated video clips. 
In Proceedings of the IEEE/CVF international conference on 
computer vision (pp. 2630-2640). 
 
Mohamed, A., Lee, H. Y., Borgholt, L., Havtorn, J. D., Edin, J., 
Igel, C., ... & Watanabe, S. (2022). Self-supervised speech 
representation learning: A review. IEEE Journal of Selected 
Topics in Signal Processing, 16(6), 1179-1210. 
https://doi.org/10.1109/JSTSP.2022.3207050 

Monfort, M., Jin, S., Liu, A., Harwath, D., Feris, R., Glass, J., & 
Oliva, A. (2021). Spoken moments: Learning joint audio-visual 
representations from video descriptions. In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (pp. 14871-14881). 
 
Narayanan, S., Bresch, E., Ghosh, P. K., Goldstein, L., 
Katsamanis, A., Kim, Y., ... & Zhu, Y. (2011). A multimodal real-
time MRI articulatory corpus for speech research. In Twelfth 
Annual Conference of the International Speech Communication 
Association. 
 
Nguyen, T. S., Stüker, S., & Waibel, A. (2020). Super-human 
performance in online low-latency recognition of 
conversational speech. arXiv preprint arXiv:2010.03449. 
https://doi.org/10.48550/arXiv.2010.03449 
 
neață, D., & Cucu, H. (2022). Improving multimodal speech 
recognition by data augmentation and speech 
representations. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (pp. 4579-4588). 
 
Oord, A. V. D., Li, Y., & Vinyals, O. (2018). Representation 
learning with contrastive predictive coding. arXiv preprint 
arXiv:1807.03748. 
https://doi.org/10.48550/arXiv.1807.03748 
 
Parcollet, T., Ravanelli, M., Morchid, M., Linarès, G., Trabelsi, C., 
De Mori, R., & Bengio, Y. (2018a). Quaternion recurrent neural 
networks. arXiv preprint arXiv:1806.04418. 
https://doi.org/10.48550/arXiv.1806.04418 
 
Parcollet, T., Ravanelli, M., Morchid, M., Linarès, G., & De Mori, 
R. (2018b). Speech recognition with quaternion neural 
networks. arXiv preprint arXiv:1811.09678. 
https://doi.org/10.48550/arXiv.1811.09678 
 
Pasad, A., Shi, B., Kamper, H., & Livescu, K. (2019). On the 
contributions of visual and textual supervision in low-resource 
semantic speech retrieval. arXiv preprint arXiv:1904.10947. 
https://doi.org/10.48550/arXiv.1904.10947 
 
Peng, P., & Harwath, D. (2022a). Self-supervised representation 
learning for speech using visual grounding and masked 
language modeling. arXiv preprint arXiv:2202.03543. 
https://doi.org/10.48550/arXiv.2202.03543 
 
Peng, P., & Harwath, D. (2022b). Fast-slow transformer for 
visually grounding speech. In ICASSP 2022-2022 IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP) (pp. 7727-7731). IEEE. 
https://doi.org/10.1109/ICASSP43922.2022.9747103 

https://arxiv.org/abs/1904.05298
https://aclanthology.org/C02-1150.pdf
https://aclanthology.org/C02-1150.pdf
https://aclanthology.org/C02-1150.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Lin_TSM_Temporal_Shift_Module_for_Efficient_Video_Understanding_ICCV_2019_paper.pdf
https://doi.org/10.1145/3343031.3350869
https://proceedings.neurips.cc/paper_files/paper/2018/hash/e44fea3bec53bcea3b7513ccef5857ac-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/e44fea3bec53bcea3b7513ccef5857ac-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/e44fea3bec53bcea3b7513ccef5857ac-Abstract.html
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_a_Recurrent_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_a_Recurrent_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_a_Recurrent_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_a_Recurrent_ICCV_2017_paper.html
https://doi.org/10.1163/22134808-00002548
https://epe.lac-bac.gc.ca/100/201/300/comparative_cognition/v16/https@comparative-cognition-and-behavior-reviews.org/2014/vol9_mercado_mantell_pfordresher/default.htm
https://epe.lac-bac.gc.ca/100/201/300/comparative_cognition/v16/https@comparative-cognition-and-behavior-reviews.org/2014/vol9_mercado_mantell_pfordresher/default.htm
https://www.routledge.com/Indigenous-Language-Revitalization-in-the-Americas/Coronel-Molina-McCarty/p/book/9781138341852
https://www.routledge.com/Indigenous-Language-Revitalization-in-the-Americas/Coronel-Molina-McCarty/p/book/9781138341852
https://openaccess.thecvf.com/content_ICCV_2019/papers/Miech_HowTo100M_Learning_a_Text-Video_Embedding_by_Watching_Hundred_Million_Narrated_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Miech_HowTo100M_Learning_a_Text-Video_Embedding_by_Watching_Hundred_Million_Narrated_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Miech_HowTo100M_Learning_a_Text-Video_Embedding_by_Watching_Hundred_Million_Narrated_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Miech_HowTo100M_Learning_a_Text-Video_Embedding_by_Watching_Hundred_Million_Narrated_ICCV_2019_paper.pdf
https://doi.org/10.1109/JSTSP.2022.3207050
https://openaccess.thecvf.com/content/CVPR2021/papers/Monfort_Spoken_Moments_Learning_Joint_Audio-Visual_Representations_From_Video_Descriptions_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Monfort_Spoken_Moments_Learning_Joint_Audio-Visual_Representations_From_Video_Descriptions_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Monfort_Spoken_Moments_Learning_Joint_Audio-Visual_Representations_From_Video_Descriptions_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Monfort_Spoken_Moments_Learning_Joint_Audio-Visual_Representations_From_Video_Descriptions_CVPR_2021_paper.pdf
https://sail.usc.edu/span/pdfs/narayanan2011multimodal.pdf
https://sail.usc.edu/span/pdfs/narayanan2011multimodal.pdf
https://sail.usc.edu/span/pdfs/narayanan2011multimodal.pdf
https://sail.usc.edu/span/pdfs/narayanan2011multimodal.pdf
https://doi.org/10.48550/arXiv.2010.03449
https://openaccess.thecvf.com/content/CVPR2022W/MULA/papers/Oneata_Improving_Multimodal_Speech_Recognition_by_Data_Augmentation_and_Speech_Representations_CVPRW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022W/MULA/papers/Oneata_Improving_Multimodal_Speech_Recognition_by_Data_Augmentation_and_Speech_Representations_CVPRW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022W/MULA/papers/Oneata_Improving_Multimodal_Speech_Recognition_by_Data_Augmentation_and_Speech_Representations_CVPRW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022W/MULA/papers/Oneata_Improving_Multimodal_Speech_Recognition_by_Data_Augmentation_and_Speech_Representations_CVPRW_2022_paper.pdf
https://doi.org/10.48550/arXiv.1807.03748
https://doi.org/10.48550/arXiv.1806.04418
https://doi.org/10.48550/arXiv.1811.09678
https://doi.org/10.48550/arXiv.1904.10947
https://doi.org/10.48550/arXiv.2202.03543
https://doi.org/10.1109/ICASSP43922.2022.9747103


 
 

 

D. Karim, M. Abdelkarim / Journal of Applied Research and Technology 451-470 

 

Vol. 22, No. 3, June 2024    469 
 

Polyak, A., Adi, Y., Copet, J., Kharitonov, E., Lakhotia, K., Hsu, W. 
N., ... & Dupoux, E. (2021). Speech resynthesis from discrete 
disentangled self-supervised representations. arXiv preprint 
arXiv:2104.00355. 
https://doi.org/10.48550/arXiv.2104.00355 
 
Potamianos, G., Neti, C., Gravier, G., Garg, A., & Senior, A. W. 
(2003). Recent advances in the automatic recognition of 
audiovisual speech. Proceedings of the IEEE, 91(9), 1306-1326. 
https://doi.org/10.1109/JPROC.2003.817150 
 
Quan, Y., Chen, Y., Shao, Y., Teng, H., Xu, Y., & Ji, H. (2021). Image 
denoising using complex-valued deep CNN. Pattern 
Recognition, 111, 107639. 
https://doi.org/10.1016/j.patcog.2020.107639 
 
Razavi, A., Van den Oord, A., & Vinyals, O. (2019). Generating 
diverse high-fidelity images with vq-vae-2. Advances in neural 
information processing systems, 32. 
 
Reichert, D. P., & Serre, T. (2013). Neuronal synchrony in 
complex-valued deep networks. arXiv preprint arXiv:1312.6115. 
https://doi.org/10.48550/arXiv.1312.6115 
 
Riviere, M., Joulin, A., Mazaré, P. E., & Dupoux, E. (2020). 
Unsupervised pretraining transfers well across languages. 
In ICASSP 2020-2020 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP) (pp. 7414-
7418). IEEE. 
https://10.1109/ICASSP40776.2020.9054548 
 
Sadhu, S., He, D., Huang, C. W., Mallidi, S. H., Wu, M., Rastrow, 
A., ... & Maas, R. (2021). Wav2vec-c: A self-supervised model for 
speech representation learning. arXiv preprint 
arXiv:2103.08393. 
https://doi.org/10.48550/arXiv.2103.08393 
 
Sanabria, R., Waters, A., & Baldridge, J. (2021). Talk, don't write: 
A study of direct speech-based image retrieval. arXiv preprint 
arXiv:2104.01894. 
https://doi.org/10.48550/arXiv.2104.01894 
 
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A 
unified embedding for face recognition and clustering. 
In Proceedings of the IEEE conference on computer vision and 
pattern recognition (pp. 815-823). 
 
Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). 
wav2vec: Unsupervised pre-training for speech 
recognition. arXiv preprint arXiv:1904.05862. 
https://doi.org/10.48550/arXiv.1904.05862 
 

Shi, B., Hsu, W. N., Lakhotia, K., & Mohamed, A. (2022a). 
Learning audio-visual speech representation by masked 
multimodal cluster prediction. arXiv preprint arXiv:2201.02184. 
https://doi.org/10.48550/arXiv.2201.02184 
 
Shi, B., Hsu, W. N., & Mohamed, A. (2022b). Robust self-
supervised audio-visual speech recognition. arXiv preprint 
arXiv:2201.01763. 
https://doi.org/10.48550/arXiv.2201.01763 
 
Song, Y., & Soleymani, M. (2019). Polysemous visual-semantic 
embedding for cross-modal retrieval. In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (pp. 1979-1988). 
 
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to 
sequence learning with neural networks. Advances in neural 
information processing systems, 27. 
 
Teixeira, F. L., Soares, S. P., Abreu, J. L., Oliveira, P. M., & 
Teixeira, J. P. (2024). Comparative Analysis of Windows for 
Speech Emotion Recognition Using CNN. In International 
Conference on Optimization, Learning Algorithms and 
Applications (pp. 233-248). Springer, Cham. 
https://doi.org/10.1007/978-3-031-53025-8_17 
 
Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, 
S., Santos, J. F., ... & Pal, C. J. (2017). Deep complex 
networks. arXiv preprint arXiv:1705.09792. 
https://doi.org/10.48550/arXiv.1705.09792 
 
Tu, Y., Lin, Y., Hou, C., & Mao, S. (2020). Complex-valued 
networks for automatic modulation classification. IEEE 
Transactions on Vehicular Technology, 69(9), 10085-10089. 
https://doi.org/10.1109/TVT.2020.3005707 
 
Tüske, Z., Saon, G., Audhkhasi, K., & Kingsbury, B. (2020). Single 
headed attention based sequence-to-sequence model for 
state-of-the-art results on switchboard. arXiv preprint 
arXiv:2001.07263. 
https://doi.org/10.48550/arXiv.2001.07263 
 
Wang, L., & Hasegawa-Johnson, M. (2020). A DNN-HMM-DNN 
hybrid model for discovering word-like units from spoken 
captions and image regions. In Interspeech. 
 
Wang, N., Wang, Z., Xu, X., Shen, F., Yang, Y., & Shen, H. T. (2021). 
Attention-based relation reasoning network for video-text 
retrieval. In 2021 IEEE International Conference on Multimedia 
and Expo (ICME) (pp. 1-6). IEEE. 
https://doi.org/10.1109/ICME51207.2021.9428215 
 

https://doi.org/10.48550/arXiv.2104.00355
https://doi.org/10.1109/JPROC.2003.817150
https://doi.org/10.1016/j.patcog.2020.107639
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
https://doi.org/10.48550/arXiv.1312.6115
https://10.0.4.85/ICASSP40776.2020.9054548
https://doi.org/10.48550/arXiv.2103.08393
https://doi.org/10.48550/arXiv.2104.01894
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf
https://doi.org/10.48550/arXiv.1904.05862
https://doi.org/10.48550/arXiv.2201.02184
https://doi.org/10.48550/arXiv.2201.01763
https://openaccess.thecvf.com/content_CVPR_2019/papers/Song_Polysemous_Visual-Semantic_Embedding_for_Cross-Modal_Retrieval_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Song_Polysemous_Visual-Semantic_Embedding_for_Cross-Modal_Retrieval_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Song_Polysemous_Visual-Semantic_Embedding_for_Cross-Modal_Retrieval_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Song_Polysemous_Visual-Semantic_Embedding_for_Cross-Modal_Retrieval_CVPR_2019_paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1007/978-3-031-53025-8_17
https://doi.org/10.48550/arXiv.1705.09792
https://doi.org/10.1109/TVT.2020.3005707
https://doi.org/10.48550/arXiv.2001.07263
https://par.nsf.gov/biblio/10273579
https://par.nsf.gov/biblio/10273579
https://par.nsf.gov/biblio/10273579
https://doi.org/10.1109/ICME51207.2021.9428215


 
 

 

D. Karim, M. Abdelkarim / Journal of Applied Research and Technology 451-470 

 

Vol. 22, No. 3, June 2024    470 
 

Wang, Y., Kou, K. I., Zou, C., & Tang, Y. Y. (2021). Robust sparse 
representation in quaternion space. IEEE Transactions on 
Image Processing, 30, 3637-3649. 
https://doi.org/10.1109/TIP.2021.3064193 
 
Wang, W., Arora, R., Livescu, K., & Bilmes, J. A. (2015). 
Unsupervised learning of acoustic features via deep canonical 
correlation analysis. In 2015 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP) (pp. 4590-
4594). IEEE. 
https://doi.org/10.1109/ICASSP.2015.7178840 
 
Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., ... & Qiao, Y. 
(2023). Internimage: Exploring large-scale vision foundation 
models with deformable convolutions. In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (pp. 14408-14419). 
 
Wei, J., Yang, Y., Xu, X., Zhu, X., & Shen, H. T. (2021). Universal 
weighting metric learning for cross-modal retrieval. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, 44(10), 6534-6545. 
https://doi.org/10.1109/TPAMI.2021.3088863 
 
Wu, J., Wu, C., Lu, J., Wang, L., & Cui, X. (2021). Region 
reinforcement network with topic constraint for image-text 
matching. IEEE Transactions on Circuits and Systems for Video 
Technology, 32(1), 388-397. 
https://doi.org/10.1109/TCSVT.2021.3060713 
 
Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, 
A., ... & Zweig, G. (2016). Achieving human parity in 
conversational speech recognition. arXiv preprint 
arXiv:1610.05256. 
https://doi.org/10.48550/arXiv.1610.05256 
 
Xu, B., Lu, C., Guo, Y., & Wang, J. (2020). Discriminative multi-
modality speech recognition. In Proceedings of the IEEE/CVF 
conference on Computer Vision and Pattern Recognition (pp. 
14433-14442). 
 
Yang, S., Li, Q., Li, W., Li, X., & Liu, A. A. (2022). Dual-level 
representation enhancement on characteristic and context for 
image-text retrieval. IEEE Transactions on Circuits and Systems 
for Video Technology, 32(11), 8037-8050. 
https://doi.org/10.1109/TCSVT.2022.3182426 
 
Zhang, A., Tay, Y., Zhang, S., Chan, A., Luu, A. T., Hui, S. C., & Fu, 
J. (2021). Beyond fully-connected layers with quaternions: 
Parameterization of hypercomplex multiplications with $1/n $ 
parameters. arXiv preprint arXiv:2102.08597. 
https://doi.org/10.48550/arXiv.2102.08597 

Zhang, T., He, L., Li, X., & Feng, G. (2021). Efficient end-to-end 
sentence-level lipreading with temporal convolutional 
networks. Applied Sciences, 11(15), 6975. 
https://doi.org/10.3390/app11156975 
 
 

https://doi.org/10.1109/TIP.2021.3064193
https://doi.org/10.1109/ICASSP.2015.7178840
https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_InternImage_Exploring_Large-Scale_Vision_Foundation_Models_With_Deformable_Convolutions_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_InternImage_Exploring_Large-Scale_Vision_Foundation_Models_With_Deformable_Convolutions_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_InternImage_Exploring_Large-Scale_Vision_Foundation_Models_With_Deformable_Convolutions_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_InternImage_Exploring_Large-Scale_Vision_Foundation_Models_With_Deformable_Convolutions_CVPR_2023_paper.pdf
https://doi.org/10.1109/TPAMI.2021.3088863
https://doi.org/10.1109/TCSVT.2021.3060713
https://doi.org/10.48550/arXiv.1610.05256
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Discriminative_Multi-Modality_Speech_Recognition_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Discriminative_Multi-Modality_Speech_Recognition_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Discriminative_Multi-Modality_Speech_Recognition_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Discriminative_Multi-Modality_Speech_Recognition_CVPR_2020_paper.pdf
https://doi.org/10.1109/TCSVT.2022.3182426
https://doi.org/10.48550/arXiv.2102.08597
https://doi.org/10.3390/app11156975

