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Abstract: As a cognitive process, motor imagery (MI) includes simulating motor actions mentally in 
the absence of physical movement. It has a variety of uses, including assistive technologies, medical 
diagnosis and rehabilitation. Motor imagery paradigms are utilized in conjunction with brain computer 
interfaces (BCI), which use electroencephalographic recordings (EEG) because of their high temporal 
resolution, cheap cost, portability, and non-invasiveness. Brain computer interfaces apply motor 
imagery paradigms by directly connecting the human brain to a computer. However, because scalp 
readings are non-stationary and non-linear, real-time processing of electroencephalographic 
recordings signals is challenging. Furthermore, in order to minimize the impact of outside noise and 
artifacts, clinical motor imagery methods must be implemented under carefully monitored laboratory 
conditions. A deep learning model-based approach is shown for analyzing electroencephalographic 
recordings data and giving real-time feedback to a brain computer interface. Generally, the system’s 
design is portable and low-cost, allowing the motor imagery paradigm to perform under poorly 
regulated sampling conditions. 
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1. Introduction 
 
Brain-computer interface (BCI) systems operate under 
conditions of real-time interactions and response immediacy, 
demanding electrophysiological signals to be acquired and 
processed with low latency for effective communication 
between processing computers and elicited brain activity. BCI 
devices are often used to obtain encoded signals containing 
user intention of movement execution through the motor 
imagery (MI) paradigm, which has proven to be more effective 
at engaging cortical motor areas and related networks to a 
significant extent. Virtual reality, neurorehabilitation, and 
robotic device control are just a few of the many uses for MI 
BCI systems. However, online BCI systems, such as MI-based 
control systems for exoskeletons, may need to translate brain 
signals quickly and precisely into physical actions (Choi et al., 
2020; Cho et al., 2021). In this regard, latency, which becomes 
a deterministic factor in these systems' effectiveness, is 
influenced by the system’s hardware, software, and firmware, 
as seen in research utilizing platforms such as BCI2000 and 
g.USBamp. As a result, MI BCI systems are subject to variations 
in latency that impact user-computer interactions (Schalk et 
al., 2004; Wilson et al., 2010). 
     On the other hand, offline BCI systems are also widely used 
to conduct post-hoc brain signal analysis, allowing more 
computationally intensive algorithms to train and improve 
classification models. These systems are essential for the 
research and development of new classification and feature 
extraction techniques, such as deep learning (DL) and more 
advanced feature extraction to improve the decoding of 
neural activity (An et al., 2014; Echtioui et al., 2021; 
Schirrmeister et al., 2017). Yet, the need for a balance between 
computational efficiency and precision is highlighted by the 
fact that while these methods improve precision, they also 
raise the costs and computational power required 
(Changoluisa et al., 2020; Netzer et al., 2020). 

Consequently, specific BCI frameworks for integrating EEGNet 
and other deep learning algorithms are pushing innovation in 
EEG signal classification and feature extraction. Moreover, 
including metrics for neural networks in BCI control systems for 
robotics has proven to be a promising area of research. Overall, 
the adoption of these algorithms devoted to MI-BCIs systems has 
allowed more precise decoding of a subject’s thoughts, with 
studies like NeuroGrasp, which integrate EEG and EMG signals for 
the classification of different kinds of hand grips (Cho et al., 2021). 
However, the implementation of these techniques in real-time 
still needs to be improved due to the time required to train these 
deep learning models. 

This work develops a real-time feedback mechanism for a 
BCI by analyzing EEG data using a deep learning model. 
Experiments conducted on a real-world application task  
 

demonstrate that the low-cost and portable design of the 
system enables the MI paradigm to function well in situations 
with poorly controlled sampling. 

 
2. Materials and methods  

 
2.1. Architecture of BCI-based system for EEG Analysis 
Data Acquisition System: This Python module, integrated 
within SDK vendors, enables data acquisition using OpenBCI 
Cyton boards with driver compatibility. These versatile boards 
support multiple modes of electrode interconnection, 
including monopolar, bipolar, and sequential, making them 
suitable for a wide range of research and development 
applications. The flexibility in electrode configuration allows 
researchers to tailor the setup according to specific 
experimental needs. Additionally, the system’s capacity to 
expand up to 16 monopolar channels provides greater 
flexibility in data sensing, accommodating complex 
experiments that require extensive monitoring. 

The acquisition system not only captures data efficiently 
but also seamlessly integrates an acquisition interface within 
the overall framework. This interface facilitates real-time data 
visualization and immediate feedback, enhancing the user 
experience during data collection. The integration supports 
the creation of a comprehensive database that stores all 
relevant metadata, including subject information, 
experimental conditions, and sensor configurations. 
Automatically synchronized markers ensure precise 
alignment of events and recorded signals, which is crucial for 
accurate data analysis. Furthermore, the system is designed to 
be robust and scalable, capable of handling large datasets and 
adapting to increasing data acquisition demands. This 
robustness ensures reliability and consistency across various 
experimental setups and conditions. 
Communication module: The module for conveying 
information is mainly built on Apache Kafka, serving as the 
backbone for supporting a distributed communication system 
across the entire architecture. Even though analyzing EEG 
neural responses requires fast and reliable data transmission, 
this module also supports slow communication via 
WebSockets. Thus, using a Wi-Fi shield, the maximum sample 
rate can be increased from 250 Hz to 16 kHz for eight channels. 
Simple read-and-write commands perform communication 
between the computer and the board. Also, the module 
supports Message Queue Telemetry Transport (MQTT) and 
TCP, with TCP being the preferred choice due to its simplicity. 
As regards OpenBCI, it is based on ADS1299, a 24-bit analog-
to-digital converter from Texas Instruments. In addition to 
offering flexibility in sampling rate, number of channels, and 
protocols, the communication module ensures that EEG data 
blocks will be ready within a time less than their duration. 
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Figure 1. OpenBCI and Raspberry pi 4 communication system. 
 

Distributed module for stimuli delivery: The module delivers 
elicited stimuli through a remote presentation system based 
on a conventional web application developed using HTML, 
CSS, and the JavaScript Brython-Radiant framework. This 
web-based approach ensures compatibility across different 
devices and platforms, facilitating widespread accessibility 
and ease of use. Additionally, integrated development 
environments (IDEs) provide easy-to-use APIs for creating 
custom visualizations, allowing researchers to tailor the 
presentation of stimuli to specific experimental requirements. 
These APIs enable the development of sophisticated visual 
stimuli with minimal coding effort, enhancing the flexibility 
and functionality of the system. The main interface of the 
module incorporates a mechanism for calculating and 
correcting latency during stimulus delivery. This latency 
correction mechanism is crucial for ensuring precise timing 
and synchronization of stimuli, which is essential for 
experiments that require exact temporal control. The system 
continuously monitors latency and applies real-time 
corrections to maintain accuracy. Furthermore, the interface 
allows for detailed logging and analysis of stimulus 
presentation data, providing researchers with comprehensive 
insights into the timing and effectiveness of their stimuli. This 
robust and scalable design ensures reliable performance 
across various experimental conditions and setups, making 
the module a valuable tool for researchers in diverse fields. 
Real-time EEG-NET BCI processor: The EEG-NET Data 
Processing Block within the BCI framework is a pivotal 
element for real-time EEG data analysis and closed-loop BCI 
applications. Utilizing a convolutional neural network (CNN) 
architecture optimized explicitly for EEG signals, this block is 
implemented in Python and leverages machine learning 
frameworks like TensorFlow or PyTorch. It integrates with the 
existing Data Acquisition System and Communication Module, 
receiving raw or preprocessed EEG data via Apache Kafka 
streams. The real-time processing capabilities of this block 
enable immediate feedback, thereby closing the loop in BCI 
applications. This property facilitates various real-time 
neurophysiological interventions, from neurofeedback to 
adaptive BCI systems. This module can be tailored to meet the 
needs of a broad class of experimental setups thanks to its 
modularity and flexibility in configuration. 
Deep Learning-based EEGnet framework: For supporting EEG 
analysis with deep learners, the compact EEGNet  
 

convolutional network provides convolutional kernel 
connectivity between acquired neural responses and 
extracted feature maps, enabling its use in different MI 
paradigms. Figure 2 shows that the EEGNet pipeline initiates 
with a temporal convolution to learn frequency filters, 
followed by a depth-wise convolution connected to each 
feature map. As a result, frequency-specific spatial filters can 
be learned. Further, the separable convolution combines a 
depth-wise convolution, which infers a temporal summary for 
each feature map individually, followed by a point-wise 
convolution, which identifies how to mix the feature maps 
optimally for class-membership prediction. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. EEGNet Scheme. First column: input EEG. Second 
column: temporal convolution (filter bank). Third and fourth 

columns: spatial filtering convolution. Fifth and sixth columns: 
temporal summary. Last column: output label prediction. 

 
2.2. Data Acquisition of EEG neural responses. The 
following procedures are developed for the acquisition 
of neural activity: 
Electrode deployment over the scalp: 

● At the beginning of the data acquisition procedure, 
the subject’s hair must be washed with salt-free shampoo or 
coconut soap to cleanse it thoroughly. Then, the hair must 
be adequately dried with a towel and a hairdryer adjusted to 
room temperature. 

● The cap is positioned on the subject so the reference 
electrode CZ is at the center of the head (The operating EEG 
montage is 10-20). The ears and nose, seen from above, are 
used as references, as shown in Figure 3. 

 

 
 

Figure 3. Rear view of electrode cap. 
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● Once the cap is correctly positioned on the subject’s 
head, the "Electro-gel" substance is applied with a syringe to 
ensure an adequate amount between the electrode and the 
scalp. It is worth noting that care must be taken to ensure that 
the gel from one electrode does not mix with that of another, 
as this can affect measurements of electrical signals on the 
scalp. 

● The acquisition of elicited EEG neural activity can be 
performed after completion of the electrode placement and 
impedance calibration (this procedure is described below). 
Finally, use a brush and alcohol or a cotton swab to remove 
excess gel from the electrodes on the cap and allow it to dry. 
Impedance Calibration of Electrode-Montages: The impedance 
measurement is performed by simultaneously feeding a 6 nA 
alternate current at 31.2 Hz to the whole electrode 
arrangement. The activated electrodes are set up in the 
correct mode following the lead-off-impedance method 
(Cardona Álvarez, 2022). 

After ensuring the Cyton board is correctly plugged in, a 10K 
potentiometer is connected between the N input (bottom) of 
channel one (1) and the SRB2 device (bottom). Note that this 
pin must be turned on if calibration is performed directly on 
the head instead of a potentiometer. Otherwise, the BIAS pin 
will not be used. 

Further, the actual value of the impedance Z is computed 
as follows: 

 

𝑍𝑍 = 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 
𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅

= 𝜇𝜇𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 ∗10−6∗√2
6 ∗ 10−9

    (1) 

 
Where 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅  is he RMS voltage, usually computed through 

the peak-to-peak voltage as 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑝𝑝𝑝𝑝/2√2, and  𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 is the 
injected current to the ADS129 device and fixed to 6/2√2 𝑛𝑛𝑛𝑛 
at 31.2 Hz. 

Since the Cyton board holds a 2.2 kOhm resistor connected 
in series with each electrode, this value must be removed to 
avoid biased measurements of the Z impedance. Then, after 
the electrode-subject impedance is emptied, the impedance 
range of 1–10 kOhm is set to ensure the amplitude of either 
recording activity, EEG or EOG, does not change during 
measurements (Shad et al., 2020). 

The above-described impedance calibration is automated 
over the entire EEG montage using the interface displayed in 
Figure 3, coloring in green those electrodes with impedance 
values within the proper range. In contrast, the wrong 
electrodes are colored in red. In the latter case, the cap should 
be adjusted or more gel applied, ensuring no contact between 
the electrodes during measurement. 

 
 
 
 

3. Experimental set-up 
 
As illustrated in Figure 4, we assess the developed BCI-based 
Real-Time system for Implementing Deep Learning 
Frameworks for a specific instance of the MI paradigm. The 
system evaluation comprises the following stages: i) Database 
collection of four classes of MI data, ii) Testing on real-time 
processing of the BCI system for classification of MI tasks. 

 

 
 

Figure 4. Experimental Set-up. 
 

Database collection of 4-Class MI neural responses 
The system was configured for 16 channels, with a sampling 
rate of 1000 samples per second per channel, with a 
monopolar montage following the standard 10-20 montage. 
The data was acquired on ten subjects performing four MI 
tasks (left-hand, right-hand, foot, and tongue). Each subject 
would perform these tasks upon an arrow appearing onscreen 
(up arrow for the tongue, left side arrow for the left hand, right 
side arrow for the right hand, and down arrow for the feet), 
with an asynchronous pause (between 2000 and 3000 ms) 
between each cue, as adjusted in Cho et al. (2017). 

 
3.1. Preprocessing stage 
The preprocessing step is as follows (Lawhern et al., 2018): 
We load subject recordings using a custom database loader 
module: https://github.com/UN-GCPDS/python-
gcpds.databases. The trial is set to a zero-amplitude signal 
upon a system failure during the acquisition (note that these 
trials are discarded at this stage). Next, each properly acquired 
signal is downsampled from 512 Hz to 128 Hz using the Fourier 
method provided by the SciPy signal resample function: 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.resample.html. Then, each time series trial is filtered 
between [4, 40] Hz, using a fifth-order Butterworth bandpass 
filter. In addition, we clip the records within the range of [0.5 - 
2.5] s after the stimulus onset for the GigaScience database 
and from 2.5 s to 4.5 s for the BCI-Framework-Unal database, 
retaining only the information corresponding to the MI task. 
Since only the MI time segment will be considered, we assume 
just the signal stationarity within this interval. 
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With this straightforward preprocess, we aim to investigate five 
distinct brain rhythms within the 4 to 40 Hz range: theta, alpha, 
and three beta waves. Theta waves (4-8 Hz), located in the 
hippocampus and various cortical structures, are believed to 
indicate an "online state" and are associated with sensorimotor 
and mnemonic functions (Abhang et al., 2016). In contrast, 
sensory stimulation and movements suppress alpha-band 
activity (8–13 Hz), modulated by attention, working memory, and 
mental tasks, potentially acting as a marker for higher motor 
control functions. This range also comprises three types of beta 
waves: low beta waves (12–15 Hz), or "beta one" waves, mainly 
associated with focused and introverted concentration; mid-
range beta waves (15–20 Hz), or "beta two" waves, linked to 
increased energy, anxiety, and performance; and high beta waves 
(18–40 Hz), or "beta three" waves, associated with significant 
stress, anxiety, paranoia, high energy, and high arousal. 

 
4. Results  

 
4.1. Real-time classification of MI tasks 
The comparative analysis in Figure 5 between CSP (Cho et al., 
2017) and EEGNet (Lawhern et al., 2018) methods for EEG 
signal classification has indicated a substantial average 
increase of 21.6% in accuracy for EEGNet, with CSP yielding an 
accuracy of 56.54% ± 8.78 and EEGNet 68.09% ± 10.73. 
Nonetheless, the study by Tobón-Henao et al. (2022) suggests 
a decrease in accuracy for some subjects, which may be 
attributed to a generalized signal-to-noise ratio reduction 
approach that does not account for individual signal quality, 
negatively impacting those with superior EEG signals. This 
issue results in a tailored application of noise reduction 
techniques to preserve the integrity of high-quality EEG signals 
across subjects. 

 

 
 

Figure 5. Comparison of methods, CSP and EEGNet,  
with our own database. 

 
Training and measured latency. An EEGNet model is trained to 
classify EEG signals in real-time for inputting commands using 
MI. In the test environment, the subject controls a video game 
car from Car-Racing 
(https://www.gymlibrary.dev/environments/box2d/car_racin

g/). The car constantly moves forward, and the user must steer 
left or right to stay on the track. The acquisition, 
preprocessing, and training are all done in real-time. 

Given that the model requires a time window of 2500 ms, 
corresponding to the MI window, the system was configured 
to classify the user’s EEG every 500 ms. Latency is the time 
between acquiring the last 100 ms packet and the 
classification. This latency includes everything from 
deserialization, transmission, and reading carried out by the 
BCI-Framework to the time it takes for the model to classify the 
signals successfully. 

In order to measure latency, we used the predictor from the 
trained EEGNet model. This model was trained using an MI test 
with a stimulus duration of 3000 ms and an asynchronous 
stimulus onset ranging from 1000 to 1500 ms; the MI duration 
was trimmed to 2500 ms. For the validation test, a stimulus of 
10000 ms with an asynchronous onset of 3000 ms was used, 
ensuring that the same subject, protocol, and paradigm were 
applied in different sessions and on different days. In Figure 
6a, it is observable that some latencies exceed 20 seconds, 
which is attributable to transmission errors and a no-packet-
loss policy. Figure 6b displays the expected latencies with a 
value of 150 ms from the fourth data block processed and a 
jitter affected by 100 ms packetization used during 
transmission. 

 

 
 

 
 

Figure 6. Measurement of latencies and their deviation: (upper) 
Latency for 6000 consecutive packets, (lower) The standard 

deviation (jitter) remains within a range of about 150 ms. 
 
According to the BCI-Framework, the expected latency 

should be 456 ms, corresponding to the first four 100 ms 
packets and the preprocessing of the entire window. As seen 
in Figure 6a, the latency sometimes exceeds the expected 
value of 456 ms. This result is due to the intermittencies 
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between packets and TCP’s no data loss policy. However, in 
Figure 6b, we can see how, ultimately, the latencies cluster 
around this expected value. 
Offline inference over sliding windows. To examine the model’s 
behavior on a constant flow of data, as shown in Figure 7a, an 
experiment was conducted in which MI data was compiled over 
ten seconds, preceded by three seconds of non-MI activity. This 
setup was chosen to simulate a more realistic scenario where 
the model needs to distinguish between periods of activity and 
inactivity. It is worth noting that the reference point (t=0) is 
located at the start of the MI task segment, providing a clear 
demarcation for evaluating the model’s performance. This 
reference point serves as a crucial marker, enabling a precise 
analysis of how the model transitions from non-MI to MI data 
and its subsequent impact on prediction accuracy. The 
experiment consisted of shifting a 2s-window every ten 
samples. This approach allowed for a detailed assessment of 
the model’s temporal dynamics and its ability to adapt to 
changing data patterns. The blue line in the graph represents 
the model’s average confidence (as a supervised task) in making 
correct predictions, providing a quantitative measure of its 
reliability over time. The shaded area around the blue line 
indicates the standard deviation, offering insights into the 
variability and consistency of the model’s predictions. 

The accuracy of the model increases as the sliding window 
reaches the MI segment, reaching its peak when it overlaps the 
same time segment used to train the model (shown in pink). This 
peak accuracy indicates the model’s ability to generalize well 
from training data to real-world scenarios. Figure 7a represents 
the accuracy for the supervised task, whereas Figure 7b delivers 
the accuracy for the unsupervised task, highlighting the 
differences in model performance under varying conditions. 

 

 
 
Figure 7. Real-time classification analysis using sliding windows, 

depicting individual classification percentages, moving average, and 
standard deviation, highlighting the model’s training period: (upper) 
Sliding Window Classification, (lower) Unsupervised Sliding Window 

Classification. 

From the previous findings, we hypothesize that the 
validation threshold can be adequately fixed to generate 
control signals for a given application by measuring the 
model’s accuracy and placing the reference point at the end 
of the MI segment, just like an actual prediction environment. 
This hypothesis suggests that by fine-tuning the validation 
threshold, it is possible to enhance the model’s practical utility 
in real-time applications. Placing the reference point at the 
end of the MI segment simulates a real prediction environment 
where timely and accurate control signals are crucial. This 
approach not only improves the model’s performance but 
also ensures that the generated control signals are reliable 
and can be effectively used in various applications, such as 
BCIs or other neurotechnological systems. 

 
5. Conclusions  

 
For illustration purposes, some BCI real-time systems for AI are 
shown in Figure 1 and detailed in Table 1. Most of these 
systems do not share information about latency or how to 
measure it, and they all have different sample frequency and 
channel settings (see Table 1 for system configurations). 
     High latency issues are critical in real-time data processing 
as they can severely disrupt the timeliness and reliability of 
system responses. In BCIs, where immediate feedback is 
essential, elevated latencies may lead to mismatches between 
user intention and system action, undermining the 
effectiveness and user experience of handling BCI devices. 
Therefore, minimizing latency is imperative to maintain the 
seamless integration of such systems with user activities, 
ensuring their practical applicability and user acceptance. 
 
Table 1. Different configurations of BCI systems that utilise artificial 

intelligence and are deployed in real time. 
 

BCI System Fs Channels Latency 
Hybrid BCI + 
actiCHamp  
(Choi et al., 2020) 

500 Hz 31 ±1020 
ms 

NeuroGrasp + 
BrainAmp  
(Cho et al., 2021) 

1000 Hz 20  - 

BCI-reinforcement 
learning + 
g.USBamp  
(Pires et al., 2022) 

256 Hz 16  - 

Functional Brain 
network + UE-16B 
(Ai et al., 2019) 

1000 Hz 16  - 

 BCI-Framework 
EEGNet (Ours)   

1000 Hz 16  ±150 ms 
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      The capability to implement our system in real-time and 
close the feedback loop stands as a significant advantage. It 
allows instant interaction between the user and system, 
facilitating a more intuitive and efficient BCI experience. This 
immediacy is paramount, particularly in applications 
requiring rapid decision-making, as it ensures that the system 
can keep pace with the user’s cognitive processes, resulting in 
a harmonious and effective integration of technology and 
human intent. 
     Overall, we present a low-cost, portable system for EEG-
based BCI-MI real-time applications. We performed all the 
stages of a closed-loop system, from the data acquisition to 
the inference of commands utilizing Machine Learning, while 
also handling latency for validation. 

● Our low-cost EEG database presents competitive 
results compared to publicly available datasets. 

● Regarding offline training on the GIGAScience and the 
BCI-Framework Unal databases under our approach, its 
capacity for more precise discrimination of MI data becomes 
evident compared to traditional techniques such as CSP. This 
improvement is clearer for individuals with poor to moderate 
MI skills. 

● Online training shows how our model can run in real-
time settings, guaranteeing a proper response in an 
opportune manner for the user. 
     Offline classification with sliding windows showed 
promising results, considering the variability from the 
experiment being conducted in a different session. 
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