
  

 

 

Journal of Applied Research and Technology 
 

www.jart.icat.unam.mx 

Journal of Applied Research and Technology 22 (2024) 327-335 

Original 

Controlling the Furuta pendulum: Proof of concept through 
virtual prototyping  

 
L. R. C. Mouraa    M. A. F. Montezumaa    M. Mendonçaa     

R. H. C. Paláciosa    C. R. A. Oliveiraa    A. N. Vargasa    M. A. Diopb    R. Breganonc*     
 

aUniversidade Tecnológica Federal do Paraná, Cornélio Procópio, Paraná, Brazil 
bUniversité Gaston Berger, Saint-Louis, Senegal 

CInstituto Federal do Paraná, Jacarezinho, Paraná, Brazil 
 
 

 
 

Received 10 05 2023; accepted 02 14 2024 
Available 06 30 2024 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  

Keywords: Furuta pendulum, linear control systems, Euler-Lagrange formulation,  
mechatronic systems 

 

Abstract: Furuta pendulum is a mechanism with two rotating arms. One arm rotates in the horizontal 
plane, while the other rotates freely in the vertical plane. The arm rotating in the vertical plane acts as 
an inverted pendulum. Controlling the Furuta pendulum is challenging because the underlying 
mechanism is highly nonlinear, unstable, and underactuated. How to control the Furuta pendulum 
effectively motivates this study. The main contribution of this paper is to revisit a linear control strategy 
that seems to stabilize the Furuta pendulum. This paper revisits the Euler-Lagrange formulation and 
shows how to use this formulation to represent the Furuta pendulum's nonlinear dynamics. Data from 
simulating the Furuta pendulum through equations and virtual prototyping suggest the effectiveness 
of the linear control. 
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1. Introduction 
 

The mechatronic device known as the Furuta pendulum was 
devised by Furuta and colleagues in 1991—their findings were 
first reported in the paper by Furuta et al. (1991). In this paper, 
Furuta and colleagues brought attention to their novel 
pendulum, showing its usefulness for education in control 
engineering. Since then, the Furuta pendulum has become a 
popular expression, representing a pendulum with two rotary 
arms, as depicted in Figure 1. 

As can be seen in Figure 1, the Furuta pendulum 
mechanism has two degrees of freedom. Indeed, the 
mechanism contains three main parts: base, horizontal arm, 
and vertical arm (i.e., pendulum). The base hosts a direct-
current (DC) motor that produces rotational movement in the 
arm. On one of its sides, the horizontal arm remains attached 
to the motor's rod. On the other side, the horizontal arm is 
attached to the vertical arm, which in turn produces the 
pendulum movement, see Furuta et al. (1991), Zabihifar et al. 
(2020), Hazem et al. (2020) for further details on the 
construction of the Furuta pendulum. The Furuta pendulum 
has been studied not only in control education (Galan et al., 
2019; Alves et al., 2022), but also in applications such as 
aerospace (Shoyama et al., 2021), robotics (Hofer & D’Andrea, 
2018), and underwater vehicles (Duecker et al., 2018). 

 

 
 

Figure 1. The Furuta pendulum with its coordinate system. 
 
Motivated by the fact that the Furuta pendulum is 

nonlinear, unstable, and underactuated, researchers have 
become interested in developing different strategies to 
control and stabilize its mechanism. Plenty of studies have 
documented control for the Furuta pendulum. For instance, a 
study has proposed the so-called active disturbance rejection 
control to diminish undesirable effects of nonlinearities in the 
system response (Ramírez- Neria et al., 2014). 

Another study has introduced a control based on feedback 
linearization, which is taken from the position and velocity 

error functions (Aguilar-Avelar & Moreno-Valenzuela, 2015). In 
Moreno-Valenzuela et al. (2016), the authors have presented 
an adaptive neural network control, showing numerical 
evaluations for PID with neural networks. The authors of Cruz 
et al. (2017) show an exhaustive procedure that determines 
the controller gains through all possible gain combinations, 
picking the controller that generates the best system 
response. The study of Pujol-Vazquez et al. (2018) presents a 
magnetic device that allows the arm of the Furuta pendulum 
to work with H∞ control. In Zhang and Dixon (2021), a non-
minimum state feedback controller is presented with the anti-
windup integrator to stabilize the Furuta pendulum. A recent 
study shows the control of the Furuta pendulum via a sliding 
mode control (SCM), illustrating the benefits of SMC for 
decreasing vibrations in the underlying mechanism (Nguyen 
et al., 2020). In Dwivedi et al. (2017), the fractional order PID 
controller is developed using a control parameter adjustment 
technique through gain margin, phase margin, and Nyquist 
graph; the application of this technique improves the 
robustness of the controller. The approach of Yang and Zheng 
(2018) shows trajectory planning so that the pendulum 
oscillates from its downright position to its upright position; 
this task is accomplished through the adaptive neural network 
with linear matrix inequalities. What the research from these 
papers taken together suggests is that the control of the 
Furuta pendulum remains a challenge. 

The main contribution of this paper is to show simulation 
data from a virtual prototype Furuta pendulum. This 
prototype worked with the classical linear quadratic regulator 
with integral action (LQR+I) control during the simulations. To 
adjust the LQR+I parameters, we use the pendulum's model, 
as usual in the literature (Ramírez- Neria  et al., 2014). Note that 
the pendulum's model can be obtained from both the Euler-
Lagrange formulation Cazzolato and Prime (2011), Fantoni 
and Lozano (2002) and Kane's method Hamza et al. (2019)—
the dynamics from both methods coincide. Even though the 
Euler-Lagrange formulation has been covered in the literature 
Cazzolato and Prime (2011), Fantoni and Lozano (2002), we 
decided to revisit it here using virtual prototyping to reliably 
validate the mathematical modeling of a complex system, in 
this case, the Furuta pendulum. Where it is possible to identify 
whether the simplifications in the model don’t differ too much 
from the model created through virtual prototyping that 
doesn’t have these simplifications and consumes less time to 
be made. And suggest a reference (Moura, 2021) on which this 
paper is based that presents the development of 
mathematical modeling using the Euler-Lagrange method, 
explaining a greater number of steps and considerations 
regarding them that facilitate the understanding of the 
application of the methodology. Another important point was 
that the coordinate system that referenced the links was 
positioned using Denavit-Hartenberg's parameters, as in the 
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coordinate systems that reference the links, the z-axis is 
positioned according to the degree of freedom of the joint and 
the x according to the length of the link which makes it easier 
to know where the parameters 𝛼𝛼𝑖𝑖−1, 𝑎𝑎𝑖𝑖−1, 𝑑𝑑𝑖𝑖  e 𝜃𝜃𝑖𝑖  are as shown 
in Figure 2. 

An interesting conclusion from our simulated data is that the 
LQR+I control seems to stabilize the Furuta pendulum. Namely, 
we simulate the Furuta pendulum in two distinct ways: (i) 
nonlinear dynamics from the Euler-Lagrange formulation and 
(ii) virtual prototyping designed in the Adams software (Newport 
Beach, California, USA). The simulated data from both models 
suggest that the Furuta pendulum is stable under the LQR+I 
control. This numerical evidence emphasizes the potential of 
the LQR+I control for stabilizing the Furuta pendulum. 

Remark 1: To the best of the authors' knowledge, there is no 
proof that the LQR+I control stabilizes the Euler-Lagrange model 
representing  the  Furuta  pendulum.  No formal proof  is available.  
 
 
 

 
 
 
 
 

Our conclusion that the LQR+I control seems to stabilize the 
Furuta pendulum only comes from observing simulated data. Yet 
it is worth emphasizing that no definitive conclusion about 
stability can be drawn only from simulated data. 

This paper is organized as follows. Section 2 presents the 
Euler-Lagrange modeling of the Furuta pendulum and its main 
parameters. Section 3 shows the linear control strategy and 
the corresponding simulated data. Finally, Section 4 presents 
some concluding remarks. 

Notation: The symbol ℝ𝑛𝑛 denotes the 𝑛𝑛𝑡𝑡ℎ dimensional 
Euclidean space. The superscript 𝑇𝑇 on 𝑈𝑈𝑇𝑇  denotes the 
transpose when 𝑈𝑈 represents either a vector or matrix. The 
operator 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑎𝑎1, . . . , 𝑎𝑎𝑛𝑛) defines the diagonal matrix of 
dimension ℝ𝑛𝑛×𝑛𝑛 comprising the elements 𝑎𝑎1, . . . , 𝑎𝑎𝑛𝑛 
arranged in its main diagonal. We borrow from Cazzolato and 
Prime (2011) the notation that defines the dynamics of the 
Furuta pendulum. 

 
 
 

 
 
 
 
 

 
 

Figure 2. Connection of two subsequent links according to Denavit-Hartenberg (Craig, 2005). 
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2. Dynamics of the Furuta pendulum 
 

Recall that the ‘control goal’ of the Furuta pendulum is to 
balance its pendulum in the inverted position through torque 
control. The torque must be applied to keep the angle 𝜃𝜃2 as 
close as possible to zero, i.e., driving the arm 𝐿𝐿2 to the vertical 
position (see Figure 1). To generate this torque, we rely on a 
DC motor that rotates the arm 𝐿𝐿1 around the axis 𝑍𝑍0, thus 
generating the angle 𝜃𝜃1. While increasing or decreasing 𝜃𝜃1, the 
DC motor keeps applying torque 𝜏𝜏1 upon the arm 𝐿𝐿1. The arm 
𝐿𝐿2 moves freely because its joint with 𝐿𝐿1 has no actuator. As in 
Cazzolato and Prime (2011), we assume that 𝑚𝑚1 and 𝑚𝑚2, 
located at ℓ1 and ℓ2, represent the mass of the two arms. The 
two arms are damped by the constants 𝑏𝑏1 and 𝑏𝑏2. 

Next, we present the Euler-Lagrange formulation that 
represents the dynamics of the Furuta pendulum. 

 
2.1. Euler-Lagrange formulation: Nonlinear dynamics for 
the Furuta pendulum 
Next, we use the notation borrowed from Craig (2005) [Ch. 2 
and 6] to represent the system of coordinates of the Furuta 
pendulum. 

Let us denote the fixed coordinate system by {0}. As 
indicated in Figure 1, the coordinate systems are {0}, {1} and 
{2}, and they correspond to (𝑥𝑥0,  𝑦𝑦0,  𝑧𝑧0), (𝑥𝑥1,𝑦𝑦1,  𝑧𝑧1), and 
(𝑥𝑥2,𝑦𝑦2 ,  𝑧𝑧2), respectively. The coordinate system {0} shows 
the initial position of the arm. The coordinate system {1} 
shows the displacement performed on the arm. The 
coordinate system {2} shows the pendulum's observed 
displacement due to the arm's displacement. More details are 
given below. 

The coordinate system {1} moves with the arm. To the 
displacement of the arm, the z-axis {0} is rotated for 𝜃𝜃1. To 
describe the pendulum's displacement, the y-axis is rotated in 
−𝜋𝜋/2 radians and moved 𝐿𝐿1 along the x-axis. The x-axis is then 
rotated in 𝜋𝜋 radians. Finally, the z-axis is rotated in 𝜃𝜃2. The 
coordinate system {2} moves with the pendulum itself. 

Using Euler angles, we can write the rotation matrices 𝑅𝑅 of 
the arm as (Craig, 2005, Ch. 2): 

 

𝑅𝑅𝑧𝑧′𝑦𝑦′𝑥𝑥′0
1 = �

cos(𝜃𝜃1) sin(𝜃𝜃1) 0
− sin(𝜃𝜃1) cos(𝜃𝜃1) 0

0 0 1
�,                                         (1) 

 
and of the pendulum as: 

 

𝑅𝑅𝑦𝑦′𝑥𝑥′𝑧𝑧′1
2 = �

0 − sin(𝜃𝜃2) cos(𝜃𝜃2)
0 − cos(𝜃𝜃2) − sin(𝜃𝜃2)
1 0 0

�. (2) 

 
Following the notation of Cazzolato and Prime (2011), we 

denote the axial moment of inertia in the x-axis by 𝐼𝐼1𝑥𝑥  for the 
arm and by 𝐼𝐼2𝑥𝑥  for the pendulum and, respectively, by 𝐼𝐼1𝑦𝑦, 𝐼𝐼1𝑧𝑧, 

𝐼𝐼2𝑦𝑦, 𝐼𝐼2𝑧𝑧  for the other corresponding axes (the unity of moment 
of inertia is 𝑘𝑘𝑑𝑑.𝑚𝑚2). 

Define the function 𝐹𝐹1 ∶  ℝ6  →  ℝ as:  
 

𝐹𝐹1�𝜃𝜃1, �̇�𝜃1, �̈�𝜃1,𝜃𝜃2, �̇�𝜃2, �̈�𝜃2�
= 𝑏𝑏1�̇�𝜃1 + 𝐼𝐼1𝑧𝑧�̈�𝜃1 + ℓ12𝑚𝑚1�̈�𝜃1 + 𝐿𝐿12𝑚𝑚2�̈�𝜃1
− 𝐿𝐿1ℓ2𝑚𝑚2�̈�𝜃2 cos(𝜃𝜃2)
+ 𝐼𝐼2𝑥𝑥�̈�𝜃1𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃2)
+ 𝐿𝐿1ℓ2𝑚𝑚2�̇�𝜃22 sin(𝜃𝜃2) + �𝐼𝐼2𝑦𝑦
+ ℓ22𝑚𝑚2��̈�𝜃1𝑐𝑐𝑑𝑑𝑛𝑛2(𝜃𝜃2)
− 𝐼𝐼2𝑥𝑥�̇�𝜃1�̇�𝜃2 sin(2𝜃𝜃2)
+ 𝐼𝐼2𝑦𝑦�̇�𝜃1�̇�𝜃2 sin(2𝜃𝜃2)
+ ℓ22𝑚𝑚2�̇�𝜃1�̇�𝜃2 sin(2𝜃𝜃2) , 

  

(3) 

 
and 𝐹𝐹2 ∶  ℝ6  →  ℝ as: 

 
𝐹𝐹2�𝜃𝜃1, �̇�𝜃1, �̈�𝜃1,𝜃𝜃2, �̇�𝜃2, �̈�𝜃2�
= 𝑏𝑏2�̇�𝜃2 + 𝐼𝐼2𝑧𝑧�̈�𝜃2 + ℓ22𝑚𝑚2�̈�𝜃2
− 𝐿𝐿1ℓ2𝑚𝑚2�̈�𝜃1 cos(𝜃𝜃2) − 𝑑𝑑ℓ2𝑚𝑚2 sin(𝜃𝜃2)
+ �+𝐼𝐼2𝑥𝑥 − 𝐼𝐼2𝑦𝑦 − ℓ22𝑚𝑚2��̇�𝜃12 cos(𝜃𝜃2) sin(𝜃𝜃2). 

  

(4) 

 
Now, we can present the main result of this section. The 

nonlinear dynamics of the Furuta pendulum are given by: 
 
𝐹𝐹𝑖𝑖�𝜃𝜃1, �̇�𝜃1, �̈�𝜃1,𝜃𝜃2, �̇�𝜃2, �̈�𝜃2� = 𝜏𝜏𝑖𝑖  ,     𝑑𝑑 = 1, 2.   (5) 
 
The pendulum rotates freely. Then there is no external 

torque applied to it. Thus, 𝜏𝜏2 =  0. That proves the 
underactuated system, with 2 DOF (rotation in the arm and 
rotation in the pendulum) and only one torque applied (𝜏𝜏1 in 
the arm). 

 
2.2..Euler-Lagrange formulation: Linearization of the 
Furuta pendulum dynamics 
This section introduces some assumptions that allow us to 
convert the nonlinear dynamics of the Furuta pendulum into a 
linear system. 

The arm and pendulum are slender rods, which means that 
the moments of inertia around the axes that cross the rod are 
equal, as suggested in Hibbeler (2010), [Appx. C5]. In addition, 
the moment of inertia around the axis along the rod is taken to 
be zero. 

Remark 2: An immediate consequence is that 𝐼𝐼1𝑥𝑥  and 𝐼𝐼2𝑥𝑥  
can be replaced by zero while 𝐼𝐼𝑦𝑦  and 𝐼𝐼𝑧𝑧  are kept equal. Thus, 
from now on, the terms ϒ1 and ϒ2 are used to denote ϒ1 =
𝐼𝐼1𝑦𝑦 = 𝐼𝐼1𝑧𝑧  and ϒ2 = 𝐼𝐼2𝑦𝑦 = 𝐼𝐼2𝑧𝑧.  

 
Let us introduce the following terms: 
 

𝛱𝛱1 = ϒ1 + 𝑚𝑚1(ℓ1)2, 
𝛱𝛱2 = ϒ2 + 𝑚𝑚2(ℓ2)2, 
𝛱𝛱0 = ϒ1 + 𝑚𝑚1(ℓ1)2 + 𝑚𝑚2(𝐿𝐿1)2, 
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where 𝛱𝛱1 and 𝛱𝛱2 relate the center of mass of the arm and its 
point of rotation (arm and pendulum, respectively); the term 
𝛱𝛱0 relates the overall system to the DC motor rotation point, as 
suggested in Hibbeler (2010), [Ch. 10]. 

These simplifications allow us to linearize the nonlinear 
dynamics (5), as detailed next. It is necessary to rewrite (5) to 
obtain the angular accelerations and consequently enable 
linearization. 

 

��̈�𝜃1
�̈�𝜃2
� = �𝛱𝛱0 + 𝛱𝛱2𝑐𝑐𝑑𝑑𝑛𝑛2(𝜃𝜃2) −𝐿𝐿1ℓ2𝑚𝑚2 cos(𝜃𝜃2)

−𝐿𝐿1ℓ2𝑚𝑚2 cos(𝜃𝜃2) 𝛱𝛱2
�
−1

×

��
−𝑏𝑏1 − 𝛱𝛱2�̇�𝜃2 sin(2𝜃𝜃2) −𝐿𝐿1ℓ2𝑚𝑚2�̇�𝜃2 sin(𝜃𝜃2)

1
2
𝛱𝛱2�̇�𝜃1 sin(2𝜃𝜃2) −𝑏𝑏2

� ��̇�𝜃1
�̇�𝜃2
� +

�
𝜏𝜏1

𝑑𝑑ℓ2𝑚𝑚2 sin(𝜃𝜃2)��                                                                                 (6) 

 
With linearization, we want to obtain the linear 

representation in state-space: 
 

�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝑩𝑩                (7) 
 

where 𝑨𝑨 ∈  ℝ𝑛𝑛×𝑛𝑛 is the state matrix, 𝑥𝑥 ∈  ℝ𝑛𝑛  is the vector of 
states, 𝑩𝑩 ∈  ℝ𝑛𝑛×𝑟𝑟  is the input matrix, and 𝑩𝑩 ∈  ℝ𝑟𝑟  is the vector 
of input. Set: 

 
𝒙𝒙 = [𝜃𝜃1 𝜃𝜃2    �̇�𝜃1 �̇�𝜃2]𝑇𝑇 ∈  ℝ4, and 

𝑩𝑩 = 𝜏𝜏1  ∈ ℝ 
  (8) 

 
The linearization of (5) is done using the Jacobian matrix 

method, when 𝜃𝜃1 = 0, 𝜃𝜃2 = 0, �̇�𝜃1 = 0, �̇�𝜃2 = 0, and 𝜏𝜏1 = 𝜏𝜏. 
The matrices obtained are: 
 
𝑨𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡
0             0      
0             0      

1                   0
 0                    1

0 𝑔𝑔𝐿𝐿1ℓ2
2𝑚𝑚2

2

𝛱𝛱0𝛱𝛱2−𝐿𝐿1
2ℓ2

2𝑚𝑚2
2

0 𝑔𝑔𝛱𝛱0ℓ2𝑚𝑚2
𝛱𝛱0𝛱𝛱2−𝐿𝐿1

2ℓ2
2𝑚𝑚2

2

−𝑏𝑏1𝛱𝛱2
𝛱𝛱0𝛱𝛱2−𝐿𝐿1

2ℓ2
2𝑚𝑚2

2
−𝑏𝑏2𝐿𝐿1ℓ2𝑚𝑚2

𝛱𝛱0𝛱𝛱2−𝐿𝐿1
2ℓ2

2𝑚𝑚2
2

−𝑏𝑏1𝐿𝐿1ℓ2𝑚𝑚2
𝛱𝛱0𝛱𝛱2−𝐿𝐿1

2ℓ2
2𝑚𝑚2

2
−𝑏𝑏2𝛱𝛱0

𝛱𝛱0𝛱𝛱2−𝐿𝐿1
2ℓ2

2𝑚𝑚2
2⎦
⎥
⎥
⎥
⎥
⎤

              (9) 

 
and 

 

𝑩𝑩 =

⎣
⎢
⎢
⎢
⎡

0
0
𝛱𝛱2

𝛱𝛱0𝛱𝛱2−𝐿𝐿1
2ℓ2

2𝑚𝑚2
2

𝐿𝐿1ℓ2𝑚𝑚2
𝛱𝛱0𝛱𝛱2−𝐿𝐿1

2ℓ2
2𝑚𝑚2

2⎦
⎥
⎥
⎥
⎤

.     (10) 

 
2.3. Virtual prototyping of the Furuta pendulum 
A prototype of the Furuta pendulum was developed in 
SolidWorks (Waltham, Massachusetts, USA), see Figure 3. 

 

 
 

Figure 3. Furuta pendulum prototype developed in SolidWorks. 
 
The prototype features were extracted from SolidWorks, 

see Table 1. These features were later transferred to the virtual 
prototyping software Adams (Newport Beach, California, USA) 
because Adams can emulate the real-time dynamics of a 
Furuta pendulum. 

 
Table 1. Features of the Furuta Pendulum. 

 

Symbol Value Unity 

𝐿𝐿1 0.21600 m 
ℓ1 0.07735 m 
𝑚𝑚1 0.25700 kg 
𝐿𝐿2 0.33700 m 
ℓ2 0.16375 m 
𝑚𝑚2 0.12700 kg 
𝐼𝐼1𝑥𝑥  0.000147009 kg m2 
𝐼𝐼1𝑦𝑦  0.001405289 kg m2 
𝐼𝐼1𝑧𝑧  0.001503506 kg m2 
𝐼𝐼2𝑥𝑥  0.000025630 kg m2 
𝐼𝐼2𝑦𝑦  0.001594099 kg m2 
𝐼𝐼2𝑧𝑧 0.001618580 kg m2 
ϒ1 0.001503506 kg m2 
ϒ2 0.001618580 kg m2 

𝑏𝑏1, 𝑏𝑏2 0 N/m/s 

 
3. Linear state-feedback control: Numerical evaluations 

 
We have two nonlinear models. The first was obtained by 
analytical calculation, and the second by virtual prototyping. 
For the LQR application, it is necessary to calculate the linear 
format of the two models. Just after, it is possible to calculate  
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the LQR gains. The LQR provides a multivariable proportional 
regulator, where it is necessary to add an integrator to the 
controller to eliminate steady-state errors between the 
reference signal and the controlled state variable, which in this 
case is the angular position of link 1. Therefore, the LQR 
control needs to have integral action. The block diagram of 
one LQR with the integral action, also known as LQR+I, is 
shown in Figure 4. 

Then, we linearized the model obtained with the Euler-
Lagrange formulation and configured the computational 
calculation to result in the linear model. Thus, we found the 
gains 𝑲𝑲𝟏𝟏 and 𝑲𝑲𝟐𝟐 with the linear models for both cases. 

The matrices in (9) and (10) corresponding to the features 
in Table 1 are: 

 

𝑨𝑨 = �
0        0      
0        0      

1 0
 0 1

0 36.8369
0 73.5300

 0 0
0 0

�, 

𝑩𝑩 = �

0
0

202.016
180.625

�. 

(11) 

 
By virtual prototyping, the matrices are: 
 

𝑨𝑨 = �
0 −6.4𝑒𝑒 − 15
1 0      

0 37.7345
 0 0

0 −6.3𝑒𝑒 − 15
0 0

 0 74.7420
1 0

� , 

𝑩𝑩 = �

205.6364
0

185.0149
0

�. 

(12) 

 
It is important to emphasize that the most significant 

values are in different positions in the two models because the 
states' position in the state vector differs between them. 

Next, we revisit the tracking control of linear systems 
(Ostertag, 2011, Sec. 1.8). For a given reference signal 𝒓𝒓 ∈  ℝ, 
we compute the error signal, i.e., 𝒆𝒆 =  𝒓𝒓 –  𝒚𝒚 ∈  ℝ where 𝒚𝒚 =
[1 0   ⋯ 0]𝒙𝒙, and 𝒙𝒙 ∈  ℝ4 satisfies (7) – (10). Define 𝒛𝒛(𝑡𝑡) ≡
∫ 𝒆𝒆(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0  for all 𝑡𝑡 ≥  0, and: 

 

𝑩𝑩 ≡ [𝑲𝑲𝟏𝟏 𝑲𝑲𝟐𝟐] �𝒙𝒙𝒛𝒛�. (13) 

 
Since �̇�𝒛 = 𝒆𝒆 we can write (Ostertag, 2011,  Sect. 1.8.1): 
 

��̇�𝒙�̇�𝒛� = �
𝑨𝑨 + 𝑩𝑩𝑲𝑲𝟏𝟏 𝑩𝑩𝑲𝑲𝟐𝟐

−[1 0    ⋯ 0] 𝟎𝟎 � �𝒙𝒙𝒛𝒛� + �𝟎𝟎𝟏𝟏� 𝒓𝒓. (14) 

 
The control problem consists of finding the gains 𝑲𝑲𝟏𝟏

𝑇𝑇 ∈ ℝ4 
and 𝑲𝑲𝟐𝟐 ∈ ℝ that minimizes the linear-quadratic-regulator 

with the integral action (LQR+I) cost with 𝒓𝒓 ≡ 0 (Anderson & 
Moore, 1989, Ch. 3; Rosinová & Veselý, 2006, p. 196): 

 

𝐽𝐽 =
1
2
� �𝒙𝒙(𝑡𝑡)𝑇𝑇𝑸𝑸𝒙𝒙(𝑡𝑡) + 𝑩𝑩(𝑡𝑡)𝑇𝑇𝑹𝑹𝑩𝑩(𝑡𝑡)�𝑑𝑑𝑡𝑡
∞

0
 (15) 

 
It is known that the minimum value of (15) is attained when 

solving the usual Riccati equation (Anderson & Moore, 1989, Ch. 
3). In our case, the optimal solution for the model given by (11) is: 

 
𝑲𝑲𝟏𝟏 =

[−0.5778 2.5781     −0.2044 0.3749]   
and 𝑲𝑲𝟐𝟐 = 0.8165 

(16) 

 
and for the model given by (12) is: 

 
𝑲𝑲𝟏𝟏 =

[−0.2044 −0.5784     0.3717 2.5642]   
and 𝑲𝑲𝟐𝟐 = 0.8165 

(17) 

 
provided that 𝑸𝑸 =  𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(0.001, 0.01, 10−4, 10−4) and 
𝑹𝑹 =  15. The values of 𝑸𝑸 and 𝑹𝑹 were chosen by trial and error. 

Now we apply the linear state-feedback control strategy 
(13) in three different models: (i) nonlinear dynamics as in (5); 
(ii) linear system as in (7) subject to (11); and (iii) virtual 
prototyping (Adams). We assume the initial condition 𝑥𝑥0 =
 [0 0 0 0]𝑇𝑇  for all the simulations. 

We build the closed loop system of the two nonlinear 
models as follows. For the formulation model, the gains of 
equation (16) control the model shown in (5). The nonlinear 
model obtained with virtual prototyping is controlled through 
the gains of (17). 

The resulting data taken from these three models are 
summarized in Figure 5. As can be seen, the three models 
generate similar responses, yet the response from the linear 
system seems to drift away from the other two during the 
transient time. As expected, the pendulum's angular position 
and the control action oscillate for a while and return to a 
steady state. 

To prove the system's stability, we can mention that all the 
eigenvalues of the state matrix of the closed-loop augmented 
system contain a negative real part for the linear models. The 
eigenvalues of the linear model by prototyping are −2.5834 +
3.9166𝑑𝑑, −2.5834 − 3.9166𝑑𝑑, −9.3798 + 0.0000𝑑𝑑,
−8.0587 + 0.0000𝑑𝑑, and −4.1159 + 0.0000𝑑𝑑. The eigenvalues 
of the linear model by formulation are −9.1022 + 0.0000𝑑𝑑,
−8.1267 + 0.0000𝑑𝑑, −2.5483 + 3.9467𝑑𝑑, −2.5483 −
3.9467𝑑𝑑, −4.1014 +  0.0000𝑑𝑑 . The local behavior of a 
nonlinear system near a linearization point is very similar to the 
behavior of the linear system at that point. It is precisely for this 
reason that we use the gains obtained for linearized systems in 
nonlinear models. Therefore, a nonlinear system can also be 
considered stable close to the linearization point. 
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The LQR+I control showed a good performance and low 
control effort, similar to that presented in Hazem et al. (2020) 
for the double-link rotary inverted pendulum system.  

Remark 3: The three models for the Futura pendulum were 
extensively simulated using distinct profiles. In all simulations, 
we observed that the models remained stable. This numerical 
evidence suggests that. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In summary, the simulated data suggest that the linear 
state-feedback control (13) can stabilize the three models. 
This numerical evidence encourages using (13) for the Furuta 
pendulum in real time. 

Remark ɧʒ A video that shows the simulation in Adams 
was recorded and is available freely at 
https://youtu.be/w3Pg60J_3cM. This video illustrates the 
prototype of the Furuta pendulum moving its arms for 
distinct references according to the LQR+I control (13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 4. Block diagram for the LQR+I control (adapted from d’Azzo & Houpis, 1995). 
 
 

 
 

Figure 5. Simulated data. Three models were simulated with linear control (13) subject to (16). 
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4. Conclusions 
 
This paper has revisited the modeling and control of the 
Furuta pendulum. This paper documents how to obtain the 
nonlinear dynamics of the Furuta pendulum through the 
Euler-Lagrange formulation, following Cazzolato and Prime 
(2011). The nonlinear dynamics then fed a linear model that 
has given rise to the linear feedback control. The linear 
feedback control was then applied to the nonlinear dynamics, 
the behavior of the nonlinear dynamics seems to agree with 
the one from the virtual prototyping Adams (see Section 3). 
Data from both models (i.e., nonlinear dynamics and virtual 
prototyping) suggest that the linear control can stabilize the 
Furuta pendulum. This fact motivates further research on how 
to design efficient, simple controllers to ensure the Furuta 
pendulum's stability. This paper, then, can be interpreted as a 
step in that direction. 
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