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ABSTRACT 
This paper addresses a vehicle scheduling problem encountered in the cold chain logistics of the frozen food 
delivery industry. Unlike the single product delivery scenario, we propose an optimization model that manages the 
delivery of a variety of products. In this scenario, a set of customers make requests for a variety of frozen foods 
which are being loaded together. The objective is to find the routes that represent the minimum delivery cost for a 
fleet of identical vehicles that, departing from a depot, visiting all customers only once and returning to the depot. 
The delivery cost includes the transportation cost, the cost of refrigeration, the penalty cost and cargo damage cost 
based on the characteristics of different frozen food products. Apart from the usual constraints of time windows and 
loading weight, the study also takes into account the constraints of loading volume related to the unit volume of 
different frozen foods. We then propose a Genetic Algorithm (GA) method for the model. Computational tests with 
real data from a case validate the feasibility and rationality of the model and show the efficient combinations of 
parameter values of the GA method. 
 
Keywords: Vehicle Routing Problem, Genetic Algorithm, Frozen Foods Delivery. 
 
 
1. Introduction 
 
The need for fresh, refrigerated and frozen food 
has grown continuously in recent years due to high 
demand for healthy and convenient diets in urban 
fast-paced daily living. Correspondingly, the 
market for low-temperature logistics is expanding 
due to demand for low-temperature food [1]. This 
paper considers a specific vehicle routing problem 
in the cold chain distribution industry for a variety 
of frozen food products. Compared to normal 
temperature distribution, cold chain distribution 
requires strict temperature and time control to 
preserve food quality. Frozen food products with 
low thermal inertia (such as ice cream) are more 
vulnerable to any disruption in the cold chain 
distribution process. As frozen food distribution 
companies tend to serve rather large numbers of 
customers in dispersed locations, it is crucial for 
them to design the routes for vehicles in an 
efficient way so as to minimize the delivery cost 
while maintaining or even improving food and 
service quality for customers.  
 
In the past, most studies on the vehicle routing 
problem (VRP) have focused on the expansion of  

 
 
the network and algorithms [2,7,10-13,16-18]. Little 
attention has been paid to the improvement of the 
vehicle routing model [3]. The optimization models 
used for vehicle routing problems in current cold 
chain distribution studies often aim to minimize the 
total delivery cost, comprising the transportation 
cost, energy cost and deterioration cost [4-7]. Also, 
until now, vehicle routing models have been built 
for a single product only and the constraints 
considered in the model and its variants have 
always been the loading weight and time windows 
[4-9]. However, as is widely recognized, the reality 
is that customer orders are not limited to a single 
frozen food product and different frozen food 
products ordered by one customer are often 
loaded together in one vehicle. 
 
The factors considered in this scenario include unit 
volume, price, the punishment degree and perishable 
coefficient of different frozen food products.  
 
In addition to the usual constraints of time windows 
and the loading weight, the volume capacity of the 
vehicle is also taken into consideration.  
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This paper proposes a solution to the VRP in multi-
product frozen food distribution taking into account 
the multiple factors discussed above. 
 
The reminder of this paper is organized as follows. 
Section 2 describes in detail the model development 
process. In Section 3, the GA approach for the 
distribution model is proposed. Section 4 applies the 
GA in a case study. Finally, conclusions and future 
research are presented in Section 5. 
 
2. The routing model for frozen food distribution 
 
2.1 Assumptions and constraints 
 
Assuming a fleet of identical vehicles with given 
internal and external dimensions of length, width 
and height, the objective is to find a set of 
minimum cost vehicle routes, starting from and 
terminating at the depot, such that: 
 
1).The depot centre houses a fleet of identical 
vehicles with a fixed rate . 
 
2).The loading weight and volume of the vehicle 
are known and there is no midway assignment. 
 
3).The geographic locations and time windows of 
customers are known. 
 
4).Information concerning the mass and loading 
volume of per unit frozen food products is given. 
 
5) Each customer’s orders are delivered by exactly 
one vehicle during distribution, but each vehicle 
can serve different customers. 
 
6) The vehicle maintains a constant temperature 
inside and outside during distribution. 
 
7).The cumulate weight and volume of a 
vehicle= 1,2… does not exceed its capacity 
and  at any point on the route. 
 
2.2.Distribution cost analysis 
 
1) The cargo damage cost of frozen food 
 
The main damage cost in the process of 
distribution consists of two parts: a) damage cost 
accumulated due to transit time, b) damage cost 
caused by a break in the cold chain during a series 

of links including the arrival of food, code 
inspection and shelving. We assume that the 
quality of the frozen food in the transportation 
process and customer service process is inversely 
proportional to the time and the demand of 
customers, respectively. Hence, considering 
different damage rates and the price of frozen food 
products, the cargo damage cost  can be 
expressed by Eq. 1 [4]. 
 

     
  

     
  

  

     (1) 

 
where   denotes the cargo damage rate of the 

frozen food  ( = 1,2…E) during the process of 
transportation,   is the cargo damage rate of the 

frozen food  during customer service,   

represents the unit price of the frozen food ,   

indicates the time of vehicle  from customer  to 
customer,   is the order of food  from 

customer . The (routing) decision variable   is 

defined as  
 



  






1,vehicle  starts from  customer  to customer   
=

0,otherwise

 
2) The vehicle transportation cost 
 
The transportation cost includes fuel consumption, 
vehicle maintenance, etc. And the cost is generally 
proportional to the distance [7]. The transportation 
cost is given by: 
 


  


  

  

                                                   (2) 

 
where  denotes the transportation cost of 

vehicle  between customer  and  
 
3) The refrigeration cost 
 
The refrigeration cost relates mainly to two 
aspects. One is heat transfer inside and outside 
the refrigerator caused by the temperature 
difference during transportation. On the other 
hand, heat will exchange during loading/unloading 
process because of air convection. The refrigeration 
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cost can be obtained by calculating the cost of the 
refrigerant consumed. Consumption of the refrigerant 
is related to the heat transfer coefficient, the surface 
area of the vehicle, the outside temperature, stored-
product temperature and other factors. 
 
a) The thermal load  due to the difference in 

temperature can be obtained using the following 
formula [8]: 
 

( )                                                 (3) 

 
where   denotes thermal conductivity,  is the 

temperature difference. The average area of the 

vehicle      ,  is the depreciation degree of 

the vehicle,   indicates the external surface area 

and   the internal surface area 

 
The cost of vehicle   from customer  to customer 
  is shown as follows: 
 

  
                                                         (4) 

 
where denotes the unit cost of refrigerant,   

represents the time from customer  to customer . 
The cooling cost of refrigerator during 
transportation can be expressed as follows: 
 

1
1









                                                              (5) 
 
b) With reference to the literature [9], the vehicle 
thermal load   during loading/unloading can be 
obtained using the specific formula: 
 

(0.54 3.22)                                            (6) 
 

where  is related to door opening frequency. Its 
value is shown in Table 1. 
 
 
 
 
 
 
 
 
 
 

Thus, the cooling cost of vehicle   at customer is 




  



 



                                                  (7) 

 

where   is the service time at customer   . The 

cost of refrigeration during loading can be 
expressed by 
 

2







   (8) 

 
The total energy consumption cost Λ  is the sum 

of 1Λ  and 2Λ  

 

1 2= +Λ Λ Λ                                                            (9) 

 
4) The penalty cost of customers 
 
This research adopts the time windows constraint, 
which allows for arrival at a time outside the 
window with a penalty. If the service at customer 
starts inside the time window     , no penalty is 

incurred. If a vehicle starts servicing customer 
before time   or after time  , a penalty has to be 

paid. The penalty cost is proportional to the value 
through non-negative weights 1  and 2 , 

respectively. This study constructed the penalty 
cost function of time windows during the 
distribution of a variety of frozen food products. 
Assuming that the penalty cost is correlated to the 
price of different frozen food products and the 
exceeded time, it can be formulated as follows: 
 

2
1

1
1

0

( )

( )

p    


   


    

    












  










     

   

 

 

  

 

 

 





           (10) 

 

where   is the time of arrival at customer , 1  is 

the penalty coefficient for being early, 2  is the 

penalty coefficient for being late. The weight for 
delayed delivery at customers is set to be larger 
than that for early delivery (i.e. 1  2 ), and the 

Degree Door opening frequency 

A closed 0.25 

B half of C 0.5 

C 2–3 times per hour 1 

D more than 50% of C 1.5 

E double C 2 
 

Table 1. Cross-referencing between 
  and door opening frequency.
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weights for each customer can be adjusted 
accordingly. 
 
2.3 Establishment of the routing optimization model 
 

+ p 
  


  

  

                                     (11) 

 

1
1 1

2
1 1

1

0

0

M, 1,2,...  

, 1,2,...  

1, 1,2,...
s.t

, 1,2,... ; 1,2,...  

, 1,2,... ; 1,2,...

, 1,2,...

 
 

  
 




 


 


   

   

    

 

   

   

    

 

 

 

 













   



   


   


     


     

    












 

 
where 1  and 2  represent the utilization rate of 

the loading weight and loading volume, 
respectively. v  is the unit volume of frozen food . 

The (routing) decision variable   is defined as 

 



 






1, if vehicle  services  customer  
=

0,otherwise
 

 
In this model, the objective function (11) aims to 
minimize the total cost for the vehicles to visit all 
customers, constraint (12) and constraint (13) 
ensure that the loading weight and loading volume 
of each vehicle is not exceeded, equation (14) 
ensures that each customer is served by only one 
vehicle, equations (15) and (16) guarantee that 
each customer is visited exactly once, and 
equation (17) is the constraint of time windows. 
 
3. Solution approach 
 
There are two types of algorithms for solving the 
VRP. One is the exact algorithm and the other is 
the heuristic algorithm. The exact algorithm  
includes the branch and bound method, the cutting 
plane method, the network flow algorithm, dynamic  
 

programming, etc [10]. As the complexity of the 
solution for the VRP is NP-hard, the exact solution 
can only be used to solve a VRP with a small 
number of distribution points [11].  
 
In contrast, many heuristic algorithms, such as the 
genetic algorithm (GA) [12-13], hybrid genetic 
algorithm [14] and particle swarm optimization 
algorithm [15], have been used widely in a variety 
of combination optimization problems. Existing 
literature that compares different algorithms for 
VRP has demonstrated the superiority of the GA 
as it can handle greater problems with less 
computational effort [12-13]. However, the quality 
of the convergence process in GA depends on the 
specific choices of strategies and combinations of 
operators or parameter values [16]. As stated 
above, the vehicle scheduling problem for 
distribution companies in frozen food delivery is 
considerable. Thus, this paper proposes the use of 
a GA to address the problem and gives a detailed 
description of the operators. 
 
3.1 The implementation of the genetic algorithm 
 
GA simulates the survival of the fittest among 
individuals over consecutive generations 
throughout the solution of a problem. 
 
Each generation consists of a population of 
character strings that are analogous to the 
chromosomes. Each individual represents a point 
in the search space.  
 
The individuals in the population are then exposed 
to the process of evolution. Genes from good 
individuals propagate throughout the population, 
thus making successive generation become more 
suited to its environment [21]. The overall structure 
of the GA is illustrated in Figure 1.  
 
Step 1: Set the initial values of loading weight, 
loading volume, population size, number of iterations, 
crossover probability and mutation probability. 
 
Step 2: Generate an initial population  of 
chromosomes for which each chromosome 
represents a feasible route. 
 
Step 3: Evaluate each chromosome using the 
fitness function. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Step 4: Select the chromosomes the fitness of 
which meet the specified requirements according 
to the selection operator. 
 
Step 5: Cross over two chromosomes ( ,i j  ) 

using the crossover operator, with crossover 
probability 3 . 

 
Step 6: Chromosome  is designed to mutate 
according to the mutation operator once it meets 
the condition s  2  , where s   is a parameter 

randomly sampled in the range [0,1] and 2  is the 

mutation probability, otherwise no variation. 
 
Step 7: The GA is implemented with the stopping 
criteria: the maximum number of iterations and 
maximum number of iterations without 
improvement. 
 
3.2 Genetic algorithm design notes 
 
In this paper, the chromosome is a permutation of 
the integer of all customers (1,2,…,) that place 
an order for frozen food on separate routes. 
 
This section is devoted to the detailed presentation 
of the coding method design, fitness evaluation, 
generation of initial solutions, selection, crossover 
and the mutation operator. 
 
1) Design of coding method 
 
The distribution centre with  vehicles determines 
the number of distribution routes. Add -1 virtual 
distribution centres which are represented by 0 to 
reflect the routing problem of vehicle in the coding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 depicts an example of a chromosome  
comprising eight customers serviced by three 
vehicles. 
 

 
 

Figure 2. Example of a chromosome. 
 
2) Generation of the initial population 
 
First, generate the permutation of  customers 
using the randperm function. The first and the last 
numbers of the permutation are set to 0 to 
represent that the vehicle starts from the yard and 
eventually returns. Then, insert virtual distribution 
according to vehicle loading weight  and loading 
volume , and so forth until the population number 
is met.  
 
During the process, chromosomes with the same 
fitness as another are replaced by the new random 
population to ensure the diversity of the population. 
 
3) The fitness evaluation 
 
The corresponding distribution routing scheme of 
chromosome  ( = 1,2,…,) is preferred for two 
reason: (i) it satisfies the constraints of the 
problem and (ii) the value of the objective function 
 in the routing optimization model is smaller. In 
this model, the coding design and the generation 
of the initial population can meet the constraint 
conditions: (a) each customer receives a delivery 
service and (b) each customer is served by one 
vehicle. Each path of the chromosome is judged 

0 1 2 4 0 6 5 7 0 3 8 0 

 
 

Figure 1. Outline of GA.

Vehicle 1 Vehicle 2 Vehicle 3
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by the constraints of vehicle loading weight and 
loading volume one by one. If the number of 
infeasible paths of chromosome  is M ( M = 0 

denotes that chromosome  is a feasible solution), 
the objective function value is Z  and the fitness 

evaluation of chromosome  is F  determined by 

the following formula [17]: 
 

1

( * / ) / ( * )F


    


  


     ） (18) 

 
In the formula, assume that   = 1000 is the 
penalty weight assigned to each infeasible path. 
The equation guarantees that the chromosome 
with the lower distribution cost can obtain a higher 
fitness evaluation. 
 
4) Selection operator design 
 
Based on the roulette wheel selection method 
(RWS) [11] in which the probability of a 
chromosome participating in a crossover is directly 
proportional to its relative fitness: 
 

=1

p /F F


  


                                                  (19) 

 
Then accumulated normalized fitness values are 
computed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The selected individual is the first one the 
accumulated normalized value of which is greater 
than  which is a random number sampled in the 
range [0,1] to guarantee the optimal individual can 
be reserved to the next generation. 
 
5) Crossover operator design 
 
The vehicle routing problem with time windows 
(VRPTW) is characterized by randomness 
between groups and orderliness within the group. 
The general crossover operator will destroy the 
excellent substring, so we use an efficient 
crossover operator based on the traditional one-
point crossover (1px) operator [19]. In this 
operator, two virtual distribution points of one 
chromosome are selected. 
 
If n is the number of routes in a chromosome, 
there are n+1 crossover points. Each of these 
points is selected with equal probability.  
 
Customers on the chosen route are inherited by 
the offspring from the parent and the other 
customers are placed in the order in which they 
appeared in the other parent. After exchanging the 
roles of the parents, the same procedures are 
employed to produce the second descendants. 
Figure 3 is an illustrative example of the crossover 
operator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  An illustration of a crossover operation on parent. 
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6) Mutation design 
 
The possibility of chromosome variation is 
relatively small and it plays an auxiliary function in 
the GA. We propose a 2-exchange mutation 
operator. As shown in Figure 4, two genetic points 
on the chromosome, other than the distribution 
centres, are randomly selected for exchange. 
 

           
 

                
 

Figure. 4  An illustration of mutation operation. 
 
4. Case study of a frozen food distribution company. 
 
4.1 Exemplary case 
 
For our computational experiments, we turn to an 
instance built using actual data from a company 
working in Beijing. It is a cold chain logistics 
company with a distribution network covering all 
districts and counties in Beijing. Each trip starts and 
ends at the distribution centre. The company has 
approximately 400 stations and five time periods.  
 
To introduce the steps of GA method for the 
proposed vehicle routing model, we constructed a 
smaller instance by reducing the number of 
stations and focusing on the period from 3:00 am 
to 8:00 am. We chose nine large Carrefour stores 
in Beijing as the customers, as shown in Figure 5.  
 
Usually, the suggested storage temperature of 
frozen food products is below -18°C, in which 
microbial growth is completely stopped, and both 

enzymatic and non enzymatic changes continue 
but at much slower rates during frozen food shelf 
life [20]. 
 
We assume that the average temperature outside 
is 20°C and the temperature difference will stay at 
38°C. The assumptions concerning customer 
locations (Table 2), vehicles (Table 3), and frozen 
product information (Table 4) are based on the 
results of a survey. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Computational experiments of the case. 
 
As our problem is highly combinatorial, the 
performance of the GA strongly depends on its 
parameterization [21]. This section reports the 
results of computational experiments for different 
parameter combinations to determine the optimal 
GA parameter settings. 
 
All the algorithms previously described in this paper 
are implemented in Matlab. The GA is carried out on 
a 2.09 GHz Intel CPU in Microsoft Windows XP. 
The main aim of the experiment is to determine the 
optimal GA parameter settings to obtain the best 
algorithm performance. For this purpose, we tried 
different GA parameters including the population 
size 1 , the mutation probability 2  and the 

crossover probability 3  to determine the 

distribution cost. The results, summarized in Figures 
6–7, were obtained from 10 independent runs for 
different parameter combinations. 

Exchange 
the two 
genetic 
points 

Two 
customers 
are 
randomly 
selected 

 
Figure 5. Locations of  

Carrefour stores in Beijing. 
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Item centre 1 2 3 4 5 6 7 8 9 

centre 0 30.3 25.6 24.2 20.4 40.7 26.4 28.4 34.3 26.9 

1 30.3 0 7.4 20.9 14.1 15.3 16.1 3.8 13 9.6 

2 25.6 7.4 0 13.7 8.6 17.3 13.6 6.7 12.8 9.6 

3 24.2 20.9 13.7 0 10 17.7 19.2 18.6 10.2 14 

4 20.4 14.1 8.6 10 0 24.1 13 14 19.8 10.4 

5 40.7 15.3 17.3 17.7 24.1 0 32.6 16.9 7.3 26 

6 26.4 16.1 13.6 19.2 13 32.6 0 16.1 26.4 7.1 

7 28.4 3.8 6.7 18.6 14 16.9 16.1 0 9.4 12.4 

8 34.3 13 12.8 10.2 19.8 7.3 26.4 9.4 0 18.6 

9 26.9 9.6 9.6 14 10.4 26 7.1 12.4 18.6 0 

Ice cream (kg) 26 21 25 25 26 18 24 29 30 

Frozen pastry (kg) 202 176 211 175 200 120 210 230 150 

Service time (h) 0.65 0.57 0.70 0.58 0.63 0.40 0.83 0.75 0.50 

Required time window 

     

4:00 
- 

5:00 

4:00 
- 

6:00 

3:00 
- 

5:00 

5:00 
- 

7:00 

4:00 
- 

6:00 

3:00 
- 

5:00 

5:00 
- 

8:00 

3:00 
- 

6:00 

6:00 
- 

8:00 
 

Table 2. Distance between the delivery centre and customer, 
 requirement for frozen food products and time constraints. 

Parameter Value Parameter Value 

 1000 kg  1 

1  0.95   2.49 kcal/(h·m2·°C) 

2  0.925 


0.08 

1  0.1%  30 km/h 

2  0.5%  0.05 yuan/kg 

 425 cm * 168 cm * 240 cm  205 cm * 142 cm * 120 cm 

 
Table 3. Vehicle parameter names and values. 

Frozen 
food 

Loading 
volume 

Damage percentage 
during transportation 

Damage percentage 
during service 

Average 
price 

 (cm3/kg) (%) (%) (yuan/kg) 

Symbol v        

Ice cream 8000 0.08 0.2 75 

Frozen pastry 4000 0.04 0.07 20 

 
Table 4. Parameter names and values of different frozen food products.  
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Figure 6 shows us the best, worst and average 
routing costs among the 10 runs of GA with         

2 0.02 3 = 0.7 and different population sizes 

for instance. The results show that the GA method 
with a discrete population size from 10 to 100 can 
always find the best solution within 10 runs. 
Furthermore, the worst and average values are 
relatively small, especially when 1  [60–100]. It 

is a testament to the impact of the GA method that 
global searching ability increases with increased 
population size [22]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure 7, the behaviours for different 
combinations of mutation probability and 
crossover probability are given. Behaviour is 
defined as the best distribution cost among 10 
runs of each combination. The experimental data  
in the above surface chart come from 1000 
combinations with a population size 1 = 60, the 

mutation probability 2   [0.01–0.1] and crossover 

probability 3  [0.1–1]. The results show that the 

GA with crossover probability 3  [0.5–0.9] and 

mutation probability 2  [0.02–0.09] can always 

find the best distribution cost, as seen in Figure 7. 
However, the results with crossover probability 3
 [0.1–0.4] and mutation probability 2  [0.01–

0.04]  [0.07–0.1] for the model are unsatisfactory. 
 
4.3 Analysis of results 
 
In this subsection, the total routing cost of 100 
iterations obtained from the GA when 1 = 60, 2 = 

0.09 and 3 = 0.6 is shown in Figure 8. The 

distribution cost decreases with increasing 
iterations until reaching the best solution of 
1224.04 which operates 74 iterations without 
improvement. The results represent the 
convergence characteristics of GA for the case. 
 
Detailed information on the optimal chromosome is 
shown in Table 5. According to the result, the 
distribution centre needs three vehicles to 
complete the delivery work. The best distribution 
program is as follows: the route for vehicle 1 is 0-6-
9-4-0, the route for vehicle 2 is 0-2-1-7-0 and the 
route for vehicle 3 is 0-3-8-5-0. The transportation 
cost, frozen cost and cargo damage cost of the 
three vehicles are comparable. From the 
perspective of the vehicle utilization, there is no 
phenomenon of excessive overloading, which is in 
favour of vehicle maintenance. Except for the 
penalty cost of waiting in the case of vehicle 1, the 
remaining vehicles can serve the customers within 
their time windows. Overall, the proposed model 
can provide distribution companies with a 
reasonable and practical vehicle scheduling 
program, thereby saving costs, maintaining food 
quality and improving customer satisfaction. 
 
 
 

 
 

Figure 6. Results influenced by population size.
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Figure 7. The best distribution cost for different 
combinations of mutation rate and crossover rate.
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5. Conclusions and future research 
 
This paper investigates a unique vehicle routing 
problem in the frozen food distribution industry 
taking into account various factors. The problem is 
of interest because of its theoretical complexity 
and the important practical applications in cold 
chain distribution. We formulate the problem into 
one optimization model with the objective of 
minimizing the total cost (including transportation 
cost, refrigeration cost, penalty cost and cargo 
damage cost) based on a real scenario. We also 
propose one heuristic, genetic algorithm, to solve 
this problem. As this problem is unique and no 
benchmark exists, experiments have been 
conducted using an example case. The case was 
designed based on actual information in a frozen  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
food distribution company to verify the rationality 
and the feasibility of the model in improving the 
efficiency of transport while ensuring the food fresh 
and safe. In general, we find that the GA method 
can provide sound solutions with good robustness 
and convergence characteristics in a reasonable 
time span.  
 
The focus of our future studies in this area will be 
to increase the complexities of assumptions to 
make them closer to the real world. For example, 
some constraints commonly used in container 
loading research, such as the loading-bearing 
strength of the boxes and vertical stability of the 
foods, can be used in the vehicle routing problem  
for frozen food delivery [23]. There are also factors 
that are common but not known in advance in real-

 
Figure 8. Results of iteration in distribution case. 
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Vehicle 
ID 

Visit 
sequence 

Transportation 
cost 

Frozen 
cost 

Cargo 
damage 

cost 

Penalty 
cost 

Loading 
weight 

Loading 
volume 

1 06940 64.30 282.98  17.33 15.18 518 2.36 

2 02170 65.20 292.11  19.03 0 659 2.92 

3 03850 82.40 364.35  21.16 0 721 3.20 

Total 
cost 

1224.04 

 
Table 5. The optimal chromosome analysis. 
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world cold chain distribution, such as the travel 
time of vehicle, service time for customers and 
customers' different delivery requirements. Other 
factors include fleet size, mixed-type vehicles, 
multi-temperature joint distribution and vehicle 
routing problems with backhauls, etc.  
 
These factors have a considerable impact on 
system performance. Thus, research on vehicle 
scheduling problems in frozen food distribution 
including these factors is of great interest and 
importance. 
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