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ABSTRACT 
Assuming that the thermo-creep response of the material is governed by Norton’s law, an analytical solution is 
presented for the calculation of time-dependent creep stresses and displacements of homogeneous thick-walled 
cylindrical pressure vessels. For the stress analysis in a homogeneous pressure vessel, having material creep 
behavior, the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed. This 
corresponds to the solution of materials with linear elastic behavior. Therefore, using equations of equilibrium, stress-
strain and strain-displacement, a differential equation for displacement is obtained and then the stresses at a time 
equal to zero are calculated. Using Norton’s law in the multi-axial form in conjunction with the above-mentioned 
equations in the rate form, the radial displacement rate is obtained and then the radial, circumferential and axial creep 
stress rates are calculated. When the stress rates are known, the stresses at any time are calculated iteratively. The 
analytical solution is obtained for the conditions of plane strain and plane stress. The thermal loading is as follows: 
inner surface is exposed to a uniform heat flux, and the outer surface is exposed to an airstream. The heat conduction 
equation for the one-dimensional problem in polar coordinates is used to obtain temperature distribution in the 
cylinder. The pressure, inner radius and outer radius are considered constant. Material properties are considered as 
constant. Following this, profiles are plotted for the radial displacements, radial stress, circumferential stress and axial 
stress as a function of radial direction and time. 
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1. Introduction 
 
Axisymmetric component such as a cylindrical 
vessel is more often used as the basic process 
component in various structural and engineering 
applications such as pressure vessels (e.g. 
hydraulic cylinders, gun barrels, pipes, boilers, fuel 
tanks and gas turbines), accumulator shells, 
cylinders for aerospace industries, nuclear reactors 
and military applications, pressure vessel for 
industrial gases or a media transportation of high-
pressurized fluids and piping of nuclear reactors [1, 
2]. In most of these applications, the cylinder has 
to operate under severe mechanical and thermal 
loads, causing significant creep and thus reducing 
its service life [1, 2, 3, 4]. Therefore, the analysis of 
long term steady state creep deformations is very 
important in these applications. [1, 2]. 
 
Weir [5] investigated creep stresses in pressurized 
thick walled tubes. Bhatnagar and Gupta [6] 
obtained solution for an orthotropic thick-walled 
internally pressurized cylinder by using constitutive  

 
 
equations of anisotropy creep and Norton’s creep 
law. Yang [7] obtained an analytical solution to 
calculate thermal stresses of thick cylindrical shells 
made od functionally graded materials with elastic 
and creep behavior. Creep damage simulation of 
thick-walled tubes using the theta projection 
concept investigated by Loghman and Wahab [8]. 
Gupta and Pathak [9] studied thermo creep 
analysis in a pressurized thick hollow cylinder. 
Assuming that the creep response of the material 
is governed by Norton’s law, Zamani Nejad et. al. 
[10] presented a new exact closed form solution for 
creep stresses in isotropic and homogeneous thick 
spherical pressure vessels. In this paper all results 
have been obtained in nondimensional form. 
Hoseini et. al. [11] presented a new analytical 
solution for the steady state creep in rotating thick 
cylindrical shells subjected to internal and external 
pressure. In this paper the creep response of the 
material is governed by Norton’s law and exact 
solutions for stresses are obtained under plane 
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strain assumption. Wah [12] developed a theory for 
the collapse of cylindrical shells under steady-state 
creep and under external radial pressure and high 
temperature (300 to 500 F). Pai [13] studied the 
steady-state creep of a thick-walled orthotropic 
cylinder subjected to internal pressure. They 
observed that the creep anisotropy has a 
significant effect on the cylinder behavior 
particularly in terms of creep rates which may differ 
by an order of magnitude compared to an isotropic 
analysis. Sankaranarayanan [14] studied the 
steady creep behaviour of thin circular cylindrical 
shells subjected to combined lateral and axial 
pressures. The analysis is based on the Tresca 
criterion and the associated flow rule. Assuming 
that the total strain is consist of elastic and creep 
components, Murakami and Iwatsuki [15] 
investigated the transient creep analysis of circular 
cylindrical shells on the basis of the strain-
hardening and time-hardening theories. Murakami 
and Suzuki [16] developed a numerical analysis of 
the steady state creep of a pressurized circular 
cylindrical shell on the basis of Mises’ criterion and 
the power law of creep. Sim and Penny [17] 
studied the deformation behaviour of thick-walled 
tubes subjected to a variety of loadings during 
stress redistribution caused by creep. Murakami 
and Iwatsuki [18] investigated the steady state 
creep of simply supported circular cylindrical shells 
with open ends under internal pressure by using 
Nortons’s law. Using finite-strain theory Bhatnagar 
and Arya [19] studied the creep bchaviour of a 
thick-walled cylinder under large strains. Murakami 
and Tanaka [20] investigated the creep buckling of 
clamped circular cylindrical shells subjected to 
axial compression combined with internal pressure 
with special emphasis on the concept of creep 
stability and the accuracy of the analysis. Jahed 
and Bidabadi [21] presented a general 
axisymmetric method for an inhomogeneous body 
for a disk with varying thickness. An approximation 
has been employed during their solution algorithm. 
It means that they avoid considering the 
differentiation constitutive terms of governing 
equations for creep analysis. Chen et al. [22] 
studied the creep behavior of a functionally graded 
cylinder under both internal and external 
pressures. They observed that an asymptotic 
solution can be derived on the basis of a Taylor 
series expansion if the properties of the graded 
material are axisymmetric and dependent on radial 
coordinate. In order to investigate creep 

performance of thick-walled cylindrical vessels or 
cylinders made of functionally graded materials, 
You et al. [23] proposed a simple and accurate 
method to determine stresses and creep strain 
rates in thick-walled cylindrical vessels subjected 
to internal pressure. Based on the power law 
constitutive equation, Altenbach et al. [24] 
presented the classical solution of the steady-state 
creep problem for a pressurized thick-walled 
cylinder. In this paper they applied an extended 
constitutive equation which includes both the 
linear and the power law stress dependencies. 
Singh and Gupta [25-28] developed a 
mathematical model to describe the steady-creep 
behaviour of functionally graded composite 
cylinders containing linearly varying silicon carbide 
particles in a matrix of pure aluminum involving 
threshold stress-based creep law. The model 
developed is used to investigate the effect of 
gradient in distribution of SiCp on the steady-state 
creep response of the composite cylinder. 
Assuming total strains to be the sum of elastic, 
thermal and creep strains, Loghman et al. [29] 
studied the time-dependent creep stress 
redistribution analysis of a thick-walled FGM 
cylinder placed in uniform magnetic and 
temperature fields and subjected to an internal 
pressure. Following Norton’s law for material 
creep behavior and using equations of equilibrium, 
strain displacement and stress-strain relations in 
the rate form and considering Prandtl-Reuss 
relations for creep strain rate-stress equation, they 
obtained a differential equation for the 
displacement rate and then calculated the radial 
and circumferential creep stress rates. Sharma et 
al. [30] investigated the creep stresses in thick-
walled circular cylinders under internal and 
external pressure, using transition theory, which is 
based on the concept of ‘generalized principal 
strain measure’. Jamian et al. [31] investigated the 
creep analysis for a thick-walled cylinder made of 
functionally graded materials (FGMs) subjected to 
thermal and internal pressure. Singh and Gupta 
[32] studied the steady state creep behavior in a 
functionally graded thick composite cylinder 
subjected to internal pressure in the presence of 
residual stress. Hoffman’s yield criterion is used, 
to describe the yielding of the cylinder material in 
order to account for residual stress. In this article, 
assuming that the thermo-creep response of the 
material is governed by Norton’s law, an analytical 
solution is presented for the calculation of time-
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dependent creep stresses and displacements of 
thick-walled cylindrical pressure vessels under 
internal heat flux. 
 
2. Heat conduction formulation 
 
In the steady state case, the heat conduction 
equation for the one-dimensional problem in polar 
coordinates simplifies 
 

0T
r

r r
      

                                                    (1)
 

 

where  T T r
 
is temperature distribution in the 

thick cylindrical pressure vessel. We may 
determine the temperature distribution in the 
cylindrical vessel by solving Eq. 1 and applying 
appropriate boundary conditions. Eq. 1 may be 
integrated twice to obtain the general solution 
 

                                                (2) 

 
The boundary conditions for when that inner 
surface is exposed to a uniform heat flux , and 

the outer surface is exposed to an airstream  
temperature,  are as follows 
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Here ,  and  are thermal conductivity, 

temperatures and heat transfer coefficient of the 
surrounding media, respectively. Substituting Eq. 2 
into Eq. 3 yields 
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Therefore: 
 

  lna aaq aq r
T r T

bh b


     
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                               (5) 

 

3. Linear elastic behavior analysis of the cylinder 
 
For the stress analysis in a cylinder, having 
material creep behavior, the solutions of the 
stresses at a time equal to zero (i.e. the initial 
stress state) are needed, which correspond to 
the solution of materials with linear elastic 
behavior. In this section, equations to calculate 
such linear stresses in cylinder analytically will 
be given briefly for two cases: (a) plane strain; 
(b) plane stress. Consider a thick-walled cylinder 
with an inner radius a , and an outer radius b , 
subjected to internal pressure iP  and external 

pressure oP  that are axisymmetric (Figure 1). 

 
3.1 The case of plane strain 
 
The displacement in the r-direction is denoted by 

. Three strain components can be expressed 

as 
 

                                                            (6) 

 

                                                            (7) 

 

                                                               (8) 

 
where rr  ,    and zz  are radial, circumferential 

and axial strains. The stress-strain relations for 
homogenous and isotropic materials are 
 

 
  

1
1 1 2 1rr rr

E


   
  

    
 

 
1
1

T
 


   
                                                            (9) 

 

 
  

1
1 1 2 1 rr

E
 

   
  

    
 

 

1
1

T
 


   
                                                         (10) 

 

  1 2T r A lnr A 

aq

 T h

ru

r
rr

du

dr
 

ru

r 

0zz 



 

 

Effect of Heat Flux on Creep Stresses of Thick‐Walled Cylindrical Pressure Vessels, Mosayeb Davoudi‐Kashkoli  / 585‐597

Vol. 12, June 2014 588 

 

 zz rr E T                                          

(11)
 

 
where rr  ,   and zz  are radial, circumferential 

and axial stresses, respectively. Here ,  and 
 are the Young's modulus, Poisson's ratio and 

thermal expansion coefficient, respectively. 
 

 
 

Figure 1. Configuration of the cylinder. 
 
The equilibrium equation of the cylindrical 
pressure vessel, in the absence of body forces, is 
expressed as 
 

0rrrrd

dr r
  

                                            (12)
 

 
Using Eqs. 5-12, the essential differential equation 
for the displacement ru  can be obtained as 
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For a homogenous and isotropic material, Young's 
modulus, Poisson's ratio  , and the thermal 
expansion coefficient  , are constant, therefore, 
Eq. 13 on simplifying yields 

 

 
 

 2

2 2

11
1

r r r
d Td u du u

dr r dr r r dr

 



  


                       (14)

 

 
The general solution of the displacement ru  is 
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The corresponding stresses are 
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To determine the unknown constants 1C  and 2C  in 

each material, boundary conditions have to be 
used, which are 
 

,
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The unknown constants 1C  and 2C

 
are given in 

Appendix. 
 
3.2 The case of plane stress 
 
For the case of plane stress the stress-strain 
relations are 
 

                   (20) 
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                   (21) 

 
                                                               (22) 

 
For The case of plane stress the differential 

equation for displacement  is 
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The solution of Eq. 23 is 
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The corresponding stresses are 
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To determine the constants 1C   and 2C  , boundary 

conditions have to be used which are the same as 
those for the case of plane strain  (see Eq. 19). 
The unknown constants 1C   and 2C   are given in 

Appendix. 
 
4. Creep behavior analysis of the cylinder 
 
For materials with creep behavior, we use Norton’s 
low to describe the relations between the rates of 
stress ( ij ) and strain ( ij ) in the multi-axial form 
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where D and N are material constants for creep.  

eff
 
is the effective stress, is the deviator stress 

tensor. The relations between the rates of strain 
and displacement are 
 

                                                            (30) 
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And the equilibrium equation of the stress rate is 
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For the case of plane strain ( ), the relations 

between the rates of stress and strain are 
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For the case of plane stress ( ), the relations 

between the rates of stress and strain are 
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4.1 The case of plane strain 
 
Substituting Eqs. 30 and 31 into Eqs. 33 and 34 
and then into Eq. 32 gives the differential equation 
for ru  in cylinder 
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For a homogeneous and isotropic material, 
Young's modulus ( E ) is constant, also the case of    

D ,ߥ  and N  being constant is studied in this 
article, therefore, Eq. 39 on simplifying yields 
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In general, the quantities , rrS   and S  are very 

complicated functions of the coordinate r , even in 
an implicit function form. Therefore, it is almost 
impossible to find an exact analytical solution of Eq. 
41. We can find an asymptotical solution of Eq. 41. 
At first, we assume that eff , rrS   and S  are 

constant, i.e. they are independent of the coordinate 
. Then, the solution of Eq. 41 is 
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where the unknown constants 1D  and 2D  can be 

determined from the boundary conditions. The 
corresponding stress rates are 
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To determine the unknown constants 1D  and 2D  
in each material, boundary conditions have to be 
used. Since inside and outside pressures do not 
change with time, the boundary conditions for 
stress rates at the inner and outer surfaces may 
be written as 
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and 2D  are obtained 
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When the stress rate is known, the calculation of 
stresses at any time it  should be performed 

iteratively 
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To obtain a generally useful solution, a higher 
order approximation of ,  and  should 

be made 
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where r  is the center point of the wall thickness in 
the following analysis. 
 
4.2. The case of plane stress 
 
The differential equation for ru  is 

 

   
2

1
2 2

3
2

Nr r r
eff rr

d u du u D
S S

dr rdr r r       
  

                (54)
 

 
 

The solution of Eq.54 is 
 

 12
1

1 3( )
2 2

N
eff

D
u r D r D

r
 

                               

                            (55)

 

       1ln ln
2rrS S r r a a r a

          
 
where the unknown constants 1D  and 2D  can be 

determined from the boundary conditions. The 
corresponding stress rates are 
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5. Numerical results and discussion 
 
In the previous sections, the analytical solution 
of creep stresses for hemogeneous thick-walled 
cylindrical vessels subjected to uniform 
pressures on the inner and outer surfaces were 
obtained. In this section, some profiles are 
plotted for the radial displacement, radial stress, 
circumferential stress and axial stress as a 
function of radial direction and time. 
 
A cylinder with creep behavior under internal and 
external pressure is considered. Radii of the 
cylinder are 20a   mm, 40b   mm. The other 
data are 
 

207 GPaE  , 0 292.  , 
6 110 8 10 K.    , 

2 25N . , 43 W m C.   , 80 MPaiP  , 

0 MPaoP  , 81 4 10D .   , 
23000 W maq  , 

26 5 W m Ch . .   , 25 CoT   

 
The thermal loading is as follows: inner surface 
is exposed to a uniform flux, aq , and the outer 

surface is exposed to an airstream at T . 

 
5.1 The case of plane strain 
 
The stress distribution after 10h of creeping are 
plotted in Figure. 2, Figure 3 and Figure 4 for the 
stress components ,  and  
respectively. It must be noted from Figure. 2, 
Figure 3 and  Figure 4 that, all  three stresses  
are comperesive  and the  values of all three 
stresses decreases as radius increases. The 
absolute maximums of radial, circumferential and  
 

axial stresses occur at the inner edge. It means 
the maximum shear stress which is 

2max rr     will be very high on the inner 

surface of the vessel. 

 
 

Figure 2. The radial stress calculated from the 
asymptotic solution after 10 h of creeping. 

 

 
 

Figure 3. The circumferential stress calculated from 
the asymptotic solution after 10 h of creeping. 

 

 
 

Figure 4. The axial stress calculated from the  
asymptotic solution after 10 h of creeping. 
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The time dependent stresses at point are plotted in 
Figure. 5, Figure 6 and Figure 7. Radial, 
circumferential and axial stresses decreases as 
time increases. 
 
According to Figure. 5 to Figure 7, all three 
stresses are comperesive. The radial displacement 
along the radius for the condition of plane strain is 
plotted in Figure 8. It must be noted from Figure. 8 
that the maximum value of radial displacement is 
at the inner surface. 
 
5.2 The case of plane stress 
 
The stress distribution after 10h of creeping are 
plotted in Figure. 9 and Figure 10 for the stress 
components 

 
and  respectively. It must be 

noted from Figure. 9, that for 1.08r a  , the value  

 

 
 

Figure 5. Time-dependent radial  
stress at the point 30r   mm. 

 

 
 

Figure 7. Time-dependent axial  
stress at the point 30r   mm. 

 
 

of radial stress increases as radius increases while 
for 1.08r a  , The value of radial stress decreases 

as radius increases. According to Figure 10, the 
value of circumferential stress decreases as radius 
increases. It can be seen that, radial and 
circumferential stresses are compressive. 
 
The time dependent stresses at point 30r   
mm, are plotted in Figure. 11 and Figure 12. The 
radial and circumferential stresses decreases as 
time increases. 
 
According to Figure. 11 and 12, radial and 
circumferential stresses are compressive. The 
radial displacement along the radius for the 
condition of plane stress is plotted in Figure 13. 
There is an decrease in the value of the radial 
displacement as radius increases. 
 

 
 

Figure 6. Time-dependent circumferential 
 stress at the point 30r   mm. 

 
 

 
 

Figure 8. The radial displacement calculated from 
the asymptotic solution after 10 h of creeping. 

rr 
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Figure 9. The radial stress calculated from  
the asymptotic solution after 10 h of creeping. 

 

 
 

Figure 11. Time-dependent radial  
stress at the point 30r   mm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. The circumferential stress calculated  
from the asymptotic solution after 10 h of creeping. 

 

 
 

Figure 12. Time-dependent circumferential 
stress at the point mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13. The radial displacement calculated from 
the asymptotic solution after 10 h of creeping. 
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6. Conclusions 
 
In the present study, an analytical solution 
procedure has been developed for the time-
dependent creep analysis of an internally and 
externally pressurized, thick-walled cylindrical 
pressure vessel subjected to internal heat flux. For 
the stress analysis in a cylinder, having material 
creep behavior, the solutions of the stresses at a 
time equal to zero (i.e. the initial stress state) are 
needed, which correspond to the solution of 
materials with linear elastic behavior. The 
analytical solution is obtained for the conditions of 
plane strain and plane stress. Norton's power law 
of creep is employed to derive general expressions 
for stresses and strain rates in the thick cylinder. 
The pressure, inner radius and outer radius are 
considered constant. Material properties are 
considered as constant. The heat conduction 
equation for the one-dimensional problem in polar 
coordinates is used to obtain temperature 
distribution in the cylinder. 
 
According to stress distribution after 10h of creeping 
for the case of plane stress, both radial and 
circumferential stresses remains compressive over 
the entire cylinder radius. It must be noted that for  
the case of plane stress, the maximum value of 
circumferential stress at the point mm, is at a time 
equal to zero (i.e. the initial stress state) and it 
decreases as time increases. According to stress 
distribution after 10h of creeping for the case of 
plane strain, the maximum value of all three 
stresses are at a time equal to zero, in other word 
all three stresses decreases as time increases. 
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Appendix 
 
The unknown constants in Eqs. 16 and 17 are 
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The unknown constants in Eqs. 25 and 26 are 
 

    
 

2

1 2 2

1 1i i oP P P b
C

E E b a

    
  


 

2 2

b

a
Trdr

b a




 
 

 

   
 

2

2 2 2

( ) 1i oP P ab
C

E b a

 
 


 

 

 2

2 2

1
1

b

a

a
Trdr

b a

 




    

 


