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ABSTRACT 
Recently, several mathematical models have been developed to study and explain the way information is 
processed in the brain. The models published account for a myriad of perspectives from single neuron segments to 
neural networks, and lately, with the use of supercomputing facilities, to the study of whole environments of nuclei 
interacting for massive stimuli and processing.  Some of the most complex neural structures -and also most 
studied- are basal ganglia nuclei in the brain; amongst which we can find the Neostriatum. Currently, just a few 
papers about high scale biological-based computational modeling of this region have been published. It has been 
demonstrated that the Basal Ganglia region contains functions related to learning and decision making based on 
rules of the action-selection type, which are of particular interest for the machine autonomous-learning field. This 
knowledge could be clearly transferred between areas of research. The present work proposes a model of 
information processing, by integrating knowledge generated from widely accepted experiments in both morphology 
and biophysics, through integrating theories such as the compartmental electrical model, the Rall’s cable equation, 
and the Hodking-Huxley particle potential regulations, among others. Additionally, the leaky integrator framework is 
incorporated in an adapted function. This was accomplished through a computational environment prepared for 
high scale neural simulation which delivers data output equivalent to that from the original model, and that can not 
only be analyzed as a Bayesian problem, but also successfully compared to the biological specimen. 
 
Keywords: Safety Stock, Guaranteed-service time, Dynamic Programming, Automotive Industry. 
 
RESUMEN 
Recientemente se han desarrollado modelos matemáticos que permiten explicar y definir a través de la ingeniería  
la manera como se procesa la información de señales eléctricas producidas por iones en el sistema nervioso de 
los seres vivos. Se han diseñado numerosas propuestas de este tipo de lo discreto a lo masivo, que operan como 
segmentos de una neurona,  una red, y en últimas fechas con ayuda del supercómputo, hasta conjuntos de 
núcleos que interactúan en entornos de estímulos y procesamiento a gran escala. De las estructuras neurales más 
complejas y de más interés ha sido la del grupo denominado de los Ganglios Basales, de los que el Neoestriado 
forma parte, y sobre el cual se han hecho pocos trabajos de modelado computacional. Se ha demostrado que en 
esta región residen funciones de aprendizaje, y otras relacionadas con la toma de decisiones bajo las reglas de 
acción-selección que son ampliamente estudiadas en el aprendizaje autónomo computacional, permitiendo 
transferir el conocimiento de un campo de investigación a otro. El presente trabajo propone un modelo 
computacional en tiempo real, a través de integrar el conocimiento obtenido de experimentos ampliamente 
aceptados en biofísica, aplicando la teorías de compartimientos electrónicos, de la ecuación de cable de Rall, las 
leyes de potencial de partículas Hodkgin-Huxley, entre otros. Dichos modelos se incorporan en un entorno basado 
en la función de integrador con fugas, a través de un ambiente computacional de simulación neural a gran escala, 
que entrega una salida de datos equivalente al modelo biológico, susceptible a ser analizada como un problema 
Bayesiano, y comparada con el espécimen biológico con éxito. 
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1. Introduction 
 
In the past two decades, researchers have 
increasingly become interested in building 
computer simulations of diverse brain structures, 
based upon morphological and physiological data 
obtained from biological experimental procedures. 
 
The efforts for building off these constructs are 
only directed by the findings in biological models, 
leading to specific algorithms [1, 2]. Thus, they are 
aimed to the creation of neural simulation 
platforms --yet specifically designed for suiting a 
particular characteristic from a given region [3] -- or 
for general purposes, demonstrating that many 
functions are present in specific regions of the 
nervous system and can be applied generally, and 
at the same time, they are also present among 
many species at many levels of differentiation [4]. 
 
All of these tools have been useful both, for 
consistently recreating the findings at different 
scenarios, and for welcoming new proposals and 
directing new experiments, or even to predict new 
findings in diverse brain structures [5,6]. The use 
of this kind of methodologies have made possible 
the simulation of neural processes at many levels 
of detail, analyzing from membrane regions with 
ionic channels for simulating the effects of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

neuromodulation and neurotransmitter action in 
membrane potential, and building off  a whole 
neuron with all the electrophysiological responses 
[7,8], to a specific cell network [9,10]. These 
algorithms and computational environments are 
only limited by the current state of art of their 
respective experimental procedures on the one 
side, and for the computing capacity on the other 
[11-13]. 
 
Many simulations of diverse regions and networks 
as well as analysis of several information 
processing strategies about how this neural 
network works, have been published elsewhere 
[14-17]. For supporting this research, plenty of 
tools for building real time simulations of diverse 
brain structures have been reported [18]; thus 
helping and directing the biological findings 
trough experiment-biological cycles and 
perfecting each other in every iteration [19]. Given 
this knowledge production for biophysics, there is 
understandable growing interest in computer 
engineering field, to study the information 
processing in living neural structures, because 
the so-called "Intelligent Planning and Motivated 
Action Selection" [20, 21], which is a task well 
characterized in animal behavior, and also a 
computational problem intensively studied in 
artificial intelligence field [22-24]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. A, classical Model of NS Connectivity. This nucleus receives excitatory input mainly from both the cortex 
and the thalamus regions. Its architecture is composed of patches and matrices which under modulatory influence of 

DA, determine the output signaling by direct and indirect pathway to the basal ganglia nuclei. The main unit is the 
MSN, which generates a series of inhibitory, excitatory and modulatory connections inside the NS, as shown in B. 
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These particular properties of information 
processing and decision making have been 
discovered on some brain structures as the 
respective methodologies for their study have been 
developed, and the equipment needed for the 
experimental procedures has been perfected.  In 
mammals, the specialized brain structures where 
this functions have been demonstrated -but not 
well understood- are the basal ganglia (BG), which 
are located in sub cortical brain region [25,26]. BG 
structures are composed by several nuclei, from 
which neostriatum (NS) is widely accepted as the 
main input nucleus [27-29]. Although there is a lot 
of theoretical approach about the information 
processing form of this region, the construction of 
respective real time computer models and analysis 
are just emerging [10, 25, 30, 31]. 
 
From the perspective of computational  ccience, 
"Reinforcement-Learning" [32], and "Action-
Selection" theories [33] have been developed 
many decades ago as theory for machine learning 
strategies [20, 34]. Therefore, they have been 
associated to some of the functions of BG [35, 36] 
and more specifically within the activity of NS 
[37,38]. However, related to this nucleus, only a 
few dynamical systems in real time have been built 
allowing integration, comparing and testing the 
experiences and data acquired from biological 
models to computational ones [39,40]. 
 
The present work extends the use of these 
methodologies, through the use of a general 
purpose neural simulator [41,42] in a high demand 
computational environment, which served for 
building a simplified model of NS composed of 
mathematical models for the best characterized 
cell types, -- the main output neuron is one of 
them, organized in regions and delimited by the 
interconnection of their respective inter- neurons 
[43, 44]-. This whole structure was added with both 
excitatory external signaling and bi-modal 
modulation as inputs, assembling the functions of 
cerebral cortex and thalamus effect on the NS on 
one side, and dopaminergic (DA) effect on the 
other  [45, 46]. All this model was strictly built 
based on morphological and physiological data 
reported from classical experiments reviewed in 
biological reports [47-49]. 
 
The output data of the model was processed and 
analyzed qualitatively against the biophysical 

experiments, and quantitatively by the same 
component current/voltage analysis methodologies 
which were used for characterizing separately 
each ionic currently studied in electrophysiology 
[50, 51], as is discussed in the results section. 
 
2. Neostriatum, Anatomy and Function. 
 
The anatomical and physiological data which form 
the basis of our model are well known, and are 
described in several reviews [43-45, 52]. Their 
function has been conceptualized as four nuclei that 
process information from the cerebral cortex related 
to the pathway regarding movement, posture and 
behavioral responses [53]. Initially BG function was 
associated to movement execution and feedback 
control [54, 55], this is because the first knowledge 
of BG was a condition known as "Parkinson 
Disease" which clinically expresses an impairment 
of motor responses [56, 57, 58]. Actually, it is known 
that BG are also involved in the process of attention 
and decision making, as explained above. 
 
Anatomical and physiological studies have shown 
NS cellular architecture which reveals an internal 
network directed to the output of its main neuronal 
type: the medium spiny neuron (MSN) -an 
inhibitory type cell which forms a series of loops 
divided in two main classical circuits- calling direct 
and indirect pathways  [59,60] (Fig 1a). 
 
NS would also receive input from a nucleus that 
can change the internal state of the network: the 
DA action of "substantia nigra pars compacta", 
which is not considered excitatory or inhibitory, 
but modulatory instead [61]. This means that a 
dual effect is produced over the natural output 
MSN neurons. Depending on several network 
variables this can either enforce or not –or both at 
the same time-, the action of cortical stimulation on 
the MSN. 
 
The default function of the BG output nuclei is to 
exert a widespread tonic inhibitory control over 
target structures. This starts with the NS over 
influence of DA modulation, which is able to 
promote actions through disinhibiting their 
associated target structures while maintaining 
inhibitory control over others [62]. This prevailing 
model was proposed by Albin et al on 1989 [55], 
nevertheless, a full computational model still 
needs to be developed [11]. 
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We have opted for a mathematically model 
simplified as the basis for validating the most 
relevant variables and incorporating them in more 
controlled manner. We have chosen to refer the 
electrical responses and morphology of MSN, 
within a minimum circuit and adding the least 
synaptic contacts necessary to obtain comparative 
results. Although there are several cellular sub 
types that contribute to affect and modulate the 
membrane potential of MSN, some of them are 
not yet fully characterized, or are still under 
further discussion. 
 
The signaling of the cells that take part in the 
network within the NS is complex and particular. 
The MSN is a cell that is normally silent, but 
presents this special condition in its potential 
membrane that keeps its value dynamically 
oscillating, in some moments making it easier to be 
excited from a summatory input [63, 64]. In their 
default state, MSNs are largely silent and do not 
respond to low input levels. However, on receiving 
substantial levels of coordinated excitatory input, 
these cells yield a significant output whose 
magnitude may be subsequently affected by low-
level inputs, which are ineffective when presented in 
isolation. This dichotomous behavior is described 
using the terms “down state” and “up state” 
respectively, for these two operation modes [50]. 
 
The remain types of interneurons that conform NS 
architecture have also particular properties for 
signaling: a) "Giant Cholinergic Aspiny Cell", 
electrophisiologically called “Tonically Active 
Neuron”, (TAN) because it produces spontaneous 
bursts that affects directly the MSN [65,66]. b) 
"Medium GABAergic" interneurons divided 
electrophisiollogicaly in two types: “Fast spiking 
and Plateau” (FS) and “Low Threshold” spiking 
named after these firing characteristics [67]. All 
these types of interneurons are the 3-10% of the 
total NS architecture, and profile its input/output 
function by interconnecting with MSN [68] in a 
network outlined in Fig 1b. 
 
We chose to consider only afferents provided to 
the MSN that are better identified, such as FS 
neurons and TAN, and check the results in the 
simulations according to the biological model. First, 
FS [65,66], characterized histologically as 
parvalbumin - immunoreactive neurons in MSN 
affect the proximal synapses with large amplitude 

IPSPs, and strong effect to block signals from the 
axons of projection of the MSN [67]. Secondly 
TAN, which are characterized as cholinergic 
neurons have a modulatory effect, because they 
are activated by cortical afferents with lower 
latency than MSN, which in turn are their 
respective targets [60]. 
 
3. Methods 
 
3.1.Implementation..of..the..Neostriatum..Computati
onal Cell components 
 
A computational neural model, yet robotic or purely 
theoretical, has to be composed of elements that 
are bio-mimetic, --that is, they are intended to 
directly simulate neurobiological processes with 
the available computational resources and 
knowledge [69]. They have to be engineered in 
such a way that they provide an interface in order 
to allow the model to ask questions and handle 
some of all available variables in a controlled and 
limited way. A model that seeks to simulate 
complete behavioral competences also results 
impractical, because of the task scale, or 
impossibly, because of the lack of necessary 
neurobiological data, as many experiences have 
shown [13, 70, 71]. 
 
The process of building a biologically realistic 
model of a neuron, or else a network of such 
neurons, is based on the compartmental concept 
and involves the following three steps [72]: 
 
a)_Build a suitably realistic passive cell model, 
without the variable conductance. 
 
b)-Add voltage and/or calcium activated 
conductance. 
 
c)-Add synaptically activated conductance, and 
connect them to other cells in a network and 
provide artificial inputs to simulate the in-vivo 
inputs to the neuron. 
 
The first two steps are explained bellow; the last 
one will be covered in the subsequent section. 
 
For the first step, the key feature for performing 
excitability in a neuron is the ability for maintaining 
a voltage difference from inside (Vinside) to outside 
(Voutside). This is accomplished by the equilibrium 
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potential Ei between ion concentrations divided 
by [C] given by the Nernst Equation (for the 
complete mathematical modeling process see the 
appendix in supplementary material): 
௜ܧ  ≡ iܸn − ௢ܸ௨௧ = ோ்௭ி ln [஼]೚ೠ೟[஼]in                                   (1) 

 
In presence of several different ions in the cell, 
the equilibrium potential depends on the sum of 
their relative permeability. The eq (1) was 
integrated in the classical Goldman-Hodgkin-Katz 
solution [73-77]: 
 ௘ܸ௤ = ௚ಿೌாಿೌା௚಼ா಼ା௚಴೗ா೎೗ା...௚ಿೌା௚಼ା௚಴೗ା...                                   (2) 

 
For using this theoretical approach for computing 
facilities, and solving it in a real time model, we 
need derivation of it in a linearized version: 
 ௘ܸ௤ = ௚ಿೌாಿೌା௚಼ா಼ା௚಴೗ா೎೗ା...௚ಿೌା௚಼ା௚಴೗ା...                                   (3) 

 
With this, and based on experimental data, we 
obtain a form to predict the value of a membrane 
potential at a given time. Next, it needs to be 
implemented on an algorithm that represents a 
morphological model of the specific cell. We can 
represent a piece of a neuron as a simple RC 
circuit, which can be constructed in a 
connectionist point of view, and can be as 
complex as the computing facilities allow.  Given 
the known capacitance of a piece of membrane, 
and starting with an initial voltage V(0), which can 
be obtained from another compartment serialized, 
or from an external input, like synapses or 
another stimuli, we have: 
(ݐ)ܸ  = ௠ܸ + (ܸ(0) − ௠ܸ)݁ି௧ த⁄                              (4) 
 
For giving a numerical solution of this passive 
model, it is much easier to simulate a neural 
activity by these compartments, where some 
particularities can be added  like  ionic membrane 
behavior, and morphological properties, thus 
allowing to differentiate  neurons within a network 
[78].  The General Neural Simulator  available for 
working with this technique solves differential 
equations with different integration techniques. 
Therefore, for a single compartment under a single 
ionic stimulation we have the following model: 
 

ܣெܥ ௗ௏ௗ௧ = ܣ ௏೘ି௏ோಾ +  (5)                                       (ݐ)ܫ̄ܣ

 
Where A is the area of the membrane 
compartment and CM is specific Membrane 
Capacitance in terms of the area of the membrane, 
F/cm2. The actual membrane resistance (Rm) can 
be expressed in terms of area, as Rm = RM/(4π r2). 
Thus, allowing to calculate a time constant  (τ) of 
the model as τm=RmCm =AxCMA. We can calculate 
for a membrane patch: 
௠ܥ  ௗ௏ௗ௧ = −(ܸ − ௠ܸ) ܴ௠⁄                                         (6) 
 
and, using τm    as  
 τ௠ ௗ௏ௗ௧ = −(ܸ − ௠ܸ)                                                (7) 
 
Because of magnitudes (millivolts, milliseconds, 
and picoamps) and for being consistent to the 
International Unit System we can solve this 
equation as follows: 
 ௗ௏ௗ௧ = (݃ெ( ௠ܸ − ܸ) + ((ݐ)ܫ̄ ⁄ெܥ                                (8) 
 
For complete mathematical deploying, see proper 
section in supplementary material. ** 
 
For physiological consistency, we use the 
inversion of resistance for calculation of ionic 
currents; thus gM = 103/RM is the membrane 
conductance in μS/cm2. 
 
Finally for calculating the dissipation of the Voltage 
(V) between compartments, modeled as a 
continuous piece of membrane coupled with an 
axial resistance Ra, given the know morphological 
properties of  the neuron, we use the Rall's cable 
equation [79, 80]. 
௠ܥ  ௗ௏ೕௗ௧ = ாି௏ೕோ೘ + ௏ೕశభିଶ௏ೕା௏ೕశభோೌ                                 (9) 

 
This equation can be solved for several boundary 
conditions. axial resistance (Ra) depends on the 
cable geometry, diameter, length and if it is a 
sealed end or finite o semi-infinite cable [64,81]. 
With these methodologies we have been coding, 
arise the three main types of neurons for this 
particular network: MSN, FS, and TAN.  All of them 
were built using simplified morphological models, 
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well tested and known as "Equivalent Cylinder 
models" [82,83]. 
 
In the second step, we need to add the dynamic 
conductance of the ions gated in the cell, as 
needed for the three types of neurons used in this 
model. These represent the channels that drive the 
neuron electrical behavior. For the passive 
compartment explained above, the value of 
conductance -as inverse of resistance-, was 
obtained using a probabilistic function of ion 
diffusion interpreted as transitions between 
permissive or not permissive states of the 
molecular gates that the channels ions can cross 
trough; hence changing dynamically the 
conductance of each patch of membrane: 
 ௗ௣೔ௗ௧ = α௜(ܸ)(1 − (௜݌ − β௜(ܸ)݌௜                             (10) 
 
Where αi and βi are voltage-dependent rate 
constants describing the non permissive to 
permissive and permissive to non-permissive 
transition rates, respectively [84, 85]. For each of 
the three cells we modeled Na+, Ca+ dependent, 
and K+ ions are well known related variables and 
documented by their participation on shaping their 
output frequencies and wave morphology. All 
those responses where tested separately against 
the results published on the real neurons. 
 
3.2 Integration of Neural models in a NS network. 
 
In the third Step mentioned in the above section, 
the model was interconnected using a simplified 
diagram according to Wilson, 1980 [68], and 
shown on Fig 1.b. This schematic connectivity 
gives relevance to the position within the dendritic 
tree regarding the other connections, the back 
propagation between MSN, the relation between 
patches and matrixes, and the type of synapses 
within the NS: excitatory or inhibitory, plus 
modulatory DA effects. Following the 
consideration that the model is focused in the 
responses of MSN projections as a result of the 
simulation of PSP selected neuronal types, and 
under the modulatory effect of dopamine. This 
simulation is generic and can be changed in the 
future with the characteristics of the direct or 
indirect pathway, and the responses obtained can 
be validated and discussed. 
 

Finally, this network was tuned with the synaptic 
weights needed for reproducing the operation 
conditions. The physiologically experimental data 
available have not considered data analysis 
processed in real time, but only qualitative analysis 
of outputs, thus the network model has to be tuned 
up empirically in cycles of trial and error [87-90]. 
 
For the integration of all constructed algorithms, 
we have used of the leaky integrator neuronal type 
as our framework [86, 87]. In principle, this 
proposal does not completely fit into the scope of 
our model, because of the idea of a dynamic 
membrane potential obviating the need to model 
an abundance of ionic channels [88]. 
Nevertheless, we have been updated these 
simplified neuronal units with full conductance-
modeled neurons instead, with the cost of a high 
computing-resource need, but with the benefit of 
having a more reliable interface to compare 
against biological experiments. The framework 
then is defined by the rate of an activation change, 
which may be interpreted as the threshold 
membrane potential near the axon hillock. Let u be 
the total post-synaptic potential generated by the 
afferent input, k a rate constant which depends on 
the cell membrane capacitance and resistance, 
and  ā  the equilibrium activation, then: 
 
a= -k(a-u),    ā = u                                              (11) 
 
Where a ≡ da/dt. The output y of the neuron, 
corresponding to the mean firing rate is a 
monotonic increasing function of a. It will be 
bounded below by 0 and above by some maximum 
value ymax which may be normalized to 1. We 
have adopted a piecewise linear output function of 
the form [89]: 
 

y = { 0: ܽ < ϵ݉(ܽ − ϵ): ܽ ≤ ϵ ≤ 1 ݉⁄ + ϵ1: ܽ > 1 ݉⁄ + ϵ                     (12) 

 
The choice of this form for y is motivated by the 
fact that the equilibrium behavior of the model is 
then analytically tractable. The activation space of 
the model is divided into a set of disjoint regions 
whose individual behavior is linear, and which may 
be exactly determined [62,90]. 
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The NS model built this way admits the possibility 
of local recurrent inhibition. Within each recurrent 
net, every node is connected to one other by an 
inhibitory link with weight w. Let the non-zero slope 
in the output reaction be m, the equilibrium output 
of the ith node x, and the output threshold ε, then 
the network equilibrium state is defined by the 
following set of coupled equations 
 ܽపˉ = ௜ܬ − ෌ݓ ௝௝ஷ௜ݔ                                              (13) 

 
Now with Jk = maxi (Ji). If  w.m ≥ 1, then one 
integral solution to (12) and ( 13) is: 
 x୧ = m(J୧ − ϵ)H(J୧ − ϵ)δ୧୩                                   (14) 
 
Where δiK is the Kronecker delta. This solution may 
be easily verified by direct substitution. 
 
In order to make contact with the idea of channel 
salience ci as input, we put Ji = wsci, where ws, is a 
measure of the overall synaptic efficiency of the 
MSN, in integrating its inputs. NS is supposed to 
consist of many recurrent nets of the type defined 
by eq. (12). Each one processing several channels; 
the solution in eq. (14) implies however that only 
those saliences, which are maximal within each 
network, are contenders for further processing. 
Now, suppose there are N NS sub-networks (as in 
patches or matrixes) and let cri be the salience on 
the ith channel of network r.  Let crc(r) = maxi (cri) and 
P = {crk(r): r=1, ... , N}; therefore, the set of potentially 
active channels. Now the next step is re-label each 
member of P with its network index so that each 
local recurrent network r obeys, at equilibrium a 
relation of the form expressed in (14) for its 
maximally salient channel: 
 x୰=m(wୱc୰ − ϵ)H(c୰ − ϵ wୱ⁄ )  r = 1, ..., N            (15) 
 
DA Modulation. For activating the action of 
dopamine modulation on MSN, it would be 
desirable to model  the resulting innervation from 
substantia nigra compacta, and particularly the 
short-latency DA signals associated with the onset 
of biologically significant stimuli [19, 28, 91]. The 
whole operation of BG resides on the basis that 
these structures operate to release inhibition from 
desired actions while maintaining or increasing 
inhibition on undesired actions, somehow affected 
by the modulation of DA [92-94]. 

DA synapses occur primarily on the shafts of 
spines of MSN computationally speaking, this is 
suggestive of a multiplicative rather than additive 
process.  This can be done by introducing such a 
multiplicative factor in the synaptic strength ws; 
assuming by documentation, the excitatory effects 
in the direct pathway and in inhibitory effects in the 
indirect pathway. Thus, for direct pathway, the 
afferent synaptic strength ws is modified to ws (1-
λe), where λe  means the degree of tonic DA 
modulation, and obeys  0≤ λe≤  1.  The function in 
(15) now becomes  H [ci- ε/ws(1-λe))]. The 
equilibrium output xe-

i  in the ith channel of the  
indirect pathway is now: 
 x−ei = m[wୱ(1 − λୣ)ci୧ − ϵ]H୧ ↑ (λୣ)                   (16) 

 
In order to ease notation, we write the up state as H୧ ↑ (λୣ). Similarly in the direct pathway: 
 x−gi = m[wୱ(1 − λ୥)ci୧ − ϵ]H୧ ↑ (λ୥)                   (17) 

 
Finally, all these sets of equations coupling 
compartments with all variables (currents, 
synapses, modulation) were solved by replacing 
the respective differential equation trough a 
difference equation that is solved at discrete time 
intervals [95]. This has been done through a 
computer neural simulator system over a high 
demand computer environment. The single neuron  
simulations have been built in "NEURON" 
simulator [96], and then migrated and incorporated 
into a Network running in a "GENESIS" simulator 
[41, 97]. The latter was preferred because it used 
implicit methods of numerical integration for 
accuracy besides its faster numerical capabilities 
for integration by these methods [72, 78]. 
 
4. Results and discussion 
 
The running simulation output was processed in 
real time for graphical visualization of the network 
activity. The data was passed through a Cartesian 
plane, representing the position of MSN neurons 
as triangles and squares. Then a MSN patch 
represented by the squares were stimulated and 
scale colored as their membrane potential 
changed. Some random MSN potential plots where 
added (four in the video shown in suppmentary  
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material, representing  arbitrarily named cell 1, 1 
55, 161, 368. International System Units). The 
cortical stimulus simulated was defined as a 50 
“spot flash” applied  20 milliseconds to only the fifth 
part of the active patch. 
 
For demonstrating the validity of our model, we 
analyzed our outputs in two phases: in phase 1 we 
compared the cell units modeled against the most 
accepted results in biological research [47,98-100]. 
The morphology and activity of those are based in 
the circuit, shown in Fig 2. The effect and 
parameters simulated in the circuit are shown in 
table 1. The effect of the PLTS, not entirely 
characterized yet as an homogeneous population 
of cells, has been reported to actively participate in 
the regulation of the balance between excitation 
and inhibition in cortical circuits to the NS, 
Beierlein et al. [122 ], Silberberg and Markram [123 
] and Kapfer et al. [124] but only evoke a sparse 
and relatively weak  GABAergic IPSCs in MSN 
[67]. So, we do not have conclusive results on its 
direct effect on GABAergic MSN. Although is 
theorized about whether its main function focuses 
on the modulation of SOM / NPY NOS [68,69,70]. 
Because of that, for purposes of this model are not 
considered. 
 

The main insights of the waves’ morphology of 
MSN, FS [101] and TAN [102] indicate that 
neurons could be visualized in the Time/Voltage 
plots, although some conductance need to be 
adjusted from the experimental findings to fit the 
curves obtained from the electrophysiological sets 
where real neurons are recorded. 
 
The anomalous rectification classically reported in 
MSN need to be verified in function of the currents 
modeled [47]. Classically up to six different 
conductance have been described in MSN 
[50,103-105], but data about their respective 
weights against each other and proper location in 
the cell compartments, are neither available nor 
complete [106]. 
 
In the state-of-art regarding experimental 
procedures which have been done with MSN in 
vitro and in vivo, methodologies that require 
isolating or blocking each current have been used 
[107,108]. Thus, complete model would need the 
simulation of these six conductances mainly 
characterized, plus the network parameters 
selected, which represent a series of variables that 
are difficult and impractical to analyze as a whole. 
We have chosen to simplify the model 

Cell Type Input Resistance 
MΩ 

Time constant (ms) Effect on MSN Dopaminergic effect 
simulated 

MSN 20-60 5-15 -- Only considered 
Depolarization 

FS 50-150 7-9 Proximal synapses. 
Can delay or block 
completely spiking 

on PSP 

Depolarization and 
increase of Input 

resistance 

TAN 71-105 17.8-28 Moderate effect, as 
modulator of 

excitability of MSN 
sensorial activation 

from cortex 
(Misgeld 1986) 

none 

 
Table 1. Cell properties used in simulated NS circuitry. 
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representing the activity of each cell with a leaky 
integrator function, the procedure for this is 
explained in supplementary material**. The model 
used only one projection cell for analysis, leaving 
the other inactivated for further study. There are 
different procedures available where some steady 
values vary such as input resistances or, where 
time constants are mostly altered by either micro-
pipettes, or the type of recording device [109]. 

Most of the experiments have been carried in 
different species [110,28,54,85,86], and tough 
there is some acceptance on the fact that are 
equivalent, there is still a lot of variables that 
must be taken into account for a mathematical 
model that goes from simple to complex 
structures, and can deliver a whole output of 
all these isolated conductances  in real time 
[111-113]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. Voltage output graphics simulated against biological models, taken from known and accepted reports. 
 A: Simulated output from MSN. B, MSN from experiments performed by Wilson & Kawaguchi in 1996 [50].  
C. Simulated output from FS GABAergic interneurons. D. FS from experiments by Tepper in 2010 [101]. E, 

Simulated Output from TAN, Cholinergic Inter-neurons. F. Results reported by Bennet et al. in 2010 [102]. In all 
simulations, ionic environment could be reproduced in the network for the equivalent of 0.5 milliseconds of the 

biological activity. The graphics B,D and F are not comparatively scaled. With A,C and E. 
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Considering all this background and though the 
simulated neurons act real enough to be compared 
to real ones, it is still under consideration whether 
the encountered differences are due to a variable 
not considered or to a current or neural integration 
just not discovered yet. In electrophysiology, 
reports are still discussed to determine whether the 
conductances actually characterized are solid 
enough by themselves or there are still other 

different interactions to be discovered [114]. The 
whole picture can be taken with a model that 
integrates the knowledge really available, that 
would encourage further use and perfecting of this 
model. Similarly as MSN's, in the case of FS and 
TAN neurons the results were still accurate 
enough but with more differences derived from the 
very novel biological data available regarding their 
function [101, 102,115]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. A, Representation of the Simulated Neural Units over a Cartesian plane. The main neuron MSN is 
segregated in a patch (MSN/P1)  and matrix (MSN/P2) region, representing 97% of the whole population.  

TAN and FS interneurons, representing 5% of the network, are incorporated and connected using a pattern 
described in the text. In the bottom: Phase trajectories in A-space, product of double KL decomposition. 

 This represents the responses of  three different stimuli on the network, and over two different conditions:  
B without the influence of DA Neuromodulation (top), C, with the influence of DA Neuromodulation.  

The first decomposition represents a wave as a linear combination of a series of spatial modes with time-varying 
coefficients.Thus, the wave is adequately represented (as has already been shown by Senseman and Robbins 
[10]) by a trajectory in a phase space called A-space. Most of the energy contained in the original wave can be 

captured by the decomposition coefficients corresponding to the first three principal modes.  
A further reduction of the dimensionality of the wave is achieved by a second KL decomposition which maps the 

trajectory in A-space into a point in a low-dimension space. A-space is spanned by temporal modes.  
The data was processed by using windowing techniques, including a sliding encoding window  

in the wave encoding process and expanding detection window (EDW) and sliding detection window 
 (SDW) techniques in the information decoding process, to estimate the position of stimuli in space (see 

supplementary material for visualization**). 
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In phase 2 we analyzed the model’s behavior as a 
whole network (fig 3a). A video reconstruction of 
this is available in supplementary material** The 
main issue at this stage is testing against the 
biological specimen, because there are no 
experiments available to compare. Nonetheless, 
we do have information about field responses and 
postsynaptic responses, which indirectly have 
been useful for inferring the activity of the NS. 
Notwithstanding the lack of biological data to 
compare against, cortical and sub-cortical waves 
have been analyzed in many computational 
models as a Bayesian problem [13,116], using two-
step Karhunen_loeve (KL) decomposition.  Briefly, 
each time-step was split up into a sequence of 10 
ms overlapped encoding windows. Within each 
window, the movie was projected as a point using 
double KL decomposition in a suitable low 
dimensional B-space (fig 3b). The sequence of 
point in the B-space rise a strand, called a β-
strand. Each NS wave was represented as a 
vector-valued time series given by the β-strand, 
and the detection task operated by DA was to 
discriminate strands from different combination of 
modulation status, empirically tuned as explained 
above. That is how the problem was reduced to a 
Bayesian Problem. Expanding detection windows 
(EDW) a sliding detection windows (SDW) where 

applied over the β-strand. The combination of 
encoding and decoding windows made it possible 
to localize the NS target in space as a function 
related to double-input-time-delay stimuli. This 
means that this analysis enables to show, in a 
rather simplified way, activation/no activation of NS 
network patterns against activation/no activation of 
DA  Modulation (fig 4), demonstrating with it that 
modulation of DA over the tree neuron network 
configured in the framework is possible. 
 
The leaky integrator function that is present here is 
a classical framework that uses simplified neuronal 
units that are just represented as circuits without 
considering the operation electric properties of 
ionic conductances within the cell [117]. It has 
been used for building proposals of data 
processing in neural structures [78, 111], but all 
those mathematical constructs cannot be 
contrasted against the biological models for 
feedback because their own information nature 
and mathematical building are not the same, 
especially from the point of view where the neural 
tissue processes information in an analogical 
manner [83, 90, 118, 119].  For this reason, there 
are different proposals and alternatives against 
leaky integrator function elsewhere, specially using 
the fuzzy integrator technique [7, 120, 121]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Detection of error probability (activation rate) as a function of the ending of time windows.  
A. Detecting the stimuli by EDW approach. B. By using SDW approach. C. With DA modulation, by EDW 

approach. D. With DA modulation by SDW approach. This analysis shows the overall action of DA  
modulation over the probabilistic activation of the NS simulated network. 
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The modeling work considered above, can be 
applied to demonstrate signal selection by the BG, 
and the proper response of the cells that are 
mathematically simulated and embedded on it, 
rather than theoretically apply action selection per 
se. So that we can convincingly show that the 
basal ganglia model is able to operate as an 
effective action selection device, we believe it 
needs to be embedded in a real time sensory 
motor interaction with the physical world, or else 
through a given construct that simulates so. 
 
**-Supplementary Material Available online in 
http://www.academs.mx/jart605 
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