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ABSTRACT 
This paper presents an algorithm of simultaneous localization and mapping (SLAM) with a scanning laser range finder 
and radiofrequency identification technology (RFID) to include landmarks of an object or place within a generated 
map. For the testing phase was used of simulation software Anykode’s Marilou and was used to build a virtual mobile 
robot with the features of the Pionner 3-AT, including a Hokuyo URG-04X scanning laser range finder and an 
Innovations RFID ID-12 reader. Validation of results was carried out with the cycle closure process to obtain the 
average error of the navigation path, resulting on an error of less than 50mm. 
 
Keywords: SLAM, Mobile Robot, RFID, Navigation, Simulation. 
 
RESUMEN 
Este artículo presenta un algoritmo de localización y mapeo simultáneos (SLAM) con telémetro láser y un 
identificador de radiofrecuencia (RFID), con el propósito de incluir la referencia de un objeto o lugar dentro del mapa 
generado. Para la experimentación se utilizó el software de simulación Anykode Marilou, mediante el cual se 
construyó un robot móvil virtual con las características del Pionner 3-DX, con un telémetro láser Hokuyo URG-04X y 
el lector RFID ID-12 de Innovations. La validación de los resultados se realizó con el proceso de cierre de ciclo, con el 
fin de obtener el error promedio del recorrido de navegación, logrando un error menor a los 50 mm. 
 

 
1. Introduction 
 
For decades, research has focused on 
attempting to simulate common human actions 
like walking, running, talking and even thinking. 
One of the qualities of humans that has gathered 
the most attention from scientists is their ability 
to move around in different settings, making 
researchers focus on navigation techniques that 
transfer this ability to artificial entities. In 1986, 
Peter Cheeseman, Jim Crowley and Hugh 
Durrant-Whyte talked about the topic of 
simultaneous localization and mapping applying 
probability (SLAM), during the IEEE Robotics 
and Automation conference held in San Francisco, 
United States [1]. 
 
The creation of SLAM resulted in various research 
that tried to determine which action would be 
carried out first, localization or mapping [2]-[8]. 
Multiple algorithms allowing for the simultaneous 
navigation and localization (SLAM) of mobile 
robots have been developed since then, both for  

 
 
indoor and outdoor environments. Table 1 includes 
some of those algorithms. 
 
The creation of SLAM resulted in various research 
that tried to determine which action would be 
carried out first, localization or mapping [2]-[8]. 
Multiple algorithms allowing for the simultaneous 
navigation and localization (SLAM) of mobile 
robots have been developed since then, both for 
indoor and outdoor environments. Table 1 includes 
some of those algorithms. 
 
A description of each algorithm included in Table 1 
follows. Algorithm GMapping [9] is a particle filter-
based online algorithm with Rao-Blackwellization 
proposing distribution of probabilities that consider 
the last measure taken by the laser device, and not 
just odometry. This is done by searching the region 
closer to the estimated location, defining the 
probability of each landmark associated to the 
measure and adding the odometry information; 
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from this, K samples are extracted to estimate a 
Gaussian distribution matching the mean and 
variance with the estimated distribution. The 
particle’s new position is obtained from the 
resulting distribution. Before resampling, a 
measure inversely proportional to the variance of 
particle’s estimations is calculated to assess the 
need of resampling. This algorithm was tested with 
data from Intel1, Freiburg2 and MIT3, with good 
results, generating maps without inconsistencies 
for each tested data, including analysis from 
different researchers. One of the setbacks of the 
algorithm is dynamic objects, as well as objects 
with complex modeling like grass, wires, etc. 
 

Algorithm Map Calculation 
method Sensors 

GMapping  Grid maps Particle filter 
Laser and 
odometry 

CEKF-SLAM 
Feature-

based maps 
Kalman filter 

Laser or 
ultrasound 

and 
odometry 

DP-SLAM Grid maps Particle filter Laser 

EKFM-
SLAM 

Grid maps Kalman filter 
Monocular 

camera 
images  

tinySLAM Grid maps Particle filter 
Laser and 
odometry 

 
Table 1. SLAM Algorithms. 

 
The Kalman filter-based algorithm CEKF-SLAM 
[10] maps using environment features; it also 
optimizes algorithm EKF-SLAM by using a 
compressed filter, which delays updates of 
covariance, associated to a set of non-local labels. 
This increases the algorithm’s efficiency without 
diminishing the accuracy that characterizes full 
SLAM algorithms. This algorithm was tested 
outdoors using a car with encoders and a laser 
telemeter that followed a path during 20 minutes. 
Results were favorable and demonstrated the 
optimization of the original algorithm; however, the 
problem of cycle closure in maps still persists. 

                                                      
1.Intel (American multinational semiconductor chip maker 
corporation): 
http://kaspar.informatik.unifreiburg.de/~slamEvaluation/datasets
/intel.clf 
2 Freiburg (Universität Freiburg) 
http://kaspar.informatik.unifreiburg.de/~slamEvaluation/datasets
/fr079.clf 
3 MIT (Massachusetts Institute of Technology) 
http://kaspar.informatik.unifreiburg.de/~slamEvaluation/datasets
/mit-csail.clf 

The DP-SLAM [11] is a particle filter online 
algorithm that generates grid maps. Its purpose 
is to reduce the use of computer resources by 
avoiding the successive copy of maps per each 
particle generated at the resampling stage. This 
algorithm generates a single map, therefore 
keeping the data structure, and allows knowing 
at all times the changes made by it and by 
previous particles. This decreases the computer 
load by reducing the time it takes to copy data 
when new particles are created. The algorithm 
was tested using data sets created with an 
iRobot ATVR platform and a SICK sensor, in a 
60m long, 24m wide environment and a 12m by 
40m cycle. 
 
Results were good, but they were not evaluated 
with existing data sets. 
 
The algorithms previously described use laser 
sensors and odometry for their explorations, but 
there is currently algorithm research using stereo 
and monocular cameras, like algorithm EKFM-
SLAM [12], which is totally based on algorithm 
EKF-SLAM but with a camera added as single 
sensor. To integrate the camera’s information, the 
RANSAC (RANdom SAmple Consensus) method 
was used, which estimates the camera’s motion 
(Visual Odometry); this method also allows using 
algorithm EKF with cameras to get estimations of 
initial parameters, using less landmarks from the 
camera. Tests were done with a person carrying a 
camera to simulate the robot and circling the 
laboratory twice, satisfactorily closing the loop. 
Research mentions that information processing 
may be carried out in real time, and testing may 
be done outdoors, without offering too much 
information about results. 
 
Lastly, the list on Table 1 also integrates one of 
the smallest algorithms, tinySLAM [13], 
implemented with only 200 lines of code in C, and 
based on a particle filter with a single high 
resolution occupation grid (1cm). The laser scan 
updates more than one landmark per line falling 
on a surface, implementing a function that 
generates holes in the map to enhance 
verisimilitude function. With this algorithm, the 
odometry calculation is used to correlate scans 
and determine a constant speed for the robot. 
This algorithm was tested at Paris’s Mines Tech 
laboratory with a single cycle and the map did not 
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offer favorable results, as it only offered the 
enhancements obtained only from odometry. 
 
SLAM algorithms may be classified in three: by 
sensors used, by calculation methods used or by 
structure. Algorithms classified by sensors include 
those based on artificial vision [14], range 
measurement devices (laser or ultrasound) [15] 
and odometry. Algorithms based on calculation 
methods may use the Kalman filter or the particle 
filter; currently, there are hybrid algorithms using 
both filters, like FastSLAM [16], with its different 
versions (refer to Table 1). Lastly, algorithms 
classified by structure are: on the one hand, online 
SLAM, which stores only the necessary 
environment landmarks, resulting in fast 
calculations; however, errors grow exponentially 
with time. On the other hand, fullSLAM stores each 
landmark during navigation, causing multiplication 
of the information with each position prediction. 
 
In the classification based on sensors, different 
devices are used to implement SLAM, like CCD 
cameras, which operate in a way similar to the 
human eye, making them useful to identify objects 
with artificial vision techniques; however, one of 
their drawbacks when implementing SLAM is that 
they obtain extensive features from the 
environment, turning real time processing and data 
calculation into slow, complex tasks. This device 
was, therefore, not used in this research. This work 
focused on looking for alternatives that would 
replace a CCD camera, and for environment 
perception we used a laser telemeter, which 
collects information through distances within a 
specified range. This device has the advantage of 
obtaining only the information that is required to 
detect the objects in front of the robot; the 
drawbacks are reflections on clear surfaces and 
limited angle/range. Therefore, this device is useful 
for 2D navigations. 
 
CCD cameras are useful to identify objects but, as 
mentioned before, their use is not viable, so their 
function was replaced with a RFID (Radio 
Frequency IDentification) device. This electronic 
device is used to collect data through 
radiofrequency waves; it has labels and a 
transponder (transmitter-receiver) that 
communicate between them and exchange 
information to obtain a label’s ID. 
 

This article describes a system based on algorithm 
tinySLAM, called SLAM-R, integrating the RFID 
device to the original algorithm. The main idea of 
this research came from the way humans move in 
unknown environments, usually taking features 
from the environment (objects) as landmarks, 
which later helps to remember locations. In a 
similar way, the purpose is for robots to not only 
generate a map and simultaneously locate their 
position, but also to obtain environment features 
that allow defining a location within the map, so the 
robot can move by reminding it the ID (objects) of 
the RFID label placed on the environment. By 
using algorithm tinySLAM, a high-resolution map is 
generated, allowing for faster mapping and less 
computer resources. 
 
The project scope included the creation of the 
algorithm only for indoor locations, due to 
limitations derived from using low-range sensors 
and the complexity of outdoor environments. In 
addition, the resulting algorithm is prepared for 
environments with semi-dynamic objects 
(occasional movement), as dynamic objects may 
produce inconsistent maps. 
 
This article is structured as follows: Section 2 
describes works related with this research. Section 
3 shows the algorithm and diagram used for 
experimentation. Section 4 shows the design of the 
robot and navigation circuits to test the algorithm. 
Section 5 integrates experimentation results and 
tests. Section 6 details the results. Section 7 
exposes conclusions and, finally, section 8 
describes the structure of future works. 
 
2. Related Work 
 
Matthai Philipose’s research [17] used the RFID 
technology to improve the position of a mobile 
robot using a laser telemeter by implementing an 
algorithm that determines the exact location of the 
RFID label; however, multiple labels must be 
placed on the mobile robot’s path for the algorithm 
to work properly. The research offers no additional 
information about the environment and only 
improves the stage of position prediction. 
 
In the article published by Vladimir Kulyukin [18], a 
landmark-based navigation technique was 
developed, which is used to help blind people in  
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indoor environments with a robot detecting RFID 
labels and indication of the person’s location. This 
research does not use SLAM, but it is one of the 
few that has implemented RFID. 
 
3. Algorithm 
 
Unlike the state-of-the-art algorithms described 
that have used RFID in navigations systems, 
SLAM-R generates a 2D map through a particle 
filter that uses only the laser telemeter information, 
and adds environment information like position and 
RFID-object recognition. The navigation system 
developed consists in 4 stages: 
 
•.Stage of prediction and resampling used to 
determine the robot’s position through the 
verisimilitude function. 
 
• Map update function through Simple DirectMedia 
Layer (SDL). 
 
• The RFID label searching system, which infers 
over the map creation function and prediction, only 
in case this exists. 
 
• Control system created with commands to 
determine the robot’s direction. 
 
The navigation system was built using tinySLAM, 
and a RFID reader was added to the robot, 
resulting in a diagram as the one depicted in 
Figure 1. 
 

 
 

Figure 1. SLAM-R dynamic Bayesian network. 
 
To estimate the robot’s current position within a 
semi-dynamic environment, odometry, laser 
readings and RFID labels are used as additional 
information to recognize objects within the map 
through a single identifier (ID). Figure 1 depicts the  

dynamic Bayesian network model used to 
represent connections between the environment’s 
map (M), the laser data (Z), the use of RFID 
labels as landmarks (R), the robot’s position (S) 
and odometry (U), all of these arranged in a 
determined time (t). To estimate the robot’s 
position, the stage of prediction must be 
implemented through the following equation (1): 
ݍ  ቀ ଵܵ:௧ , ܴଵ:௧⃒ ଵܷ:௧, ܼଵ:௧ିଵቁ ݌= ቀܴ௧⃒ܴ௧ିଵቁ X ݌ ቀܵ௧⃒ ܵ௧ିଵ, ௧ܷቁ X ݌ ቀ ଵܵ:௧ିଵ , ܴଵ:௧ିଵ⃒ ଵܷ:௧ିଵ, ܼଵ:௧ିଵቁ         

 
 
Equation (2) is used at the stage of weights 
updates and resampling: 
௧ݓ  = ௣ቀௌభ:೟ ,ோభ:೟⃒ ௎భ:೟,௓భ:೟ቁ௤ቀௌభ:೟ ,ோభ:೟⃒ ௎భ:೟,௓భ:೟షభቁ                                        (2) 

 
A priori labeling of each object or place passed by 
is necessary for the navigation algorithm to 
recognize them; however, the SLAM functioning 
with not be affected by the lack of labels, as they 
work independently 
݌ܽܯ  = , ௧(௜)⃒ ܺ௧(௜)ܯቀ ݌ ܼଵ:௧ , ଵܷ:௧, ܴଵ:௧ቁ                   (3) 

 
Equation (3) is used at the stage of the map 
generation. 
 
4. Tests and Experimentation 
 
To test the navigation system, a search for a 
system that could simulate a virtual mobile robot 
was carried out. Several simulators were obtained 
from this search, amongst them Webots [19], 
Eyesim [20], Mobs [21], Marilou [22]. Based on the 
devices integrated in simulation and the modeling’s 
versatility, Anykode’s Marilou simulation software 
was chosen because, among its advantages, it 
offers licenses to students, allowing for testing the 
system for a determined time; it also offers a wide 
array of virtual devices with the manufacturer’s 
properties to create a more realistic simulation. 
This simulator was used for testing by creating 
both a virtual model of the environment and of the 
mobile robot to be used. This software allows 
simulating the behavior of sensors and actuators 
with a high level of realism; it also allows modeling 
environments and includes a package of libraries 

(1)
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(MODA, Marilou Open Devices Access) to program 
robots in different languages.  
 
To test the algorithm, a 3D model of the Pioneer 3-
AT robot, manufactured by ActivMedia, was 
created, using the actuators, kinematics and 
sensors of the real-life model, with limit speeds of 
2m/s; a Hokuyo URG-04X laser sensor with a 240 
degree radius and up to 4.0m range was added to 
the model. Figure 2 depicts the Pioneer 3-AT 
mobile robot virtual model. 
 

 
 

Figure 2. Anykode’s Marilou-modeled  
Pioneer 3-AT virtual mobile robot. 

 
Different environments were created to experiment 
with the virtual mobile robot, randomly placing 
objects with different textures and adding factors 
like wind speed and gravity exerted on the robot, 
controlled by its weight. Figure 3 depicts one of the 
environments developed to verify the values of 
sensors and the bearing mechanism by testing, for 
the first time, the SLAM-R navigation system. 
 

 
 

Figure 3. Anykode’s Marilou- 
modeled virtual environment. 

 
One of the limitations of simulating the navigation 
algorithm is that the simulation software does not 
have readers, much less the ability to label objects 
through RFID; the option was to enable obstacle  
 
 

detection by plugging an ID-12 RFID reader, 
manufactured by Innovations, to the computer’s 
serial port, therefore adding a physical device to 
the simulation through the virtual serial ports of 
Marilou. Figure 4 depicts the circuit and labels 
used for the RFID system. 
 

 
 

Figure 4. Circuit used for simulation with Marilou. 
 
The general process of simulation includes a C++ 
and MODA programmed system to obtain data 
from the odometry, laser telemeter and RFID 
devices; the navigation system also included a 
class responsible for map construction using SDL 
libraries. Figure 5 depicts the general process of 
the simulation system. 
 

 
 

Figure 5. General simulation process. 
 
Data storage was included in the navigation 
system using plain text files to save the odometry 
information, the laser telemeter readings and the 
labels found on the robot’s path, which would be 
used later to produce the map from a file. The 
purpose of this stage is to provide a dataset that 
can be used as a study tool by the scientific 
community, reproducing the simulations created in 
this research. 
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5. Results 
 
Evaluation of results was carried out by generating 
a virtual map, which was then compared with the 
SLAM-R-generated map (both were similar); the 
robot’s position was monitored to make it match as 
much as possible with the position offered by the 
simulation using a cycle closure algorithm, which 
determines the deviation error accumulated during 
the circuit’s path. Tests were carried out using 3 
different environments and different types of 
objects, both labeled and unlabeled; the system 
was also tested without labeling objects to confirm 
that labels were not indispensable. 
 
Figure 6a shows a simple, obstacle-free scenario 
to test SLAM, while Figure 6b shows the SLAM 
results using odometry and laser data only. This 
environment serves as a basis to analyze behavior 
in future environments. 
 

 
 
(a) Marilou virtual environment       (b) SLAM-R result 
 

Figure 6. SLAM-R system result 
 without objects in environment. 

 
Figure 7a shows the simulated environment with 
objects of different sizes and shapes, keeping the 
squared structure of the environment from Figure 
6a, in order to highlight the difference in behavior 
of the SLAM when adding RFID labels. For this 
particular environment, numbers 1 to 8 were used 
to identify objects. Figure 7b includes the map 
showing only 7 of the 8 objects labeled; this was, 
however, done on purpose because the 
corresponding label was not placed at the reader’s 
range when the robot approached the object; in 
this system, it is possible to exclude certain objects 
and label only those that are of interest to 
researchers. Labels were placed on the map as 
the reader detected the labels, and these were 
placed immediately on the generated map; 
therefore, labels have different positions. 

       
 
(a) Marilou virtual environment         (b) SLAM-R result 
 

 
 

(c) Object labeled with number 3 (box) 
 

Figure 7. SLAM-R system results with  
number-labeled objects in environment. 

 
Figure 8a’s third environment shows a semi-
rectangular map with realistic objects, like boxes 
and plant pots, to assign real names to objects and 
test for correct labeling. Figure 8b shows each 
labeled object. As a result, the label’s position was 
improved; it was placed at the center of the object 
by calculating the distance provided by the laser 
and the average range of the RFID reader. Figure 
8c only shows a zoom image of the name 
assigned to a SLAM-R-build map object. 
 
To evaluate results, the cycle closure technique 
was used, which consists on moving on the path 
with the SLAM-R system and storing data files 
collected during navigation (odometry, laser and 
RFID labels), with the purpose of moving on that 
same path again but in the opposite direction, that 
is, readings are collected from the last to the first 
one, and the same navigation algorithm is used. 
During the process, the SLAM-R algorithm 
positions are stored in a plain-text file, so that the 
degree of error obtained during the circuit’s path 
can be later analyzed. To analyze results, the 
robot’s positions during the path are graphed, both 
for its forward and backward motions, and the 
degree of error between the initial and final points 
of the path is calculated in millimeters, in order to 
define how far they are from each other. 
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(a) Marilou virtual environment 
 

 
 

(b) SLAM-R result 
 

 
 

(c) Object labeled with the Spanish word “planta” 
 

Figure 8. SLAM-R system result with 
 word-labeled objects in environment. 

 
Figure 9 depicts the robot’s paths for each virtual 
map used for tests; Figure 9a corresponds to 
Figure 6a’s environment; Figure 9b corresponds to 
Figure 7a’s environment and, finally, Figure 9c 
corresponds to Figure 8a’s environment. These 
graphs represent forward motion with a solid line 
and the backward motion with a dotted line; the 
error between both paths can be seen between 
both lines. Table 2 shows error results in 
millimeters for each environment. 
 
 
 

 
 

(a) Cycle closure graph for Figure 6a environment 
 

 
 

(b) Cycle closure graph for Figure 7a environment 
 

 
 

(c) Cycle closure graph for Figure 8a environment 
 

Figure 9. Graphs of position errors obtained 
from SLAM-R navigation algorithm 
of different virtual environments. 

 
Environment 

figure Graph # of 
readings Error in mm 

Environment 6a Graph 9a 432 47.3904 mm 

Environment 7a Graph 9b 221 21.3676 mm 

Environment 8a Graph 9c 92 25.2865 mm 

 
Table 2. SLAM-R Algorithm Position Error. 
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6. Conclusions and Future Work 
 
The results obtained by simulation prove that the 
developed algorithm is suitable to generate 2D 
maps in small indoor environments, and that RFID 
labels help to improve the robot’s final position 
because they are landmarks with more relevance 
to calculate the algorithm; this is demonstrated 
with an error of less than 50 mm. It was also 
determined that the SLAM-R navigation algorithm 
identifies labels with 100% accuracy during 
simulation, because measurement conditions are 
ideal – there are no factors preventing the reader 
from reaching the manufacturer’s specified range. 
Therefore, it is important to test the algorithm on a 
real robot, confirming that simulation-obtained 
results are the same as real life results. A 
simulated system, however, always has constant 
variables and conditions are ideal for tests, 
whereas real-life tests may face factors that 
change results. A relevant example for this would 
be the RFID measurement distance; this device 
was simulated in a physical form and, at times, the 
reader could not detect the label, which may be 
caused by environmental interferences or noise. 
 
One of the limitations of the proposed algorithm is 
the dependence on RFID labels, placed on the 
environment for object identification; however, this 
does not hinder the algorithm from continuing with 
the navigation because, if an object is unlabeled, it 
will be represented as an object without its 
particular features, indicating the robot that it 
cannot go through that place. 
 
In future works, an environment resembling the 
features of the Electronics Laboratory of the Institute 
will be created to test the SLAM-R algorithm on a 
physical robot, using the same devices of the 
simulation herein described. The purpose of these 
works would be to evaluate results from both cases 
and establish the causes and factors influencing 
real-life environments not included in simulations for 
this type of navigation systems. 
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