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ABSTRACT 
The aim of this paper is to solve the problem of placing safety stock over a Logistic Network (LN) that is represented 
by a Generic Bill of Materials (GBOM). Thus the LN encompasses supplying, assembling, and delivering stages. We 
describe, in detail, the recursive algorithm based on Dynamic Programming (DP) to solve the placing safety stock 
problem under guaranteed-service time models. We also develop a java-based application (JbA) that both models the 
LN and runs the recursive DP algorithm. We solved a real case of a company that manufactures fixed brake and 
clutch pedal modules of cars’ brake system. After running JbA, the levels of inventory decreased by zero in 55 out of 
65 stages. 
 
Keywords: Safety Stock, Guaranteed-service time, Dynamic Programming, Automotive Industry. 
 
RESUMEN 
El objetivo de este artículo es resolver el problema de colocación inventario en una Red Logística (LN) que es 
representada por una Lista de Materiales Genérica (GBOM), de manera que la LN tiene etapas de suministro, 
ensamble y entrega. Describimos, a detalle, el algoritmo recursivo de Programación Dinámica (DP) para resolver el 
problema de colocación de inventario en modelos de servicio garantizado. También programamos una aplicación en 
java (JbA)  que modela la LN y ejecuta las operaciones recursivas del algoritmo de DP. Resolvimos un caso real de 
una empresa que manufactura módulos de frenos y pedales del clutch del sistema de frenos utilizados en los autos. 
Los resultados muestran que los niveles de inventarios se reducen a cero en 55 de 65 etapas después de ejecutar 
nuestra JbA. 
 

 
1. Introduction 
 
Manufacturing companies are highly pressured 
into producing quality products and delivering them 
to the right location, at the right quantity or amount, 
and at the right place, subject to reduce both 
manufacturing and logistic costs. In order to reach 
this aim, companies have realised that a global 
approach is required to coordinate operations 
across the entire Logistic Network (LN) or Supply 
Chain, e.g. share information to minimise the 
bullwhip effect [1]; pass products' demand to 
upstream members to reduce inventory levels [2]  

 
 
or solve the routing and inventory problem  
simultaneously [23,26]. Moreover, companies have 
to dynamically evaluate the LN operations [24] and 
reduce the complexity generated by the product 
diversification [25] to reach the global aim of cost 
reduction. 
 

Global inventory management is an important 
strategy in reducing manufacturing and logistic 
costs because a proper inventory policy could 
result in reducing the amount of safety and 
pipeline stock.  
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In literature, the problem of placing inventory is 
divided into single stage and multi stages. The first 
one is a difficult but well studied problem, the 
models used to solve it are deterministic (e.g. 
economic order quantity and wagner-whitin model) 
and stochastic (e.g. (r,Q) and (s,S) policies)[3]. 
The multi stage problem could be either stochastic-
service (SS) or guaranteed-service (GS). The main 
difference between SS and GS is the way in which 
a stage supplies components or assemblies to 
other downstream stages.  
 
Backorders are allowed in SS multi stage problem, 
i.e. a fraction of an order cannot be filled at the right 
time due to a lack of available supply [4-5]. Unlike 
SS model, the GS model must serve the complete 
order just in a guaranteed-service time  .  
 
Our paper deals with GS models in multi stages, 
thus the problem is to minimise the cost of the 
safety stock that every stage must hold in order to 
serve its downstream stages just in the  given 
that the days of inventory required are U = + t - 
, where  is the time in which a stage must be 
served by its upstream stages and t is the time 
spent by a stage to perform its task. 
 
The novelties of the proposed paper lie in the 
methodology employed to solve a real-life LN and 
in the java-based application programmed to solve 
the DP algorithm used to solve the GS inventory 
placing problem [2]. Additionally, we provide a 
pseudo code full of practical insights to carry out 
the recursive operations.     
 
We implemented and applied the GS time 
inventory model (GSTIM) to a company that 
manufactures fixed brake and clutch pedal 
modules. We both selected the product with the 
highest demand and described the steps followed 
to collect the necessary information to run the java-
based application.  
 
In the following section, a literature review of the 
GSTIM is provided. In section 3, the model is 
defined and some assumptions are stated. In 
section 4, the methodology used to implement the 
GS model is depicted, so also the DP algorithm 
and the java-based application are described. A 
real case is described in section 5. Finally, results 
are presented in section 6 and we draw some 
conclusions in section 7. 

2. Related Literature 
 
In this section, we cite a set of approaches related to 
GSTIM.  Back in 1958, Simpson [6] solved the 
problem of placing inventory over a serial process. 
Adjacent stages were coupled together to equate the 
incoming service time of a downstream stage with 
the outbound service time of its upstream stage. The 
optimum inventory level per stage was found by 
determining the service time. It was proven that the 
optimal service time in serial processes is found in an 
extreme point property where the outgoing service 
time is equal to either zero or its incoming service 
time plus its processing time, i.e. using an all-or-
nothing inventory policy. A boundary demand is 
used, thus it is interpreted as the amount of inventory 
a company wants to satisfy from its safety stock.  
 
Later, the same problem was solved by standard 
operations of DP in [7] and was extended to supply 
chains modelled as assembly networks [8], to 
distribution networks [9], and to spanning trees [10].  
 
In a recent approach, a stage could include more 
than one upstream or downstream stage [2,11], 
so we have to notice two important facts: i) in 
case a downstream stage is served by multiple 
upstream stages, the downstream stage has to 
wait for the component with the longest service 
time, and ii) in case an upstream stage serves 
multiple downstream stages, the upstream stage 
quotes the same service time to all the adjacent 
downstream stages. Moreover, the assumption 
about demand boundary remains and it is 
supposed that the LN is designed already, thus 
the time and cost of every stage is known. 
 
The complexity of the aforementioned approach has 
been proven to be NP-hard [12, 13]. As a result, 
modification to the DP algorithms have appeared in 
literature to solve bigger instances than those solved 
efficiently using the DP standard algorithm, e.g. 
CPLEX is used to iteratively solve a piecewise-linear 
demand once redundant constrains are added [14]; 
branch and bound algorithm is used to reduce 
complexity [15]; tailor-made heuristic has been 
proposed [16]; and general purpose genetic 
algorithms are used to solve the problem [17]. Other 
generalizations that do not apply to our real-life case 
included: capacity constraints [18], LN design 
constraints [19], non-stationary demand [20], and 
stochastic lead times [21]. 
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3. Problem Definition 
 
The problem is represented by a network G={V,E}, 
in which the set of vertices represents the different 
stages s, V={1,…,s,…,S} where S is the total 
number of stages. The set of edges represents the 
relationship among the stages, 
E={(1,s),…,(s,s'),…,(s',S)} where (s,s') means that 
s' is a downstream stage of s or s is an upstream 
of s'. As stated in section 1, there are: a subset of 
supplying stages (PV) that provide the 
components or raw material; a subset of 
assembling stages that manufacture a sub- or final 
assembly (AV); and a subset of delivering 
stages (DV) which each one represents a 
customer who asked for a specific product. Notice 
that if a customer asks for m products, then there 
are m delivering stages. Therefore, if n customers 

ask for mn products, the LN has nn
m  delivering 

stages (sD). 
 
In order to mathematically define the problem, we 
describe four important assumptions. First, the 
demand at every stage s for  periods of time is 
bounded to Fs() and the demand at stage s is a 
random uncorrelated variable x() with mean 

 sx   and standard deviation s(). Fs( is set by 

companies as a service policy, thus if we assume 

that x()~N(,), then Fs() =  sx   + Kss() 

where Ks is a given safety factor. Second, every 
stage has a periodic-review base-stock 
replenishment inventory policy with common 
review period, thus all stages sV place their 
demand (multiple by a scalar (s',s)) on their 
upstream stages s' at the common review period. 
Moreover, the base stock policy (Bs) is set to Bs = 
Fs(), so the average amount of safety stock at 

stage s is Is =Fs() -  sx   = Kss() . As the 

demand is a random uncorrelated variable, then 

s() =s     (see [6]), where s is the standard 
deviation over a unit of time. Third, each stage 
quotes a guaranteed-service time (s) to their 
downstream stages, hence s will fulfil every 
demand occurred at time U = s+ ts - s, (notice 
that = U) where s = ':( ', )max s s s E {s’} , i.e. the  

 

net replenishment time is equal to the 
replenishment time (s+ ts ) minus the guaranteed 
service time. In practise, U stands for the days of 
inventory required to serve a downstream stage in 
 days.  
 
According to the assumptions, the problem to find 
the guaranteed-service times per stage that 
minimised the safety stock is [2]: 
 

s s s s s sMin h C k t                           (1) 

 
s + ts – s ≥ 0                                                     (2)  
 
s’ -  s ≥ 0,   s:(s,s’)  E   (3) 
 
s ≤   s  D    (4) 
 
s, s ≥ 0 and integers   s  V   (5) 
 
where h is the per-unit holding cost and Cs is the 
cumulative cost at stage s computed by 

'':( ', )s s ss s s
C c C   where cs is the cost at stage 

s. Eq. 1 is the objective function that minimises the 
total safety stock. Eq. 2 assures that the days of 
inventory are non-negative, thus the service times 
are feasible.  Eq. 3 guarantees that for a stage 
s:(s,s’)  E the guaranteed-service time s is not 
greater than the time in which the stage s' must be 
served. Eq. 4 assures the guaranteed-service time 
to the delivering stages (s  D) must be no greater 
than the user-defined maximum (). Finally, the 
times must be non-negative and integer (Eq. 5). 
 
4. Problem Solution  
 
The proposed framework encompasses seven 
steps depicted in Figure 1. The first step of the 
framework is to build the GBOM, in which the 
goes-into relationships can be viewed, i.e. the 
common structure of a set of products. The result 
is a directed graph without cycles (see [22]). In 
step 2, information about the cost (cs) and time (ts) 
per stage must be collected. This information could 
be computed using the accounting records. In step 
3, the demand is fit to a distribution.  
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Using the information generated in steps 1, 2, and 
3, three plain-text files are created to input data 
about the set of edges and vertices as well as 
products' components to the java-based 
application (JbA). It uses step 4 to read the input 
data and handle them to carry out steps 5 and 6 
which are described in section 4.1 and 4.2, 
respectively. The JbA outputs the time in which 
every stage must be served (s) and the 
guaranteed-service time (s) for all the stages, 
thus the days of inventory are set. Using those 
values, the optimised model is implemented in step 
7. Notice that after running the JbA, it is 
recommended to simulate the model but in this 
paper we only present the safety stock placement 
problem. 
 
4.1 Spanning Tree Algorithm  
 
Algorithm 1 depicts the way in which a graph 
G={V,E} is representing as a spanning tree. Every 
stage s has attached a label k represented by ks, 
e.g ks=3 means that stage s is labelled three. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 1. Proposed framework to place safety stock. 
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So as to add stage s to the set L, s must be linked 
to just one either downstream or upstream stage 
(see line 6), thus the result is a set of indexed 
stages L={1s, 2s, …, ks, (k+1)s, (k+2)s, …, Ss }.  
Notice that the selection of stage s from V (lines 5 
and 13) is at random, hence there could be more 
than one way to index the stages in L. 
 

4.2 Dynamic Programming Algorithm  
 
In order to run the DP algorithm, the data related to 
the cumulative cost (Cs), the standard deviation 
(s), and the maximum replenishment time (Ms) per 
stage must be computed as shown in Algorithm 2. 
Notice that s is multiplied by a scalar (s',s) which 
stands for the number of units of components s' 
required to carry out stage s.  
 
Once we have computed all the necessary data, 
the forwarding operations of the DP algorithm are 
carried out by computing Eq. 6 as shown in 
Algorithm 3. 
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The first term is the cost of placing inventory at the 
current stage s. The second term is the sum of the 
minimum cost of placing inventory at the upstream 
stages s':(s',s), given that the index of the upstream 
stages ks' is less than the index ks, i.e. fs() = 
min{s(,)}. Notice that s'  is equal to s (see Eq. 
3) because fs() is non-increasing in the service time 
at stage s' [2]. The third term is the minimum cost of 
placing inventory at the downstream stages s':(s,s') 
given that ks'<ks, i.e. gs() = min{s(,)}. s’ = s 
(see Eq. 3) because gs() is non-increasing in the 
service time at stage s'. 
 
Algorithm 3 is used to solve Eq. 1 and is divided 
into four parts. The cost of the safety stock s(,) 
is computed for every stage s in the order they are 
indexed in the spanning tree L (Algorithm 1). Then, 
the cumulative cost of the upstream and 
downstream stages is added to s(,). Finally, for 
the last stage indexed Ss in L, the minimum s(,) 
is find. This is the minimum safety stock cost, i.e. 
this is the solution to Eq. 1. The stage's 
guaranteed service time is and the time in which 
it must be served is . 
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The first part (lines 5-11) computes the safety 
stock cost for every stage s for all the values of  
and . An upper bound of the service time in which 
a stage s must be served is set to ≤ Ms - ts. The 
upper bound for the guaranteed-service time is 
≤ Ms . The lower bound for  and  is set to zero 
but Eq. 2 (line 7) must be satisfied to guarantee 
feasible solutions. 
 
The second part (lines 12-18) adds the minimum 
safety stock cost of the downstream stages s:(s,s') 
to the cost of stage s. In line 14, Eq. 3 is satisfied 
by setting = s’. The third part (lines 19-27) adds 
the minimum safety stock of the s':(s',s) to the cost 

of the stage s. Line 21 is used to validate the need 
of safety stock, i.e. if  is bigger than  Ms', then 
there is no need of safety stock and no cost must 
be added to the s(,) .  
 
Otherwise, the minimum cost of the downstream 
stage must be added. 
 
Finally, when the Algorithm 3 reaches the final 
stage s in L then the minimum safety stock is 
known (lines 30-33). The solution to Eq. 1 is the 
minimum value of s(,) , is the time in which 
this stage must be served and is the guaranteed-
service time. 
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In order to set the s and s for all the stages the 
Algorithm 4 is run, once the s and s  are set for 
the last stage in L. This algorithm is based on Eq. 
3, thus it is guaranteed that for two stages (s,s')   
E the guaranteed service time of stage s is less 
than or equal to the time in which stage s' must be 
served, i.e. s  ≤ s’. Without loss of generality, we 
can assume that s  = s’ [19] as set in lines 8 and 
19 in Algorithm 4.    
 
This algorithm begins with stage s indexed kS-1 and 
backtracks until the first stage in L is reached. 

When the algorithm reaches the stage s, the 
values of either s' | s':(s',s) or s' | s':(s,s') of the 
stage s' have been set already. As the LN is 
represented by a spanning tree (L) there is one 
and only one link (s',s) or (s,s') that the index ks' is 
greater than the index ks. 
 
Lines 7-13 of the Algorithm 4 set s of s when s' 
of an upstream stage s' has been set, thus s = 
s', according to Eq. 3. So as to set the value of 
s, the minimum value of  in Eq. 6 is found, 
given that s is known.  
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Lines 14–26, set  ωs  once the ϑs ′   |  s′  : (s, s′)  
is known.   When  Ms  > ϑs ′ , there  is no need to 
place safety stock because the downstream stage 
s' could wait enough to be served. In this  case ωs  
= Ms  (line 16), otherwise  line 18 is used.   To set  
ϑs,  the minimum  value of ϑ is found given that w 
= ws (Eq.  6).  If stage s does not have any 
upstream  stage  ϑs  = 0 (line 24 If stage s does 
not have any upstream  stage  ϑs  = 0 (line 24).  
Finally,  line 27 deletes  the stage  s which has 
just been set ωs and ϑs , line 28 deletes  the 
current stage,  and line 29 sends the algorithm to 
evaluate if there are more stages that required 
their times to be set. 
 

5. Real-life Application  
 
The study of a real-life application was carried out 
in a manufacturing plant that assembles fixed 
brakes and clutch pedals modules. The company 
is located in the business automotive cluster in 
Northeast Mexico and assembles 24 different 
models, even though we selected the model with 
the highest sales volume. The LN of the model is  
depicted in Fig. 2 and the related data is shown in  
Even though the data in Table 1 have been 
modified as requested by the company, the LN is 
the current one and the results and conclusion 
drawn from this study are acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Real-life Logistic Network. 
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The manufacturing process of the brake pedal 
comprises a phase of pre-assembly and a phase of 
assembly. In the pre-assembly phase, the 
components, supplied at the delivering stages, are 
welded to each other to go to the next phase. The 
main components are the switch flag, the arm, the 
plate, and the main bracket. 
 
The switch flag is produced by pressing a roll of 
steel according to the required length. The plate is 
produced in the same way the switch flag is, except 
for the length of the piece and the steel thickness. 
The arm and the main bracket are produced when a 
stamped piece is folded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the assembly phase, the arm, the plate and the 
switch flag are welded to each other, then painted 
by an external provider. Intermediately, after this 
the painted piece and main plate are taken to the 
assembly shop. There, the bushes and pivot bolts 
are inserted into the arm, the plate, and the flag.  
Then the pedal pad is assembled and the 
bolts/screws are adjusted according to the 
desired torque. 

 
Finally, a functional test is carried out and the 
assembly is labelled, packed, and sent to 
warehouse ready to be shipped. 
 

 

stage 
(s) name 

cost
(cs)

time
(ts)

stage
(s) name 

cost 
(cs) 

time
(ts) 

1 99664 11.7 15 34 Yoke RH 29.6 0
2 99657 34.6 10 35 285567 0.9 60
3 Cutting 0.4 0 36 Yoke LH 11.4 0
4 99658 10.6 10 37 285555 0.7 30
5 285627 1.1 30 38 285591 1.6 40
6 285635 12.7 30 39 285549 0.9 35
7 293852 4.3 75 40 Support-Clevis Union 1.4 0
8 99662 4.0 15 41 Cutting 0.4 0
9 Cutting 0.5 0 42 Cutting 2.6 12
10 Folding 1.5 0 43 Painting 2.4 0
11 Cutting 0.4 0 44 Yoke RH Bushing Insertion 3.7 0
12 Worm  Shaft Housing  

U i
0.5 0 45 285529 0.9 35

13 285675 3.5 45 46 Yoke LH Transmission Shaft 4.2 0
14 285667 11.9 60 47 Folding 1.9 0
15 285691 9.5 40 48 Cutting 0.2 0
16 Cutting 0.3 0 49 Arm Yokes Union 4.3 0
17 Folding 3.0 0 50 285514 0.8 40
18 Yoke RH 13.7 0 51 285603 0.7 40
19 Leveler 11.1 0 52 285519 7.9 30
20 99663 10.9 12 53 Welding 4.1 0
21 285643 0.4 55 54 Clevis Bolt Insertion 3.3 0
22 285651 0.3 65 55 293482 4.9 60
23 285611 0.4 30 56 291026 25.7 55
24 Transmission Housing  

U i
0.7 0 57 Main Bracket 32.7 0

25 285619 0.8 70 58 287723 3.0 50
26 285659 0.3 30 59 285552 0.7 80
27 Plate 4.4 0 60 Pedal Pad Insertion 1.2 0
28 Arm 38.0 0 61 Pivot Bolt Insertion 1.8 0
29 Welding 4.8 0 62 Functional Tests 0.8 0
30 Cutting 0.4 0 63 Packing 0.9 0
31 99675 23.6 10 64 Shipping 0.7 0
32 Welding 4.8 0 65 T1ADJ 238.9 0
33 285585 1.1 40   

 

Table 1. Data of the Real-life Application. 
 



 

Placing Safety Stock in Logistic Networks under Guaranteed‐Service Time Inventory Models: An Application to the Automotive Industry, L. A. Moncayo‐Martínez et al. / 538‐550 

Journal of Applied Research and Technology 547

Based on historical demand, we set the value of 
demand and standard deviation to sD=32'500$ 
and  sD  = 534$ units per day. The safety factor 
per stage is ks =1.645 and the unit holding cost is 
h=0.2 . The algorithm was run in a Lenovo T520 
computer with an Intel Core i5 processor at 
2.5GHz and 4GB in RAM memory 
 
6. Results   
 
One of the most important issues in the 
guaranteed-service time inventory models is the 
cost of safety stock for a given guaranteed-service 
time () in the delivering stages. Hence, we run 
the algorithm by setting =0,10,20,…,100 as 
shown in Figure 3. According to it, the maximum 
safety stock is $171'110 when the guaranteed-
service time is set to zero, i.e. =0.  
 
We can see from Figure 3 that the shorter the 
guaranteed-service time, the higher the safety 
stock cost. In our real-life logistic network (Figure 
2), the safety stock cost is lower when the is 
increased from 0 to 40 days. After that, the cost 
remains constant ($40'863$) until =80 days, i.e. 
s    40 even though = (40,80), see constraint 
4. If we set ≥80, the safety stock cost is zero 

because of the maximum replenishment time of 
the last stage s65, see Table 2. In this case, there 
is no need to keep safety stock. 
  
In Table 2, columns 1, 2, and 3 are common for 
all the values of . The data shown in columns 
4,5,6, and 7 are computed when = 40. As 
shown in columns 4 and 5, the values of the s 
for the stages when ts = 0 is equal to and s, so 
the days of inventory Us are zero, thus these 
stages do not hold any inventory. On the other 
hand, in eleven stages there is need to stock 
inventory because the large times ts, see Table 
2. The largest one is t59=80 days, thus the days 
of inventory is set to U59=40. Stage s59 
represents a component named 285552 which is 
brought from overseas. The long-time affects the 
position of inventory of the successive stages 
because the time in which those stages perform 
their task is zero.  
 

Although the company must hold 40 days of 
inventory of the component 285552, its safety 
stock cost is not the highest one. Component 
291026 (s56 ) holds 10 days of inventory with a 
cost of $17'434, thus the company decided to 
implement a more tight control over this 
component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Safety Stock costs for different values of Ω (Eq. 4). 
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stage 
(s) 

Cumulative 
cost (Cs) 

Max.  replenishment 
time (Ms) 

 
ϑs 

 
ωs

Days of 
inventory (Us) 

Inventory 
cost 

1 11.7 15 0 15 0 0 
2 34.6 10 0 10 0 0 
3 12.1 15 15 15 0 0 
4 10.6 10 0 10 0 0 
5 1.1 30 0 30 0 0 
6 12.7 30 0 30 0 0 
7 4.3 75 0 40 35 4’456 
8 4.0 15 0 15 0 0 
9 35.1 10 10 10 0 0 

10 13.6 15 15 15 0 0 
11 11.0 10 10 10 0 0 
12 18.6 75 40 40 0 0 
13 3.5 45 0 40 5       1’371 
14 11.9 60 0 40 20       9’321 
15 9.5 40 0 40 0 0 
16 4.3 15 15 15 0 0 
17 38.1 10 10 10 0 0 
18 27.3 15 15 15 0 0 
19 22.1 10 10 10 0 0 
20 10.9 12 0 12 0 0 
21 0.4 55 0 40 15     271 
22 0.3 65 0 40 25     263 
23 0.4 30 0 30 0 0 
24 44.2 75 40 40 0 0 
25 0.8 70 0 40 30      767 
26 0.3 30 0 30 0 0 
27 8.7 15 15 15 0 0 
28 76.1 10 10 10 0 0 
29 54.2 15 15 15 0 0 
30 11.3 12 12 12 0 0 
31 23.6 10 0 10 0 0 
32 89.6 15 15 15 0 0 
33 1.1 40 0 40 0 0 
34 83.8 15 15 15 0 0 
35 0.9 60 0 40 20     705 
36 22.7 12 12 12 0 0 
37 0.7 30 0 30 0 0 
38 1.6 40 0 40 0 0 
39 0.9 35 0 35 0 0 
40 47.8 75 40 40 0 0 
41 24.0 10 10 10 0 0 
42 2.6 12 0 12 0 0 
43 92.0 15 15 15 0 0 
44 88.6 40 40 40 0 0 
45 0.9 35 0 35 0 0 
46 78.8 75 40 40 0 0 
47 25.9 10 10 10 0 0 
48 2.8 12 12 12 0 0 
49 264.6 75 40 40 0 0 
50 0.8 40 0 40 0 0 
51 0.7 40 0 40 0 0 
52 7.9 30 0 30 0 0 
53 32.8 12 12 12 0 0 
54 277.3 75 40 40 0 0 
55 4.9 60 0 40 20       3’838 
56 25.7 55 0 40 15       17’434 
57 65.5 12 12 12 0 0 
58 3.0 50 0 40 10     1’662 
59 0.7 80 0 40 40    775 
60 309.1 75 40 40 0 0 
61 380.1 80 40 40 0 0 
62 380.9 80 40 40 0 0 
63 381.8 80 40 40 0 0 
64 382.5 80 40 40 0 0 
65 621.4 80 40 40 0 0 

 
 

Table 2. Total safety stock when  Ω = 40. 
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7. Conclusions    
 
In this paper, we solved a real-life application of a 
company that assembles fixed brakes and clutch 
pedals. We applied the dynamic programming  
algorithm developed in [2] and we proposed a 
framework to solve mid-size logistic networks (see 
Figure 1).  
 
The framework is based on a Java application 
called JbA. We provide the pseudo code of the 
algorithm to place safety stock inventory in 
guaranteed service time models. The JbA solved a 
65-stage logistic network in about 341ms, thus the 
implemented algorithm solved it efficiently.  
 
According to the company, it holds four weeks of 
safety stock for most of the components and 
assemblies. After the JbA is run, we conclude that 
most of the stages do not hold inventory as shown 
in Table 2 and just stages s7, s25, and s59  require 
safety stock for about 4 weeks. 
 
Future extensions of this algorithm must be 
implemented in real-life applications. Some 
exertions include stochastic times, non-stationary 
demand and capacity constraints. Moreover, there 
is a need for develop algorithms based on new 
optimisation techniques given that the guaranteed-
service inventory models has been proven to be 
NP-hard. 
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