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ABSTRACT  
This paper presents three approaches dealing with the feedback control of nonlinear analytic systems. The first one 
treats the optimal control resolution for a control-affine nonlinear system using the State Dependant Riccati Equation 
(SDRE) method. It aims to solve a nonlinear optimal control problem through a Riccati equation that depends on the 
state. The second approach treats a procedure of constructing an analytic expression of a nonlinear state feedback 
solution of an optimal regulation problem with the help of Kronecker tensor notations. The third one deals with the 
global asymptotic stabilization of the nonlinear polynomial systems. The designed state feedback control law stabilizes 
quadratically the studied systems. Our main contribution in this paper is to carry out a stability analysis for this kind of 
systems and to develop new sufficient conditions of stability. A numerical-simulation-based comparison of the three 
methods is finally performed. 
 
Keywords: Nonlinear systems, Optimal control, State Dependant Riccati Equation (SDRE), Feedback control, stability 
analysis. 
 
 
1. Introduction 
 
The optimal control of nonlinear systems is one of 
the most challenging and difficult topics in control 
theory. It is well known that the classical optimal 
control problems can be characterized in terms of 
Hamilton-Jacobi Equations (HJE) [1, 2, 3, 4, 5, 6]. 
The solution to the HJE gives the optimal 
performance value function and determines an 
optimal control under some smooth assumptions, 
but in most cases it is impossible to solve it 
analytically. However, and despite recent 
advances, many unresolved problems are steel 
subsisting, so that practitioners often complain 
about the inapplicability of contemporary theories. 
For example, most of the developed techniques 
have very limited applicability because of the 
strong conditions imposed on the system [29, 40, 
41, 42, 43]. This has led to many methods being 
proposed in the literature for ways to obtain a 
suboptimal feedback control for general nonlinear 
dynamical systems. 
 
The State Dependent Riccati Equation (SDRE) 
controller design is widely studied in the literature 
as a practical approach for nonlinear control 
problems. This method was first proposed by  
 

 
 
Pearson in [7] and later expanded by Wernli and 
Cook in [8]. It was also independently studied by 
Cloutier and all in [9, 31, 34]. This approach 
provides a very effective algorithm for synthesizing 
nonlinear optimal feedback control which is closely 
related to the classical linear quadratic regulator. 
The SDRE control algorithm relies on the solution 
of a continuous-time Riccati equation at each time 
update. In fact, its strategy is based on 
representing a nonlinear system dynamics in a 
way to resemble linear structure having state-
dependant coefficient (SDC) matrices, and 
minimizing a nonlinear performance index having a 
quadratic-like structure [9, 24, 34, 35, 38]. This 
makes the equation much more difficult to solve. 
An algebraic Riccati equation using the SDC 
matrices is then solved on-line to give the 
suboptimum control law. The coefficients of this 
equation vary with the given point in state space. 
The algorithm thus involves solving, at a given 
point in state space, an algebraic state-dependant 
Riccati equation, or SDRE. 
 
Although the stability of the resulting closed loop 
system has not yet been proved theoretically for all  
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system kinds, simulation studies have shown that 
the method can often lead to suitable control laws. 
Due to its computational simplicity and its 
satisfactory simulation/experimental results, SDRE 
optimal control technique becomes an attractive 
control approach for a class of non linear systems. 
A wide variety of nonlinear control applications 
using the SDRE techniques are exposed in 
literature. These include a double inverted 
pendulum in real time [26], robotics [12], ducted 
fan control [37, 38], the problems of optimal flight 
trajectory for aircraft and space vehicles [22, 30, 
32, 36] and even biological systems [10, 11]. 
 
An other efficient method to obtain suboptimal 
feedback control for nonlinear dynamic systems 
was firstly proposed by Rotella [33]. A useful 
notation was developed, based on Kronecker 
product properties which allows algebraic 
manipulations in a general form of nonlinear 
systems. To employ this notation, we assume that 
the studied nonlinear system is described by an 
analytical state space equation in order to be 
transformed in a polynomial modeling with 
expansion approximation. In recent years, there 
have been many studies in the field of polynomial 
systems especially to describe the dynamical 
behavior of a large set of processes as electrical 
machines, power systems and robot manipulators 
[14, 15, 16, 17, 18]. A lot of work on nonlinear 
polynomial systems have considered the global 
and local asymptotic stability study, and many 
sufficient conditions are defined and developed in 
this way [14, 15, 19, 20, 21, 39]. 
 
The present paper focuses on the description and 
the comparison of three nonlinear regulators for 
solving nonlinear feedback control problems: the 
SDRE technique, an optimal regulation problem for 
analytic nonlinear systems (presented for the first 
time by Rotella in [33]) and a quadratic stability 
control approach. A stability analysis study is as 
well carried out and new stability sufficient 
conditions are developed. 
 
The rest of the paper is organized as follows: the 
second part is reserved to the description of the 
studied systems and the formulation of the 
nonlinear optimal control problem. Then, the third 
part is devoted to the presentation of approaches 
of the optimal control resolution and quadratic 
stability control approach, as well as to the 

illustration of sufficient conditions for the existence 
of solutions to the nonlinear optimal control 
problem, in particular by SDRE feedback control. 
In section 4 we give the simulation results for the 
comparison of the three feedback control 
techniques. Finally conclusions are drawn. 
 
2.-Description of the studied systems and 
problem formulation 
 
We consider an input affine nonlinear continuous 
system described by the following state space 
representation: 
 



 

)(=
)()(=

XhY

UXgXfX

    (1) 

 
with associated performance index: 
 

dtUXRUXXQXJ TT ))()((
2
1=

0




                          
(2) 

 
where f(X), g(X) and h(X) are nonlinear functions 
of the state nX R , U  is the control input and the 
origin (X=0) is the equilibrium, i.e f(0)=0. 
 
The state and input weighting matrices are 
assumed state dependant such that: nnnQ RR:  

and mmnR RR: . These design parameters 
satisfy Q(X)>0 and R(X)>0 for all X.  
 
The problem can now be formulated as a 
minimization problem associated with the 
performance index in equation (2): 

          

 
 

0

0)(
))()((

2
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X

dtUXRUXXQX TT
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


X(0)g(X)U,f(X)X  to subject 
              (3) 

 
The solution of this nonlinear optimal control 
problem is equivalent to solving an associated 
Hamilton-Jacobi equations (HJE) [1]. 
 
For the simpler linear problem, where f(X)=A0X, 
the optimal feedback control is given by 

PXBRXU T1=)(  , with P solving the algebraic 

Riccati equation 0=1
00 QPBPBRPAPA TT   . 

  
The theories for this linear quadratic regulator 
(LQR) problem have been established for both the 
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finite-dimensional and infinite-dimensional 
problems [13]. In addition, stable robust algorithms 
for solving the Riccati equation have been 
developed and are well documented in many 
references in literature. 
 
For the nonlinear case, the optimal feedback 
control is known to be of the form:  
 

X

XV
XgXRXU

T
T




  )()()(=)( 1    (4) 

 
where the function V  is the solution to the 
Hamilton-Jacobi-Bellman equation [1, 3]: 
 

0)(
2
1)()()()(

2
1)()( 1 










  XXQX
X

XV
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XV
Xf

X

XV T
T

T  

(5) 
 
However, the HJB equation is itself very difficult to 
solve analytically even for the simplest problems. 
Therefore, efforts have been made to numerically 
approximate the solution of the HJB equation, or to 
solve a related problem producing a suboptimal 
control, or to use some other processes in order to 
obtain a suitable feedback control. The following 
section will outline three such methods on 
feedback control techniques of nonlinear analytic 
systems. 
 
3.-Approaches of the feedback control 
resolution for nonlinear systems formulation 
 
3.1  SDRE approach to optimal regulation problem 
formulation 
 
The main problems with existing nonlinear control 
algorithms can be listed as follows: high 
computational cost (adaptive control), lack of 
structure (gain scheduling) and poor applicability 
(feedback linearization). One method that avoids 
these problems is the State Dependant Riccati 
Equation approach. This method, also known as 
Frozen Riccati Equation approach [28, 29], is 
discussed in detail by Cloutier, D’souza and 
Mracek in [35]. It uses extended linearization [27, 
31, 35, 8] as the key design concept in formulating 
the nonlinear optimal control problem. The 
extended linearization technique, or state 
dependant coefficient (SDC) parametrization, 

consists in factorizing a nonlinear system, 
essentially input affine, into a linear-like structure 
which contains SDC matrices. 
 
For system (1), under the assumptions f(0) = 0  
and for )((.) 1 nf RC  [24], we can always find some 

continuous matrix valued functions A(X) such that 
it has the following state-dependent linear 
representation (SDLR):  
 



 

XXCY

UXBXXAX

)(=
)()(=

    (6) 

 
where XXAXf )(=)(  and )(=)( XBXg , nnnA RR:  

is found by mathematical factorization and is, 
clearly, non unique when 1>n , and different 
choices will result in different controls [25]. 
 
The SDRE feedback control provides a similar 
approach as the algebraic Riccati equation (ARE) 
for LQR problems, to the nonlinear regulation 
problem for the input-affine system (1) with cost 
functional (2). Indeed, once a SDC form has been 
found, the SDRE approach is reduced to solving a 
LQR problem at each sampling instant.  
 
To guarantee the existence of such controller, the 
conditions in the following definitions must be 
satisfied [25].  
 
Definition 1: )(XA  is a controllable (stabilizable) 

parametrization of the nonlinear system for a given 
region if )](),([ XBXA  are pointwise controllable 

(stabilizable) in the linear sense for all X  in that 
region. 
 
Definition 2: )(XA  is an observable (detectable) 

parametrization of the nonlinear system for a given 
region if )](),([ XAXC  are pointwise observable 

(detectable) in the linear sense for all X  in that 
region. 
 
When A(X), B(X) and C(X) are analytical functions 
in state vector X , and given these standing 
assumptions, the state feedback controller is 
obtained in the form:  
 

XXKXU )(=)(       (7) 
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and the state feedback gain for minimizing (2) is: 
 

)()()(=)( 1 XPXBXRXK T    (8) 

 
where P(X) is the unique symmetric positive-
definite solution of the algecbraic state-dependent 
Riccati equation (SDRE):  
                      

0=)()()(

)()()()()(

)()()()(
1

XCXQXC

XPXBXRXBXP

XPXAXAXP

T

T

T






   (9) 

It is important to note that the existence of the 
optimal control for a particular parametrization of 
the system is not guaranteed. Furthermore, there 
may be an infinite number of parameterizations of 
the system; therefore the choice of parametrization 
is very important. The other factor which may 
determine the existence of a solution to the Riccati 
equation is the selection of the Q(X) and R(X) 
weighting matrices in the Riccati equation (9). 
 
The greatest advantage of SDRE control is that 
physical intuition is always present and the 
designer can directly control the performance by 
tuning the weighting matrices Q(X) and R(X). In 
other words, via SDRE, the design flexibility of 
LQR formulation is directly translated to control the 
nonlinear systems. Moreover, Q(X) and R(X)  are 
not only allowed to be constant, but can also vary 
as functions of states. In this way, different modes 
of behavior can be imposed in different regions of 
the state-space [26]. 
 
3.1.1 Stability analysis 
 
The SDRE control produces a closed-loop system 
matrix ACL(X)=A(X)-B(X)K(X) which is pointwise 
Hurwitz for all X, in particular for (X=0). Therefore, 
the origin of the closed-loop system is locally 
asymptotically stable [9, 24]. However, for a 
nonlinear system, all eigenvalues of ACL(X) having 
negative real parts nX R  do not guarantee 
global asymptotic stability [26]. Stability of SDRE 
systems is still an open issue. Global stability 
results are presented by Cloutier, D’souza and 
Mracek in the case where the closed-loop 
coefficient matrix ACL(X) is assumed to have a 
special structure [35]. The result is summarized in 
the following theorem. 
 

Theorem 1:  We assume that A(.), B(.), Q(.) and 
R(.) are )(1 nRC  matrix-valued functions, and the 

respective pairs )}(),({ XBXA  and )}(),({ 1/2 XQXA  are 

pointwise stabilizable and detectable SDC 
parameterizations of the nonlinear system (1) for 
all X. Then, if the closed-loop coefficient matrix 
ACL(X)  is symmetric for all X, the SDRE closed-
loop solution is globally asymptotically stable.   
 
Won derived in [3] a SDRE controller for a 
nonlinear system with a quadratic form cost 
function presented in the following theorem.   
 
Theorem 2: For the system (1), with the cost 
function (2), we assume that V satisfies the HJ 
equation (5) and V(X) is a twice continuously 
differentiable, symmetric and non-negative definite 
matrix:  
 

XXXXV T )(=)( V               (10) 

 
For the nonlinear system given by (1), the optimal 
controller that minimizes the cost function (2) is 
given by:  
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provided that the following conditions are satisfied: 
 

0=)()()()()(

)()()()()(
1 XXBXRXBX

XQXAXXXA
T

T

VV

VV



          (12) 

 

 
0=)()()(

=)()()(

1

1





 













TT

T
n

T

X
X

X
XBXR

X

X
XIXBXR

V

V

         
(13) 

and  

  0=)()(
X

X
XIXA T

n
T





V
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where   is the Kronecker product notation which 
the definition and properties are detailed in 
Appendix A. 
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3.1.2 Stability analysis- Main result: 
 
We present now our contribution which is the 
development of sufficient conditions to guarantee 
the stability of system (6) under cost function (2). 
Our analysis is based on the direct method of 
Lyapunov. Firstly, we return to the optimal 
feedback control (4) and let: 
 

XXP
X

XV )(=)(



              (15) 

 
Then the optimal control law can be expressed as:  
 

XXPXBXRXU T )()()(=)( 1                              (16) 

 
where P(X) is the symmetric positive definite matrix 
solution of the following State Dependent Riccati 
Equation :  
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
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Let us note that such symmetric positive definite 
matrix P(X) exists, if for any X we have (A(X), 
M(X), N(X)) is stabilizable detectable, where:  
 





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)()()(=)()(
)()()(=)()( 1

XCXQXCXNXN

XBXRXBXMXM
TT
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             (18) 

 
So we assume that this condition is satisfied for 
each RX . 
Now let W(X) the Lyapunov function defined by the 
following quadratic form:  
 

XXPXXW T )(=)(                                              (19) 

 
The global asymptotic stability of the equilibrium 
state (X=0) of system (6) is ensured when the time 
derivative )(XW  of )(XW  is negative defined for all 

nX R . 
 
One has:  

XXPXX
dt

XdP
XXXPXXW TTT  )()()(=)( 
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The use of expression (19) and the following 
equality :  
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yield :  
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 Since AT(X)P(X)-P(X)B(X)R-1BT(X)P(X)+P(X)A(X)= 
-CT(X)Q(X)C(X) obtained from the SDRE (17), then 
(22) becomes: 
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where : )()()(=)( 1 XBXRXBXH T . 

 
To ensure the asymptotic stability of system (6) 
with the control law (16), )(XW  should be 

negative, which is equivalent to )(X  negative 

definite, where:  
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We try now to simplify the manipulation of matrix 

)(X  by expressing 
X

XP


 )(  in terms of P(X). 

 
When derivating the SDRE (17) with respect to the 
state vector X , we obtain the following 
expression:  
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with: )()()(=)( XCXQXCX T , 

which gives:  
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with:  
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To simplify the partial derivative expression 
X

XP


 )( , 

we use 'vec' and 'mat' functions and their 
properties defined in Appendix A; then (26) 
becomes:  
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which leads to:  
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and then we can state the following result: 
 
Theorem.3: The system (6) is globally 
asymptotically stabilizable by the optimal control 
law (4), with the cost function (2) if the symmetric 
matrix )(X  defined by (24) is negative definite for 

all nX R . 
 
3.2 Quasi-Optimal Control for Nonlinear Analytic 
Cubic System 
 
We treat here the procedure presented by Rotella 
in [33]. It consists in building an analytic 
expression of a nonlinear state feedback solution 
of an optimal control problem with the help of  
 

tensor notations (57) and (62), detailed in 
Appendix A. This state feedback will be expressed 
as a formal power series with respect to X . 
 
Let us consider the system defined by (1), (57) and 
(62) with an initial condition (0)X . 

 
The output function can be expressed by: 
 

))((=)( tXhtY                                                       (30) 

 
where h(.) is a map from qR  into pR . If h(.)  is  
analytic, it leads to the expression:  
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where Hi  are constant matrices of adapted 
dimensions. 
 
The problem of optimal control is to build a state 
feedback which minimizes the functional cost (2). 
To find a solution to HJB equation (5), Rotella has 
proposed in [33] the determination of an analytic 

form for 
X

XV


 )(

 based on the following polynomial 

expression:  
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 where Pj  are constant matrices of adapted 
dimensions. 
 
In this paper, we consider a nonlinear cubic 
system defined by:  
 





 

CXY

BUXFXFXFX

=
= [3]

3
[2]

21


                   (33) 

 
since the truncation of polynomial system, in order 
three, can be considered being sufficient for 
nonlinear system modeling. Then the control law of 
the cubic system (33) can be expressed as:  
 

)(= [3]
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The determination of the control gains P1, P2 and 
P3 is deduced from [33]. Therefore P1 is the gain-
matrix solution of the optimal control on the 
linearized system, then P1 is chosen symmetric 
and solution of the classical Riccati equation:  
 

0=1
1

11111 QCCPBBRPPFFP TTTTT  
               (35) 

 
The second order gain-matrix P2 is expressed as 
follows:  
 

2
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22 = HFP                                                          (36) 

 
 where:  
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The function 'vec'  is defined in Appendix A. 
The third order gain-matrix P3 is given by the 
resolution of the following expression:  
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Unfortunately, even if the triplet (F1, B, C) is 
stabilizable-detectable, the matrix )( 34 qqq

UI


  is 

singular. To overcome this problem, we introduce 

the notation of the non-redundant i power ][~ iX  
of the state vector X  defined in (52). Then, an 
analytical function A(X) of X  can be written in 

terms of ][ jX  as before, and in terms of ][~ jX : 
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Then, by the non-redundant form, (37) must be 
replaced by the linear equation:  
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and the matrix T3  is a rectangular matrix of 4  

rows and 3.q  columns, which has the property of 

being of full rank. 
 
Finally, we obtain the analytical expression of this 
optimal state feedback: 
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3.3 Quadratic Stabilizing Control 
 
The approach of quadratic stabilizing control 
exposed in this paragraph was firstly presented in 
[20]. It consists in the development of algebraic 
criteria for global stability of analytical nonlinear 
continuous systems which are described by using 
Kronecker product. Based on the use of quadratic 
Lyapunov function, the definition of sufficient 
conditions for the global asymptotic stability of the 
system equilibrium was also developed. 
 
We consider the cubic polynomial nonlinear 
systems defined by the equation (33). Our purpose 
is to determine a polynomial feedback control law:  
 

[3]
3

[2]
21= XKXKXKU                                    (41) 

 
where 1K , 2K  and 3K  are constant gain matrices 

which stabilize asymptotically and globally the 
equilibrium (X=0) of the considered system. 
 
Applying this control law to the open-loop system 
(33), one obtains the closed loop system:  
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[3]
33

[2]
2211 )()()(= XBKAXBKAXBKAX 

         
(42) 

 
Using a quadratic Lyapunov function )(XV  and 

computing the derivative )(XV  lead to the sufficient 

condition of the global asymptotic stabilization of 
the polynomial system, given by the following 
theorem [20]. 
 
Theorem 4:  The nonlinear polynomial system 
defined by the equation (33) is globally 
asymptotically stabilized by the control law (41) if 
there exist: 
 
•.an )( nn -symmetric-positive definite matrix P,  

•.arbitrary parameters R ,1,=, ii
  

•.gain matrices K1, K2, K3 
 

such that the )(    symmetric matrix Q  defined 

by:  
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with: 
 

- i
kA  is the thi  row of the matrix Ak  
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where: 21= nn  ; 2
0 = nn  ; 32

1 = nn  ; 
43

2 = nn  . 
 
In [39], it was proved that the stabilization problem 
stated by the theorem 4 can be formulated as an 
LMI feasibility problem.  
 
Theorem 5: The equilibrium (X=0) of the system 
(42) is globally asymptotically stabilizable if there 
exist:  
 
•.a )( nn -symmetric positive definite matrix P , 

•.arbitrary parameters R ,1,=, ii , 

•.gain matrices 321 ,, KKK , 

•.a real 0> ,  

 
 such that  
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with: 
 
 )(=)( 1 kk MW                                                    (45) 

 
Thus, a stabilizing control law (41) for the 
considered polynomial system (33) can be 
characterized by applying the following procedure:   
- Solve the LMI feasibility problem i.e. find the 
matrices  
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)(PSD , )(kW  and the parameters i  and   such 

that the inequalities (44) are verified.  
- Extract the gain matrices iK  from the relation 

)(=)( kk WM  .  

 
4. Simulation results 
 
 In this section we will compare the performance of 
the three methods, discussed in the previous 
paragraph, on a numerical example. We consider 
a vectorial system defined by the following state 
equation:  
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For optimal controls, we focus on minimizing the 
following criteria:  
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4.1 Application of the SDRE approach 
 
For system (46), we choose the following SDC 
parametrization:  
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The controllability matrix is then:  
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and it has a full order rank for all X, which can 
justify the good choice of SDC matrices A(X) 
and B(X). 

After solving the state-dependant Riccati equation 
(9) and obtaining the positive symmetric matrix 
P(X), the optimal control law can be written as: 
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We can easily verify that matrix )(X  given in 

theorem 3 is negative defined for all RX , which 
guarantees the stability of system (46) by the 
optimal control law (50).  
 
4.2  Application of the polynomial approach 
 
To establish the polynomial optimal control law, 
given by (34), for system (46), we use the 
procedure of determination of matrices Pi, 
presented in subsection 3.2. Then we obtain:  
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4.3-Application of the feedback quadratic 
stabilizing control 
 
Solving the LMI problem formulated by theorem 5, 
we obtain:  
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The searched gain matrices, extracted from M(k), 
are given by: 
 

5.552]9.887[=1 K ; 0]00.897[2.105=2K ; 

1.328]4.3151.8220.9378.808
1.3704.2710.854[=3


K

. 

 
4.4  Numerical simulation 
 
Figure 1 (respectively figure 2) shows the behavior 
of the first state variable x1(t) (respectively the 
second state variable x2(t)) of system (46)  
 

(47) 

(48) 
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controlled by the three feedback-control laws 
illustrated in figure 3. Initial conditions were taken 
sufficiently far from the origin (x1(0)= - 5, x2(0)=5). 
Under these conditions, simulations show a 
satisfactory asymptotic stabilization of state variables 
for all approaches. Dealing with SDRE technique, 
simulations lead to the two following direct outcomes: 
 
•.Stabilization by SDRE approach is almost same 
or better than other approaches. 
 
•.For overtaking damping, SDRE technique shows 
the best results compared to both other 
approaches with almost no oscillation.  
 

 
Figure 1. Closed loop responses of 1x  with control laws. 

 

 
 

Figure 2. Closed loop responses of 2x  with control laws. 

 
Figure  3. Control signals evolution. 

 
5. Conclusion 
 
Our main motivation for this contribution was first 
to expose the main approaches used in the 
domain of the stability study for non linear 
systems, then to work on the development of new 
stability criteria in specific conditions for one 
technique, and finally to perform a numerical-
simulation-based comparison of the three 
techniques. 
 
The first two approaches are quadratic optimal 
controls which are determined via the resolution of 
nonlinear Hamilton-Jacobi equation, where the 
description of affine-control analytical systems, 
with Kronecker power of vectors, allows an 
analytical approximate determination of HJE 
solution. The third approach is a feedback 
quadratic stabilizing technique based on the 
Lyapunov direct method and an algebraic 
development using Kroneker product properties. 
Focusing on the first quadratic optimal control 
approach determined via the resolution of SDRE, 
our work led to a new result: guarantee the global 
asymptotic stability of the nonlinear system when 
some sufficient conditions are verified. 
 
We have then set about some numerical 
simulations around the three approaches to 
validate them. One important outcome of these 
simulations was the proof that SDRE method 
works better than the analytic ones, which are 
expected due to the truncation order considered in 
the polynomial development of the non linear  
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systems. The simulation results have also shown 
that the SDRE original technique is the easiest to 
program and to implement. 
 
Further works will consider extension of this 
synthesis to large scale interconnected nonlinear 
power systems via decentralized control. 
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Appendix A: 
 
We recall here the useful mathematical notations 
and properties used in this paper concerning the 
Kronecker tensor product. 
 
A.1. Kronecker product 
 
The Kronecker product of A(pxq) and B(r xs) 
denoted by )( BA  is the )( qspr   matrix defined 

by:  
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 A.2. Kronecker power of vectors 
 
 The Kronecker power of order i , ][iX , of the 
vector nX R  is defined by:  
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The non-redundant poweri  ][~ iX  of the state 

vector ],,[= 1 qXXX   is defined in [33] as:  
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It corresponds to the previous power where the 
repeated components have been removed. Then, 
we have the following:  
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thus, one possible solution for the inversion can be 
written as: 
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with T
ii

T
ii TTTT 1)(=   where 

iT  is the Moore-

Penrose inverse of iT , and in  stands for the 

binomial coefficients.  
 
A.3. Permutation matrix: 
 

 Let n
ie  denotes the thi  vector of the canonic basis 

of nR , the permutation matrix denoted mnU   is 

defined by [23]:  
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(54) 

 
This matrix is square )( nmnm  and has precisely a 

single "1" in each row and in each column.  
 
A.4.  Vec-function: 
 
The function Vec  of a matrix was defined in [23] 
as follows:  
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where },{1, qi  , iA  is a vector of pR . 

We recall the following useful rule of this function, 
given in [23]:  
 

)()(=)..( AVecECCAEVec T                                 (56) 

 
A.5. Mat-function: 
 
An important matrix valued linear function of a 
vector, denoted (.)),( mnMat  was defined in [14] as 

follows: 
 
If V is a vector of dimension p=n.m then M=Mat(n, 
m)(V) is the (nxm) matrix verifying: )(= MVecV . 

 
A.6 Application to the description of analytic 
nonlinear vector and matrix functions: 
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Vector functions : Let f(.) be an analytic function 
from nR  into mR . Then f(X) can be developed in a 
generalized Taylor series using the Kronecher 
power of the vector X, i.e.  
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                                                   (57) 

 
Matrix functions : Let g(.) be an analytic function 
from nR  into )(RmnM  (the set of nxm  real 

matrices). Then g(X) can be written as :  
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where Gk(X) is a vector function from nR  into nR , 
which can be written as :  
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Thus g(X) can be expressed as :  
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which can be written as: 
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where Im is the identity matrix of order m. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


